
����������
�������

Citation: Zymbler, M.; Goglachev, A.

Fast Summarization of Long Time

Series with Graphics Processor.

Mathematics 2022, 10, 1781. https://

doi.org/10.3390/math10101781

Academic Editor: José Antonio Sanz

Received: 26 April 2022

Accepted: 17 May 2022

Published: 23 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Fast Summarization of Long Time Series with Graphics Processor

Mikhail Zymbler * and Andrey Goglachev

School of Electronic Engineering and Computer Science, South Ural State University, 454080 Chelyabinsk, Russia;
goglachevai@susu.ru
* Correspondence: mzym@susu.ru

Abstract: Summarization of a long time series often occurs in analytical applications related to
decision-making, modeling, planning, and so on. Informally, summarization aims at discovering a
small-sized set of typical patterns (subsequences) to briefly represent the long time series. Apparent
approaches to summarization like motifs, shapelets, cluster centroids, and so on, either require
training data or do not provide an analyst with information regarding the fraction of the time series
that a typical subsequence found corresponds to. Recently introduced, the time series snippet concept
overcomes the above-mentioned limitations. A snippet is a subsequence that is similar to many
other subsequences of the time series with respect to a specially defined similarity measure based on
the Euclidean distance. However, the original Snippet-Finder algorithm has cubic time complexity
concerning the lengths of the time series and the snippet. In this article, we propose the PSF (Parallel
Snippet-Finder) algorithm that accelerates the original snippet discovery schema with GPU and
ensures acceptable performance over very long time series. As opposed to the original algorithm,
PSF splits the calculation of the similarity of all the time series subsequences to a snippet into several
steps, each of which is performed in parallel. Experimental evaluation over real-world time series
shows that PSF outruns both the original algorithm and a straightforward parallelization.

Keywords: time series; summarization; snippets; matrix profile; Snippet-Finder; MPdist measure;
SCAMP; parallel algorithm; GPU; CUDA

MSC: 62M10; 65Y05

1. Introduction

Time series data are ubiquitous and important in many subject domains, and are
actively utilized in a large number of analytical applications related to decision-making,
modeling, planning, and so on. Summarization of a long time series is one of the tasks
that most often occurs in such applications. Summarization can informally be defined
as discovering a small-sized set of typical patterns (subsequences) that provide a concise
representation of the long time series.

At the moment, the time series research community has proposed various approaches
to formalize the concept of time series typical subsequences, namely motifs [1,2], repre-
sentative trends [3], shapelets [4], etc. However, these approaches have two unavoidable
limitations—that they either (a) require pre-labeled training data from the respective subject
area, or (b) do not provide an analyst with information regarding the fraction of the time
series that a typical subsequence found corresponds to. In a recent work [5], the authors
propose the time series snippet concept that overcomes the above-mentioned limitations.
For a given length, a time series snippet is a subsequence that is similar to many other
subsequences of the time series with respect to MPdist, a specially defined similarity
measure [6] based on the Euclidean distance. At the same moment, all the subsequences
similar to the snippet can be exactly specified and counted. In the experimental evaluation,
the snippet-based time series summarization shows adequate results for a wide range of
subject domains [5,7]. However, the original snippet discovery algorithm has a high time
complexity, namely cubic concerning the lengths of the time series and snippet [7].

Mathematics 2022, 10, 1781. https://doi.org/10.3390/math10101781 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10101781
https://doi.org/10.3390/math10101781
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7491-8656
https://doi.org/10.3390/math10101781
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10101781?type=check_update&version=1

Mathematics 2022, 10, 1781 2 of 19

In this study, we address the problem of parallelization in the snippet discovery,
continuing our research on improvement of time series management and accelerating
various time series mining tasks with parallel architectures [8–13]. The article makes the
following basic contributions: we present and formalize a novel parallelization scheme for
snippet discovery on a graphics processor; in the extensive experimental evaluation over
real-world time series, we show that our algorithm outruns both the original serial one and
straightforward parallelization; we present the experimental results on the scalability of
our algorithm with respect to its input parameters (the snippet length and subsequence
length) and the similarity measure employed (based on the ordinary or squared Euclidean
distance).

The remainder of the article is organized as follows. In Section 2, we briefly discuss
related works. Section 3 contains notation and formal definitions, along with a short de-
scription of the original serial algorithm. Section 4 presents the proposed parallel algorithm
of discovering time series snippets. In Section 5, we give the results and discussion of
the experimental evaluation of our algorithm. Finally, Section 6 summarizes the results
obtained and suggests directions for further research.

2. Related Work

In [5,7], Keogh et al. describe the following properties that the typical subsequences
found in a time series should have: scalable computability, quantifiability, diversity, di-
minishing returns, and domain agnosticism. Scalable computability means that a discovery
algorithm should not require a large time or space overhead. Quantifiability supposes
the association of each pattern found with a fraction of the time series represented by
the pattern. The diversity and diminishing returns properties are about uniqueness of each
pattern found and sorting all the patterns in descending order according to their fractions,
respectively. Finally, the domain agnosticism property assumes that the algorithm should be
applied to a time series from any subject area without leveraging the knowledge and/or
training data on the area to achieve all the properties above. Additionally, the authors
discuss the following apparent approaches to discover typical time series subsequences
that do not meet the requirements above, partially or fully: motifs [1,2], representative
trends [3], centroids from clustering a time series subsequences [14], shapelets [4], and
random samples.

A motif [1,2] is a pair of time series subsequences that are very similar to each other
with respect to the chosen similarity measure. In [2], Mueen et al. propose an effective
Euclidean distance based motif discovery algorithm that employs triangular inequality
to prune unpromising candidates for motif. Additionally, there is a significant number
of developments that accelerate motif discovery on various parallel architectures, namely
multi-core CPU [15], Intel MIC (Many Integrated Core) accelerators [9,16], GPU [12,17], etc.
However, the motif concept does not meet the quantifiability property, i.e., we are able to
point out shapes and locations of typical patterns found but cannot indicate a coverage of
each pattern.

In subject domains that are not related to time-series, summarizing a set of objects
of the same structure is performed through the clustering methods. Clustering assumes
splitting a given set of objects into subsets (clusters) in such a way that objects from one
cluster are substantially similar to each other, while objects from different clusters are
substantially dissimilar to each other, with respect to the chosen similarity measure [18].
However, clustering of all the time series subsequences with the same length is meaningless,
with any distance measure, or with any algorithm, as shown by Keogh et al. in [14].

In [4], Ye et al. presented the shapelet concept, which assumes that the time series
subsequences are previously classified. A shapelet is a subsequence that is both the most
similar one to most of the subsequences of a given class and the most dissimilar one from
the subsequences belonging to other classes with respect to the chosen similarity measure.
Obviously, the shapelet concept is not domain agnostic.

