Zymbler M., Goglachev A. Fast Summarization of Long Time Series
with Graphics Processor // Mathematics. 2022. Vol. 10, No. 10.
Article 1781. [PDF]
[DOI:
10.3390/math10101781] [WOS:000801317400001]
[Scopus]
Zymbler M., Ivanova E. Matrix Profile-Based Approach to
Industrial Sensor Data Analysis Inside RDBMS. Mathematics. 2021.
Vol. 9, No. 17. Article 2146. [PDF] [DOI:
10.3390/math9172146] [WOS:000694382500001] [Scopus]
Zymbler M., Grents A., Kraeva Ya., Kumar S. A
Parallel Approach to Discords Discovery in Massive Time Series Data
// Computers, Materials & Continua. 2021. Vol. 66, No. 2.
P. 1867–1876. [PDF] [DOI:
10.32604/cmc.2020.014232] [WOS:000594856200001] [Scopus]
Zymbler M.,
Kraeva Ya.
Discovery of Time Series Motifs on Intel Many-Core Systems //
Lobachevskii Journal of Mathematics. 2019. Vol. 40, No. 12. P.
2124–2132. [PDF] [WOS:000514534200013] [Scopus] [DOI:
10.1134/S199508021912014X]
Faizullin A., Zymbler M., Lieftucht D., Fanghänel F.
Use of Deep Learning for Sticker Detection
During Continuous Casting // Proceedings of 2018 Global
Smart Industry Conference, GloSIC 2018, Chelyabinsk, Russia,
November 13–15, 2018.
IEEE, 2018. Aricle no. 8570155. [PDF] [DOI: 10.1109/GloSIC.2018.8570155]
[WOS:000462287600095]
[Scopus]
Грант РНФ № 23-21-00465 (2023–2024 гг.): «Методы, модели и алгоритмы
интеллектуального анализа временных рядов на основе интеграции
параллельных вычислений и нейросетевых технологий».