In [3], Indyk et al. proposed the relaxed period and the average trend concepts, defined
as follows. Let us fix the subsequence length and the similarity measure for a given time

Mathematics 2022, 10, 1781 3 of 19

series. Then a subsequence of the time series is called a relaxed period, if the synthetic time
series of the same length as the original one and composed by repeated concatenation
of the subsequence above has maximal similarity with the original time series. Next, a
subsequence is called an average trend of the time series if, for such a subsequence, the
maximal sum of the squares of its similarity with all other subsequences is achieved. The
described concepts assume that the time series is preliminarily split into periods with a
well-defined duration and a starting index, and therefore cannot be considered as agnostic.

Simple random sampling (SRS) assumes the random selection of time series subsequences
without dividing them into groups. SRS is applicable to the problem of typical time series
subsequences discovery in a significantly narrow range of subject domains, and is used as
a baseline for comparison with other approaches [7].

In [5], Keogh et al. proposed the time series snippet concept that meets all the above-
mentioned properties. Informally speaking, a time series snippet is a subsequence of a
given length, which is similar to many other subsequences of the time series with respect
to a specially defined similarity measure, MPdist [6]. At the same moment, all the subse-
quences similar to the snippet can be exactly specified and counted. A set of snippets has
significantly less cardinality than a set of the time series subsequences of the given length
and therefore can be employed to summarize the original time series. In the experimental
evaluation, the snippet-based discovery of typical subsequences shows adequate results
for time series from a wide range of subject domains [5,7]. In the original paper [5], the
authors introduce the Snippet-Finder algorithm, while in the expanded version thereof [7],
in addition, they present a generalization of the algorithm to streaming settings. However,
the time complexity of Snippet-Finder is cubic (more precisely, O(n2 · n−m

m), where n is time
series length and m is subsequence length) [7]. In their research, the authors did not address
the parallelization of the Snippet-Finder algorithm, although the most time-consuming
step of Snippet-Finder, computation of the matrix profile [4], can be straightforwardly
parallelized through the SCAMP algorithm [19].

There are works devoted to discovery of typical patterns in a particular type of time se-
ries. For instance, representative ECG heartbeat morphologies [20], music thumbnails [21],
and patterns of human activity in time series from wearable devices [22].

We also mention research [23,24] aimed at discovering time series typical patterns
through Convolutional Autoencoders (CAE). CAE is employed to reconstruct the input
time series with convolutional encoding and decoding filters, while the filters contain
interpretable features (patterns) of the input time series. Such an approach is not domain
agnostic, since more than ten neural network parameters need to be set carefully in order
to obtain good results [24].

Summing up our overview of related work, we conclude that the snippet concept [5,7]
is the only one that is closely related to domain agnostic typical patterns discovery in
time series. However, due to its high time complexity, the Snippet-Finder algorithm
requires parallelization to ensure acceptable performance over very long time series. Such
parallelization is a topical issue since, to the best of our knowledge, no research has
addressed the acceleration of time series snippet discovery with GPU or any other parallel
hardware architecture.

3. Preliminaries

Prior to detailing the proposed parallel algorithm for snippet discovery, we introduce
basic notation and formal definitions according to [7] (see Section 3.1), briefly describe the
MPdist similarity measure [6] the snippet concept is based on (see Section 3.2), and give a
short description of the original serial algorithm [7] of snippet discovery (see Section 3.3).

3.1. Notation and Definitions

A time series is a chronologically ordered sequence of real-valued numbers:

T = {ti}n
i=1, ti ∈ R. (1)

Mathematics 2022, 10, 1781 4 of 19

The length of a time series, n, is denoted by |T|. Hereinafter, we assume that the time series
T fit into the main memory.

A subsequence Ti,m of a time series T is its subset of m successive elements that starts at
the i-th position:

Ti, m = {tk}i+m−1
k=i , 1 ≤ i ≤ n−m + 1, 1 ≤ m� n. (2)

In what follows, we assume that n is a multiple of m. This does not lead to a loss of
generality, since when n/m is not an integer number, we pad the time series to the end by
zeros until the result of the division above becomes an integer number.

We represent a time series T as a set of segments, i.e., as a set of non-overlapped
m-length subsequences, and denote such a set as Sm

T :

Sm
T = {Si | Si = Tm·(i−1)+1, m, 1 ≤ i ≤ n/m}. (3)

A time series snippet is an actual segment of T. Nearest neighbors are the time series
subsequences of the same length that are the most similar to the snippet. Similarity of
subsequences is determined through a special measure that is based on the Euclidean
distance. The task-at-hand is somewhat like the clustering problem, where at the end, for
each cluster, we provide an end-user with a typical representative that is optimal in the
sense that it minimizes the objective function. Snippets are about the situation when the
K-medoids [18] clustering is employed, where a medoid is an object of a set to be clustered,
in contrast to the K-means [25] clustering algorithm, where commonly, a cluster center is
not an object of the set. Snippets are arranged in an ordered list in descending order of the
number of their nearest neighbors. Formally, snippets are defined as follows.

Let us denote a set of m-length snippets of a time series T as Cm
T :

Cm
T = {Ci | Ci ∈ Sm

T , 1 ≤ i ≤ n/m}, (4)

where a time series snippet Ci ∈ Cm
T is associated with the following attributes: an index,

nearest neighbors, and a fraction. We denote these attributes as Ci.index, Ci.NN, and
Ci. f rac, respectively.

An index of a snippet Ci ∈ Cm
T is a number j of a segment that corresponds to the

snippet, i.e., Sj = Tm·(j−1)+1, m.
Nearest neighbors of a snippet Ci ∈ Cm

T is a set of subsequences that are the most similar
to the corresponding segment with respect to the MPdist [6] measure (which is formally
defined below in Section 3.2):

Ci.NN = {Tj, m | SCi .index = arg min
1≤s≤n/m

MPdist(Tj, m, Ss), 1 ≤ j ≤ n−m + 1}. (5)

A fraction of a snippet Ci ∈ Cm
T is a ratio of the number of the snippet’s nearest

neighbors to the total number of m-length subsequences in the time series:

Ci. f rac =
|Ci.NN|

n−m + 1
. (6)

Snippets are ordered in descending order of their fraction:

∀Ci, Cj ∈ Cm
T : i < j⇔ Ci. f rac ≥ Cj. f rac. (7)

Finally, in the task-at-hand, we are given by a time series T, a segment length m, and
an integer parameter K (1 ≤ K ≤ n/m), and should find top-K snippets {Ci}K

i=1 ⊂ Cm
T ,

including their indexes, nearest neighbors, and fractions.

3.2. The MPdist Measure

The MPdist similarity measure [6] considers two equal-length time series to be similar
if they share many similar equal-length subsequences with respect to the Euclidean distance,

Mathematics 2022, 10, 1781 5 of 19

regardless of the order of matching subsequences. Although MPdist is a measure, not a
metric (it does not obey the triangular inequality), it has a lot of merits, namely robustness
to spikes, warping, linear trends, etc. [6]. MPdist is formally defined as follows.

Let us have two equal-length time series, A and B (|A| = |B| = m), and ` is a user-
defined subsequence length with value in range of 3 ≤ ` ≤ m. Typically, ` is a value
to be taken in range d0.3me ≤ ` ≤ d0.8me [6]. In what follows, the MPdist definition
employs the matrix profile concept [4]. A matrix profile of two time series A and B, with
respect to the subsequence length `, is a time series denoted as PAB, where an element
of PAB is z-normalized Euclidean distance between an `-length subsequence in A and its
corresponding nearest neighbor in B:

PAB = {EDnorm(Ai, `, Bj, `)}m−`+1
i=1 , Bj, ` = arg min

1≤q≤n/m
EDnorm(Ai, `, Bq, `). (8)

The z-normalization of the Euclidean distance between two equal-length subsequences is
defined as follows:

EDnorm(X, Y) = ED(X̂, Ŷ) =

√√√√ `

∑
i=1

(x̂i − ŷi)2,

x̂i =
xi − µx

σx
, µx =

1
`

`

∑
i=1

xi, σ2
x =

1
`

`

∑
i=1

x2
i − µ2

x.

(9)

Similarly, the matrix profile PBA is defined as follows:

PBA = {EDnorm(Bi, `, Aj, `)}m−`+1
i=1 , Aj, ` = arg min

1≤q≤n/m
EDnorm(Bi, `, Aq, `). (10)

Let us concatenate PAB with PBA and denote the resulting time series as PABBA (in
what follows, we use the symbol � to denote a concatenation of two operands):

PABBA = PAB � PBA, |PABBA| = 2(m− `+ 1). (11)

Next, let us denote PABBA in which the elements are ordered in ascending order as
sortedPABBA. To compute MPdist between A and B with respect to the subsequence length
`, the k-th element of sortedPABBA is used, where k is a user-defined parameter. Typically, k
is taken as 5 percent of 2m, double length of the concatenated time series A� B. However,
if the subsequence length ` is close to the time series length m, then the length of PABBA is
less than 5 percent of 2m, and the maximal element of PABBA is taken as a value of MPdist.
Formally speaking,

MPdist`(A, B) =

{
sortedPABBA(k), |PABBA| > k
sortedPABBA(2(m− `+ 1)), otherwise,

(12)

where k = d0.05 · 2 me = d0.1 me.

3.3. The Serial Algorithm

Below, we give a brief overview of the serial Snippet-Finder algorithm according to
the original article [7].

An MPdist-profile of a time series T and a given query subsequence Q is a vector of the
MPdist distances between Q and each subsequence in T, which is denoted as MPD:

MPD(Q, T, `) = {di}n−m+1
i=1 , di = MPdist`(Q, Ti, m). (13)

Mathematics 2022, 10, 1781 6 of 19

Let us denote an MPdist-profile of a time series T and its segment Si as Di. Next, let
us consider a set of MPdist-profiles of T and all its segments, and denote it as D:

D = {Di}n/m
i=1 , Di = MPD(Si, T, `). (14)

Discovering time series snippets is performed through the construction of the curve M
that allows an objective function. M consists of n−m points and is constructed on Dsubset, a
given non-empty subset of the set of MPdist-profiles D. In M, i-th point represents MPdist
distance between i-th subsequence of T and its nearest segment from the given subset:

M(Dsubset) = {Mi}n−m
i=1 , Mi = min

Dj∈Dsubset
{di | di ∈ Dj}, Dsubset ⊂ D. (15)

The area under the curve M is denoted as Pro f ileArea and considered as an objective
function:

Pro f ileArea(Dsubset) =
n−m

∑
i=1

Mi(Dsubset). (16)

Pro f ileArea has the intuitive property wherein if every non-overlapping subsequence
is used as a snippet, its value would be exactly zero. In discovering snippets, we try to
select the reduced set of segments so that the value of Pro f ileArea will be close to zero. The
algorithm performs iteratively as follows. At the first step, it selects a segment for which
the Pro f ileArea value is minimal, as a snippet:

step = 1 : C1.index = arg min
1≤j≤n/m

Pro f ileArea({Dj}). (17)

At each further step, we employ the MPdist-profile of the segment that have been
chosen as a snippet at the previous step:

step = 2 : C2.index = arg min
1≤j≤n/m

Pro f ileArea({DC1.index, Dj}). (18)

All subsequent steps of the algorithm are performed similarly to the second step until
K snippets are found:

step = i, 3 ≤ i ≤ K : Ci.index = arg min
1≤j≤n/m

Pro f ileArea({{DCk .index}i−1
k=1, Dj}). (19)

After the snippets are found, their fractions are calculated as follows:

Ci. f rac =
|M({DCk .index}i

k=1) ∩ DCi .index|
n−m + 1

, 1 ≤ i ≤ K. (20)

Algorithm 1 depicts pseudo-code of Snippet-Finder. The algorithm starts by com-
puting a set of MPdist-profiles of all segments (see line 2). It employs GetAllProfiles and
MPdistProfile, the auxiliary algorithms to compute a set of MPdist-profiles and MPdist-
profile of a segment, that are shown in Algorithms 2 and 3, respectively. Next, snippets are
discovered through Equations (17)–(19) (see lines 3–11). The algorithm stops by calculating
the fractions of the snippets found through Equation (20) (see lines 12–14).

Mathematics 2022, 10, 1781 7 of 19

Algorithm 1 SNIPPETFINDER (IN T, m, K; OUT Cm
T)

1: Cm
T ← ∅; M← +∞

2: D ←GETALLPROFILES(T, m)
3: while |Cm

T | 6= K do
4: minArea← +∞
5: for i← 1 to n/m do
6: Pro f ileArea← ∑n−m

j=1 min(Di(j), Mj)

7: if Pro f ileArea < minArea then
8: minArea← Pro f ileArea; idx ← i
9: M← {min(Didx(i), Mi)}n−m

i=1
10: C ← Tm·(idx−1)+1, m; C.index ← idx
11: Cm

T ← Cm
T ∪ C

12: for i← 1 to K do
13: f ← |{t ∈ DCi .index | t = Mi}|
14: Ci. f rac← f /(n−m + 1)
15: return Cm

T

Algorithm 2 GETALLPROFILES (IN T, m; OUT D)
1: D ← ∅
2: for i← 1 to n/m do
3: Di ← MPDISTPROFILE(T, Tm·(i−1)+1, m)
4: D ← D ∪ Di

5: return D

Algorithm 3 MPDISTPROFILE (IN T, Q; OUT MPD)
1: MPD ← ∅
2: for i← 1 to n− ` do
3: di ← MPdist`(Ti, m, Q)
4: MPD ← MPD ∪ di

5: return MPD

4. Accelerating Snippet Discovery with GPU

Currently, NVIDIA graphics processors (GPU, Graphics Processing Unit) are among
the most popular many-core accelerators that address data-parallel computational prob-
lems [26]. GPU has a hierarchical architecture composed of symmetric streaming multi-
processors (SM). Each SM, in turn, consists of symmetric CUDA (Compute Unified Device
Architecture) cores. CUDA application programming interface supports SIMD (Single In-
struction Multiple Data) paradigm, making it possible to assign multiple threads to execute
the same set of instructions over multiple data. In CUDA, all threads form a grid that is
managed as blocks of threads. In a block, threads perform concurrently and communicate
with each other through shared local resources. A CUDA function is called a kernel. When
running a kernel on GPU, an application programmer specifies the number of blocks and
the number of threads in each block. Further, we show matrix data structures and kernels
developed to process data in SIMD manner to discover snippets.

PSF employs data structures summarized in Figure 1. The computational scheme
of the PSF algorithm differs from the original one as follows. The calculation of a set of
MPdist-profiles (see Algorithm 1, line 2) is performed more efficiently than in the original
GetAllProfiles algorithm (see Algorithm 2). Instead of one serial step at which the MPdist-
profile between a segment and each subsequence of the time series is calculated, we perform
a sequence of four steps, each of which is parallelized. Let us describe these steps for a
fixed segment S ∈ Sm

T .

Mathematics 2022, 10, 1781 8 of 19

𝑻𝑻

𝑛𝑛

𝑬𝑬𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝒎𝒎𝒂𝒂𝒂𝒂𝑷𝑷𝑩𝑩𝑩𝑩

𝒎𝒎𝒂𝒂𝒂𝒂𝑷𝑷𝑩𝑩𝑩𝑩

𝑷𝑷𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩

𝑆𝑆

EDnorm

min

min

ℓ

𝑚𝑚

ℓ ℓ

𝑚𝑚 − ℓ + 1

𝑚𝑚 − ℓ + 1

2(𝑚𝑚 − ℓ + 1)

Figure 1. Data structures of the PSF algorithm.

At the first step, we calculate a matrix of the EDnorm distances between the segment
and each subsequence of the time series. Let us denote such a matrix as EDmatr:

EDmatr ∈ R(m−`+1)×(n−m+1) : EDmatr(i, j) = EDnorm(Si, `, Tj, `). (21)

At the second step, for the matrix obtained at the first step, we calculate column-wise
minimum values. Let us denote the resulting vector of such minima as allPBA:

allPBA ∈ Rn−`+1 : allPBA(j) = min
1≤i≤m−`+1

EDmatr(i, j). (22)

At the third step, in the EDmatr matrix, we calculate row-wise minimum values in an
`-length sliding window. Let us denote the resulting matrix as allPAB:

allPAB ∈ R(m−`)×(n−m+1) : allPAB(i, j) = min
j≤c≤j+`

EDmatr(i, c). (23)

Finally, at the fourth step, for each segment, we concatenate each column of the allPAB
matrix and all (m− `)-length subsequences from the allPBA vector, and denote the resulting
structure as PABBA:

PABBA ∈ R2(m−`+1) : PABBA(Tj, `) = {allPAB(i, j)}m−`+1
i=1 � {allPBA(i)}m−`+1

i=j . (24)

In fact, at the end of this step, for a specified segment, we compute a matrix profile of
the segment and each subsequence of the time series. For the final calculation of the MPdist
similarity measure between the segment and a subsequence, it is necessary to sort PABBA
and take the k-th value of the ordered array, as defined in Equation (12).

Algorithm 4 depicts pseudo-code of the above-described steps, performed in parallel.
Here, calls of the EDmatrSCAMP algorithm (line 3) provide a parallel calculation of the
matrix of EDnorm distances between a specified segment and each subsequence of the time
series according to Equations (8)–(10). In EDmatrSCAMP, parallel computations are based
on the technique employed in the SCAMP algorithm proposed in [19]. This technique
employs the following equations:

QTi, j = QTi−1, j−1 + d fi · dgj + d f j · dgi, (25)

d f0 = 0, d fi =
1
2 (ti+m−1 − ti−1),

dg0 = 0, dgi = (ti+m−1 − µi) + (ti−1 − µi−1), µi =
1
m

i+m

∑
j=i

tj,
(26)

Mathematics 2022, 10, 1781 9 of 19

Pi, j = QTi, j ·
1

‖ Ti, m − µi ‖
· 1
‖ Tj, m − µj ‖

, (27)

where Ti, m − µi = {tk − µk}i+m−1
k=i , Tj, m − µj = {tk − µk}j+m−1

k=j , and ‖ · ‖ denotes the
Euclidean norm.

EDnorm(Ti, m, Tj, m) =
√

2m(1− Pi, j). (28)

Algorithm 4 PARALLELGETALLPROFILES (IN T, m; OUT D)
1: D ← ∅
2: for i← 1 to n/m do
3: EDmatr ← EDMATRSCAMP(T, Si, `)
4: for j← 1 to n− ` do . PARALLEL
5: allPBA(j)← min1≤r≤m−`+1 EDmatr(r, j)
6: for r ← 1 to m− ` do . PARALLEL
7: for q← 1 to n−m + 1 do
8: allPAB(r, q)← minq≤p≤q+` EDmatr(r, p)

9: Di ←PARALLELPROFILE(allPAB, allPBA)
10: D ← D ∪ Di

11: return D

As opposed to its predecessor, GPU-STOMPOPT [27], while computing the Euclidean
distances, SCAMP reorders floating-point computations and replaces sliding dot product
update with a centered sum-of-products formula (Equations (25)–(28)). Equations (26)
precompute the terms used in the sum-of-products update formula of Equation (25), and
incorporate incremental mean centering into the update. Equation (27) replaces the Eu-
clidean distance with the Pearson Correlation that can be computed incrementally using
fewer computations than the Euclidean distance, and can be converted to the z-normalized
Euclidean distance in O(1) by Equation (28).

In ParallelGetAllProfiles (see Algorithm 4), lines 4–5 implement parallel calculation
of the allPBA vector containing column-wise minima of the EDmatr matrix according to
Equation (22). The corresponding CUDA kernel is organized as follows (see Figure 2). We
form a grid consisting of n−m + 1 blocks of m− `+ 1 threads in each block. An EDmatr
column is copied from the global memory to the shared memory of each block. Finally,
each block finds the minimum through the reduction operation.

𝑬𝑬𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝑚𝑚 − ℓ + 1

𝒎𝒎𝒂𝒂𝒂𝒂𝑷𝑷𝑩𝑩𝑩𝑩

min min min

GPU
TB

SM
TB

SM
TB

SM
TB

SM
TB

SM …

… … …

Figure 2. CUDA kernel to compute allPBA (hereinafter in figures: SM—streaming multiprocessor, TB—
thread block).

Next, lines 6–8 of the algorithm implement parallel calculation of the allPAB matrix
of row-wise minima in an `-length sliding window of EDmatr according to Equation (23).
The corresponding CUDA kernel is depicted in Figure 3. We create a single block grid
consisting of m− `+ 1 threads. Each thread calculates the minimum in an `-length sliding
window for one row of the matrix. The resulting matrix is stored in global memory.

Mathematics 2022, 10, 1781 10 of 19

GPU
TB

SM
TB

SM
TB

SM
TB

SM
TB

SM …

𝑬𝑬𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝒎𝒎𝒂𝒂𝒂𝒂𝑷𝑷𝑩𝑩𝑩𝑩

min

𝑚𝑚− ℓ + 1

…

…

𝑚𝑚− ℓ + 1

min

…

…

Figure 3. CUDA kernel to compute allPAB.

After that, calculations are continued by the ParallelProfile algorithm (see Algorithm 5).
The algorithm performs according to Equation (24) through the parallel concatenation of
each column of the allPAB matrix and all the (m− `)-length subsequences included in the
allPBA vector.

Algorithm 5 PARALLELPROFILE (IN allPAB, allPBA; OUT P)
1: P← ∅; k← d0.1 · (m− `)e
2: for i← 1 to n− ` do . PARALLEL
3: PABBA ← allPAB(i)� allPBA(i, m− `)
4: sortedPABBA ← SORT(PABBA)
5: Pi ← sortedPABBA(k)
6: P← P ∪ Pi

7: return P

To compute this, we employ the following CUDA kernel (see Figure 4). We create
a grid consisting of n− m + 1 blocks of 2(m− `+ 1) threads in each block. Each block
forms the PABBA matrix profile for a segment. Half of the block’s threads copy allPAB
data from the global memory to the shared memory of this block, and the other half of
the threads copy allPBA data from the global memory to the shared memory of this block
for each column of EDmatr. Next, each block sorts PABBA and writes its k-th element (see
Equation (12)) to global memory, thus forming the MPdist-profile of the segment.

We also parallelize calculations of the area under the curve and fractions of the snip-
pets found in the original serial algorithm (see lines 5–11 and lines 12–14 in Algorithm 1,
respectively). Figure 5 depicts the respective CUDA kernels. The first kernel is a grid
consisting of n/m blocks of n − m + 1 threads in each block. Each block calculates the
minima of the curve. Next, elements of the curve are summed through the reduction opera-
tion. After K snippets are found, the second CUDA kernel performs as a grid consisting of
K blocks of n−m + 1 threads in each block. This grid calculates the fraction of each snippet
by comparing the values of the MPdist-profiles of snippets and the curve.

Mathematics 2022, 10, 1781 11 of 19

GPU
TB

SM
TB

SM
TB

SM
TB

SM
TB

SM …

𝒎𝒎𝒂𝒂𝒂𝒂𝑷𝑷𝑩𝑩𝑩𝑩

𝒎𝒎𝒂𝒂𝒂𝒂𝑷𝑷𝑩𝑩𝑩𝑩

2(𝑚𝑚 − ℓ + 1)

𝑷𝑷𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩

𝑚𝑚 − ℓ + 1

𝑷𝑷𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝑷𝑷𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩

⊙

⊙

⊙

⊙

⊙

⊙

… … …

… … …

Figure 4. CUDA kernel to compute PABBA.

GPU
TB

SM
TB

SM
TB

SM
TB

SM
TB

SM …

𝑴𝑴

𝑷𝑷𝒎𝒎𝑷𝑷𝑷𝑷𝑷𝑷𝒂𝒂𝑷𝑷𝑩𝑩𝒎𝒎𝑷𝑷𝒎𝒎
+ + +

… … …

Figure 5. CUDA kernels to compute area under the curve and fractions.

5. Experimental Evaluation

To evaluate the proposed algorithm, we carried out experiments with the following
objectives. First, we evaluated the performance of the PSF algorithm over time series
from different subject domains in comparison with analogs. Next, we investigated how
the segment length and a user-defined subsequence length (see Section 3.2) affect the
performance of PSF. Finally, we also evaluated a frequently exploited idea to speed up
computations in PSF through changing the Euclidean distance metric to the square thereof
(see Equation (9)). We designed our experiments to be easily reproducible and have built
a repository [28] that contains the algorithm’s source code and all the datasets used in
this work.

Below, Section 5.1 describes the datasets and hardware platform of the experiments,
and Section 5.2 presents experimental results and discussion.

5.1. The Experimental Setup

In the experiments, we employed the following time series listed in Table 1 (with
the given segment lengths). The GreatBarbet, WildVTrainedBird, SkipWalk, and TiltABP
time series are taken from the MixedBag dataset [29], a diverse collection of one hundred
time series compiled by the authors of the original serial algorithm [5] for its experimental
evaluation. In MixedBag, each time series has two predefined one-time changed activities
of approximately equal length. GreatBarbet and WildVTrainedBird represent physiological
indicators of bird vital activity. TiltABP describes human blood pressure measurements
during rapid tilts. SkipWalk illustrates the readings of a wearable accelerometer during
jumping rope and walking of a human; it is an excerpt from the PAMAP dataset [30]
that contains data recorded during various types of human physical activity. We also

Mathematics 2022, 10, 1781 12 of 19

constructed the WalkRun and IronAscDescWalk time series as excerpts from PAMAP:
the former reflects walking and running, and the latter shows ironing, ascending and
descending stairs, and walking. Finally, RW is a synthetic time series generated according
to the Random Walk model [31].

Table 1. Time series employed in the experiments.

Time Series Length
n

Segment
m Description

GreatBarbet 2801 150 Physiological indicators of bird
vital activityWildVTrainedBird 20,002 900

SkipWalk 20,002 600 Wearable accelerometer readings
during various types of human
physical activity

WalkRun 100,000 240
IronAscDescWalk 87,906 2800

TiltABP 40,000 630 Human blood pressure readings
during rapid tilts

RW 100,000 in the range
250..2500 Synthetic time series

In the experiments, we compared the performance of the proposed parallel PSF
algorithm, the original serial Snippet-Finder algorithm, and the parallel NaivePSF al-
gorithm.We developed NaivePSF as a simplified version of PSF where only the most
time-consuming part of snippet discovery is parallelized, namely computation of matrix
profiles between segments and all subsequences according to Equations (8)–(11). We imple-
mented such calculations on GPU through the separate calls of the SCAMP framework [19].
The rest part of calculations, namely building MPdist profiles of all segments according
to Equations (11)–(14) and snippet discovery, are implemented serially on CPU. In each
experiment, we ran the algorithms 10 times and took the median value as the final running
time. In the experiments, for each evaluated time series, we checked that Snippet-Finder,
NaivePSF, and PSF produce exactly the same snippets and resulting summarization.

For all the experiments, we set the subsequence length parameter of the MPdist
measure (see Section 3.2) as ` = dm/2e, i.e., as half of the segment length.

Table 2 summarizes hardware platform of the experiments. In the study, Snippet-
Finder runs on CPU (on a single core). PSF and NaivePSF perform calculations mostly on
GPU (Equations (8)–(20)), except for Equation (26) which is calculated on CPU.

Table 2. Hardware platform of the experiments.

Specifications CPU GPU

Brand Intel NVIDIA

Model Xeon Gold 6254 Tesla V100 SXM2

Cores 18 5120

Frequency, GHz 4.0 1.3

Memory, Gb 64 32

Peak performance, TFLOPS 1.2 15.7

5.2. Results and Discussion
5.2.1. Summarization

Figure 6 depicts the results of summarization for several real-world time series men-
tioned in Table 1.

Mathematics 2022, 10, 1781 13 of 19

(a) GreatBarbet

0 28011800900 1950

−2

0

2

P
re

ss
u

re
,

P
a

Snippet 1 Snippet 2

Detected
Ground truth

−2

−1

0

1

2

900 1050
1950 2100

Snippet 1 Snippet 2

(b) SkipWalk

0 20,00290017800 12,600

−30

−20

−10

0

10

Skipping Walking

Detected
Ground truth

A
cc

el
er

at
io

n
,m

s−
2

−25

−20

−15

−10

−5

0

5

10

7800 8400
12600 13200

Skipping Walking

(c) WalkRun

0 100,00057,00036,000 75,000

−20

−10

0

10

20

A
cc

el
er

at
io

n
,m

s−
2

Walking Running

Detected
Ground truth −20

−15

−10

−5

0

5

10

15

36000 39000
75000 78000

Walking Running

(d) IronAscDescWalk

0 24,995 33,530 40,858 49,017 55,974 87,905
−4

−2

0

2

4

Ironing Ascending stairs Descending stairs Walking

Detected
Ground truth

A
cc

el
er

at
io

n
,m

s−
2

−4

−2

0

2

4

36400 39200
28000 30800
14000 16800
56000 58800

Ironing

Ascending stairs

Descending stairs

Walking

(e) TiltABP

0 40,00025,00017,640 31,500

30

40

50

60

70

A
rt

er
ia

l
b

lo
od

p
re

ss
u

re
,

m
m

H
g

Snippet 1 Snippet 2

Detected
Ground truth

30

40

50

60

70

17640 18270
31500 32130

Snippet 1 Snippet 2

Figure 6. Summarization of time series with the PSF algorithm (left: top—time series where snippets are
colored, bottom—ground truth labeling and this one detected through the snippets; right: the snippets found
including their start and end indexes).

Mathematics 2022, 10, 1781 14 of 19

In addition, in Table 3, we show the summarization accuracy of PSF over all the
real-world time series involved in experiments. By the algorithm’s accuracy, we assume a
ratio of elements in the time series for which its respective activity was detected correctly to
the length of the time series. We may conclude that our parallel algorithm (like the original
serial one) is able to summarize a time series with accuracy pretty close to ground truth
(but much faster than its predecessor, as will be shown below).

Table 3. Summarization accuracy of the PSF algorithm.

Time Series Accuracy

GreatBarbet 0.97

WildVTrainedBird 0.94

SkipWalk 0.97

WalkRun 0.91

IronAscDescWalk 0.88

TiltABP 0.99

5.2.2. Performance

Experimental results concerning the algorithm’s performance over real-world time
series are depicted in Figure 7. It can be seen that PSF, the proposed parallel algorithm,
substantially (at least an order of magnitude) outruns Snippet-Finder, the original serial one,
for all the time series considered in the experiments, except for GreatBarbet, the shortest
one, where PSF is a bit behind Snippet-Finder. This seemingly implausible result has the
following simple explanation. When a time series is relatively short (in our experiments, we
found such a length as about ten thousands of elements), then the overhead of transferring
data to GPU and initializing computing kernels is greater than the time spent on the
actual calculations.

Table 3. Summarization accuracy of PSF

Time series Accuracy

GreatBarbet 0.97

WildVTrainedBird 0.94

SkipWalk 0.97

WalkRun 0.91

IronAscDescWalk 0.88

TiltABP 0.99

GreatBarbet SkipWalkWildVTrainedBird TiltABP IronAscDescWalk WalkRun

Snippet-Finder NaivePSF PSF

101

102

103

R
u
n
n
in
g
ti
m
e,

s
(l
og

sc
al
e)

125

470

2979

82

276

1718

14

61

283

6.3

27

82

4.3

14

72

2.12.5
1.6

Figure 7. Performance of the PSF algorithm

(at least an order of magnitude) outruns Snippet-Finder, the original serial one, for all the time

series considered in the experiments, except for GreatBarbet, the shortest one, where PSF is a bit

behind Snippet-Finder. This seemingly implausible result has the following simple explanation.

When a time series is relatively short (in our experiments, we found such a length as about

ten thousands of elements), then the overhead of transferring data to GPU and initializing

computing kernels is greater than the time spent on the actual calculations.

Similarly, for the short-length time series, PSF shows almost the same performance as

NaivePSF, since the overhead of these algorithms is the same, and redundant calculations in the

naive version are practically absent. For time series with a length of more than ten thousand

elements, PSF is up to four times faster than NaivePSF. The advantage of the PSF algorithm

is greater the longer the length of the evaluated time series, since the overhead of calculating

matrix profiles between segments and subsequences of the time series becomes more significant.

Also, the superiority of PSF over NaivePSF shows us that straightforward parallelization is not

enough to achieve the highest possible performance of the snippets discovery, and the proposed

data structures and parallelization scheme are crucial.

5.2.3. Impact of the Segment Length

We evaluated the dependence of the parallel algorithm’s performance on the segment length

(the parameter m) on the RW synthetic time series, and Fig. 8 shows the experimental results. It

can be seen that the proportion between the Snippet-Finder, NaivePSF, and PSF performance

Figure 7. Performance of the PSF algorithm.

Similarly, for the short-length time series, PSF shows almost the same performance as
NaivePSF, since the overhead of these algorithms is the same, and redundant calculations
in the naive version are practically absent. For time series with a length of more than
ten thousand elements, PSF is up to four times faster than NaivePSF. The advantage
of the PSF algorithm is greater the longer the length of the evaluated time series, since
the overhead of calculating matrix profiles between segments and subsequences of the
time series becomes more significant. Additionally, the superiority of PSF over NaivePSF
shows us that straightforward parallelization is not enough to achieve the highest possible

Mathematics 2022, 10, 1781 15 of 19

performance of the snippet discovery, and the proposed data structures and parallelization
scheme are crucial.

5.2.3. Impact of the Segment Length

We evaluated the dependence of the parallel algorithm’s performance on the segment
length (the parameter m) on the RW synthetic time series, and Figure 8 shows the experi-
mental results. It can be seen that the proportion between the Snippet-Finder, NaivePSF,
and PSF performance is retained. In addition, the algorithms’ performance increases
slightly (up to two percent) as segment length increases. Since the original algorithm’s time
complexity is O(n2 · n−m

m) (where n is time series length and m is segment length) [7], the
overall number of operations tends to zero as the segment length increases.

250 500 750 1000 2000 2500
Segment length

Snippet-Finder NaivePSF PSF

101

102

103

R
u
n
n
in
g
ti
m
e,

s
(l
og

sc
a
le
)

112

470

2979

114

461

2981

116

467

3010

117

470

3031

120

474

3061

122

480

3100

126

491

3143

Figure 8. Performance of the PSF algorithm depending on the segment length

can be seen that the proportion between the Snippet-Finder, NaivePSF, and PSF performance

is retained. In addition, the algorithms’ performance increases slightly (up to two percent) as

segment length increases. Since the original algorithm’s time complexity is O(n2 · n−m
m) (where

n is time series length and m is segment length) [8], the overall number of operations tends to

zero as the segment length increases.

5.2.4. Impact of the Subsequence Length

Figure 9. Performance of the PSF algorithm depending on the subsequence length

In Fig. 9, we show the dependence of the parallel algorithm’s performance on the subsequence

length (the parameter ℓ, see Section 3.2) for the RW synthetic time series and segment length

m = 2500. As before, the proportion between the performance of Snippet-Finder, NaivePSF, and

PSF is retained. It can be seen that the greater value of the subsequence length provides us with

higher algorithm’s performance. This is an expected result since greater value of the parameter

1500

Figure 8. Performance of the PSF algorithm depending on the segment length.

5.2.4. Impact of the Subsequence Length

In Figure 9, we show the dependence of the parallel algorithm’s performance on the
subsequence length (the parameter `, see Section 3.2) for the RW synthetic time series
and segment length m = 2500. As before, the proportion between the performance of
Snippet-Finder, NaivePSF, and PSF is retained. It can be seen that the greater value of the
subsequence length provides us with higher algorithm’s performance. This is an expected
result since greater value of the parameter ` results in a smaller number of rows in EDmatr,
the matrix of distances between segments and subsequences, and, in turn, smaller size of
its legacy data structures allPBA, allPAB, allPBA, and PABBA (see Equations (21)–(24) and
Figure 1) all the algorithm’s calculations are based on.

250 500 750 1,000 1,500 2,000 2,500
Segment length

Snippet-Finder NaivePSF PSF

101

102

103

R
u
n
n
in
g
ti
m
e,

s
(l
og

sc
al
e)

112

470

2979

114

461

2981

116

467

3010

117

470

3031

120

474

3061

122

480

3100

126

491

3143

Figure 8. Performance of the PSF algorithm depending on the segment length

can be seen that the proportion between the Snippet-Finder, NaivePSF, and PSF performance

is retained. In addition, the algorithms’ performance increases slightly (up to two percent) as

segment length increases. Since the original algorithm’s time complexity is O(n2 · n−m
m) (where

n is time series length and m is segment length) [8], the overall number of operations tends to

zero as the segment length increases.

5.2.4. Impact of the Subsequence Length

ℓ = 0.3m ℓ = 0.5m ℓ = 0.8m
Subsequence length

Snippet-Finder NaivePSF PSF

102

103

R
u
n
n
in
g
ti
m
e,

s
(l
og

sc
a
le
)

82

312

2482

112

451

2951

127

527

3491

Figure 9. Performance of the PSF algorithm depending on the subsequence length

In Fig. 9, we show the dependence of the parallel algorithm’s performance on the subsequence

length (the parameter ℓ, see Section 3.2) for the RW synthetic time series and segment length

m = 2500. As before, the proportion between the performance of Snippet-Finder, NaivePSF, and

PSF is retained. It can be seen that the greater value of the subsequence length provides us with

higher algorithm’s performance. This is an expected result since greater value of the parameter

ℓ results in a smaller number of rows in EDmatr, the matrix of distances between segments and

Figure 9. Performance of the PSF algorithm depending on the subsequence length.

Mathematics 2022, 10, 1781 16 of 19

In addition, in Figure 10, we show the average accuracy of PSF over all the time series
from the MixedBag dataset [29] depending on the subsequence length. From boxplots that
reflect the accuracy for three typical values of the parameter `, we can see that ` = dm/2e
provides us with higher accuracy than two others. Finally, we conclude that the subse-
quence length, being specified as half of the segment length, provides us with the best
trade-off between the performance and accuracy of PSF.subsequences, and, in turn, smaller size of its legacy data structures allPBA, allPAB, allPBA,

and PABBA (see Equations 21–24 and Fig. 1) all the algorithm’s calculations are based on.

ℓ = 0.3m ℓ = 0.5m ℓ = 0.8m

0.5

0.6

0.7

0.8

0.9

1

Subsequence length

A
cc
u
ra
cy

Figure 10. Accuracy of the PSF algorithm depending on the subsequence length

In addition, in Fig. 10, we show the average accuracy of PSF over all the time series from

the MixedBag dataset [9] depending on the subsequence length. From boxplots that reflect

the accuracy for three typical values of the parameter ℓ, we can see that ℓ = ⌈m/2⌉ provides
us with higher accuracy than two others. Finally, we conclude that the subsequence length,

being specified as half of the segment length, provides us with the best trade-off between the

performance and accuracy of PSF.

5.2.5. Applying ED2
norm Instead of EDnorm

EDnorm ED2
norm

0.5

0.6

0.7

0.8

0.9

1

Distance metric

A
cc
u
ra
cy

Figure 11. Accuracy of the PSF algorithm depending on the distance metric

In the experiments on applying ED2
norm instead of EDnorm, we compared the performance

and accuracy of PSF over all the time series from the MixedBag dataset [9]. Figure 11 shows

two boxplots of the algorithm’s accuracy when the normalized Euclidean distance metric or the

squared version thereof is employed, respectively. As can be seen, the squared distance metric

can substitute the original one without a significant loss of quality. As expected, ED2
norm is more

“strict” and demonstrates lower values of the third quartile and minimum in the cases when

Figure 10. Accuracy of the PSF algorithm depending on the subsequence length.

5.2.5. Applying ED2
norm Instead of EDnorm

In the experiments on applying ED2
norm instead of EDnorm, we compared the per-

formance and accuracy of PSF over all the time series from the MixedBag dataset [29].
Figure 11 shows two boxplots of the algorithm’s accuracy when the normalized Euclidean
distance metric or the squared version thereof is employed, respectively. As can be seen, the
squared distance metric can substitute the original one without a significant loss of quality.
As expected, ED2

norm is more “strict” and demonstrates lower values of the third quartile
and minimum in the cases when PSF demonstrates low accuracy. However, for these two
cases, maximums, first quartiles, and medians are almost equal. At the same time, in our
experiments, PSF showed up to 10 percent higher performance when the MPdist is based
on the squared distance metric.

subsequences, and, in turn, smaller size of its legacy data structures allPBA, allPAB, allPBA,

and PABBA (see Equations 21–24 and Fig. 1) all the algorithm’s calculations are based on.

ℓ = 0.3m ℓ = 0.5m ℓ = 0.8m

0.5

0.6

0.7

0.8

0.9

1

Subsequence length

A
cc
u
ra
cy

Figure 10. Accuracy of the PSF algorithm depending on the subsequence length

In addition, in Fig. 10, we show the average accuracy of PSF over all the time series from

the MixedBag dataset [9] depending on the subsequence length. From boxplots that reflect

the accuracy for three typical values of the parameter ℓ, we can see that ℓ = ⌈m/2⌉ provides
us with higher accuracy than two others. Finally, we conclude that the subsequence length,

being specified as half of the segment length, provides us with the best trade-off between the

performance and accuracy of PSF.

5.2.5. Applying ED2
norm Instead of EDnorm

EDnorm ED2
norm

0.5

0.6

0.7

0.8

0.9

1

Distance metric

A
cc
u
ra
cy

Figure 11. Accuracy of the PSF algorithm depending on the distance metric

In the experiments on applying ED2
norm instead of EDnorm, we compared the performance

and accuracy of PSF over all the time series from the MixedBag dataset [9]. Figure 11 shows

two boxplots of the algorithm’s accuracy when the normalized Euclidean distance metric or the

squared version thereof is employed, respectively. As can be seen, the squared distance metric

can substitute the original one without a significant loss of quality. As expected, ED2
norm is more

“strict” and demonstrates lower values of the third quartile and minimum in the cases when

Figure 11. Accuracy of the PSF algorithm depending on the distance metric.

6. Conclusions

In this article, we addressed the task of accelerating the summarization of a long time
series with a graphics processor. Informally, summarization can be described as discovering
a small-sized set of typical patterns (subsequences) that briefly represent the long time
series. The task of time series summarization arises in a wide spectrum of subject domains
within analytical applications related to decision-making, modeling, planning, and so on.

A number of apparent approaches to time series summarization like motifs, shapelets,
cluster centroids, and so on, have two unavoidable limitations that they either require
pre-labeled training data, or cannot determine a fraction of the time series represented by

Mathematics 2022, 10, 1781 17 of 19

the pattern found. The snippet concept recently proposed by Keogh et al. [5] overcomes
the above-mentioned limitations. For a given length, a time series snippet is a subsequence
that is similar to many other subsequences of the time series with respect to the MPdist
similarity measure [6] based on the Euclidean distance. In addition, all the subsequences
similar to the snippet can be exactly specified and counted. However, the original Snippet-
Finder algorithm has a cubic time complexity concerning the lengths of the time series and
snippet [7]. Thus, Snippet-Finder requires parallelization to ensure acceptable performance
over very long time series. Our extensive search in recent scientific publications showed
that, to the best of our knowledge, no research addresses the acceleration of time series
snippet discovery with GPU or any other parallel hardware architecture.

In the article, we employed Keogh et al.’s works [5,7] as a basis and proposed a novel
parallelization scheme for snippet discovery on a graphics processor. Our algorithm is
called PSF (Parallel Snippet-Finder) and employs advanced data structures and a compu-
tational scheme different to the original algorithm. In PSF, we calculated MPdist-profiles
more efficiently than in the original algorithm: instead of one serial step at which the
MPdist-distance between a snippet and each subsequence of the time series is calculated,
we performed a sequence of steps, each of which is parallelized on GPU.

We carried out an extensive experimental evaluation of PSF, employing a diverse
collection of time series compiled by the authors of the original serial algorithm. For
evaluation purposes, we also developed a straightforward version of PSF where only the
most time-consuming part of snippet discovery (computation of distances between snippets
and all subsequences) is parallelized on GPU through the separate calls of the SCAMP
framework [19]. Experimental results showed that PSF outruns both the original serial
algorithm and the straightforward parallel version (at least an order of magnitude and
up to four times, respectively). In addition, experiments showed that PSF is well scalable
with respect to its input parameters (the snippet length and subsequence length) and the
similarity measure employed (based on the ordinary or squared Euclidean distance).

In further studies, we plan to extend our approach in two directions: (a) the case of
a many-core CPU as an underlying hardware platform where parallelization of snippet
discovery is performed through the OpenMP technology [32] instead of CUDA, and (b) the
case of a large time series that cannot be entirely placed in RAM, and snippets should be
found on a high-performance cluster with GPU or many-core CPU nodes.

Author Contributions: Conceptualization, Methodology, Writing—review & editing, Supervision,
M.Z.; Data curation, Software, Visualization, A.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was financially supported by the Russian Foundation for Basic Research (Grant
No. 20-07-00140) and by the Ministry of Science and Higher Education of the Russian Federation
(Government Order FENU-2020-0022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chiu, B.Y.; Keogh, E.J.; Lonardi, S. Probabilistic discovery of time series motifs. In Proceedings of the 9th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–27 August 2003; Getoor, L., Senator, T.E.,
Domingos, P.M., Faloutsos, C., Eds.; ACM: New York, NY, USA, 2003; pp. 493–498. https://doi.org/10.1145/956750.956808.

2. Mueen, A.; Keogh, E.J.; Zhu, Q.; Cash, S.; Westover, M.B. Exact Discovery of Time Series Motifs. In Proceedings of the SIAM
International Conference on Data Mining, SDM 2009, Sparks, NV, USA, 30 April 30–2 May 2009; SIAM: Philadelphia, PN, USA,
2009; pp. 473–484. https://doi.org/10.1137/1.9781611972795.41.

3. Indyk, P.; Koudas, N.; Muthukrishnan, S. Identifying Representative Trends in Massive Time Series Data Sets Using Sketches. In
VLDB 2000, Proceedings of 26th International Conference on Very Large Data Bases, Cairo, Egypt, 10–14 September 2000; Abbadi, A.E.,
Brodie, M.L., Chakravarthy, S., Dayal, U., Kamel, N., Schlageter, G., Whang, K., Eds.; Morgan Kaufmann: Burlington, MA, USA,
2000; pp. 363–372.

https://doi.org/10.1145/956750.956808
https://doi.org/10.1137/1.9781611972795.41

Mathematics 2022, 10, 1781 18 of 19

4. Yeh, C.M.; Zhu, Y.; Ulanova, L.; Begum, N.; Ding, Y.; Dau, H.A.; Silva, D.F.; Mueen, A.; Keogh, E.J. Matrix Profile I: All
Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets. In Proceedings of
the IEEE 16th International Conference on Data Mining, ICDM 2016, Barcelona, Spain, 12–15 December 2016; Bonchi, F.,
Domingo-Ferrer, J., Baeza-Yates, R., Zhou, Z., Wu, X., Eds.; IEEE Computer Society: Piscataway, NJ, USA, 2016; pp. 1317–1322.
https://doi.org/10.1109/ICDM.2016.0179.

5. Imani, S.; Madrid, F.; Ding, W.; Crouter, S.E.; Keogh, E.J. Matrix Profile XIII: Time Series Snippets: A New Primitive for Time
Series Data Mining. In Proceedings of the 2018 IEEE International Conference on Big Knowledge, ICBK 2018, Singapore, 17–18
November 2018; Wu, X., Ong, Y., Aggarwal, C.C., Chen, H., Eds.; IEEE Computer Society: Piscataway, NJ, USA, 2018; pp. 382–389.
https://doi.org/10.1109/ICBK.2018.00058.

6. Gharghabi, S.; Imani, S.; Bagnall, A.J.; Darvishzadeh, A.; Keogh, E.J. An ultra-fast time series distance measure to allow data
mining in more complex real-world deployments. Data Min. Knowl. Discov. 2020, 34, 1104–1135. https://doi.org/10.1007/s10618-
020-00695-8.

7. Imani, S.; Madrid, F.; Ding, W.; Crouter, S.E.; Keogh, E.J. Introducing time series snippets: a new primitive for summarizing long
time series. Data Min. Knowl. Discov. 2020, 34, 1713–1743. https://doi.org/10.1007/s10618-020-00702-y.

8. Kraeva, Y.; Zymbler, M.L. Scalable Algorithm for Subsequence Similarity Search in Very Large Time Series Data on Cluster
of Phi KNL. In Data Analytics and Management in Data Intensive Domains Proceedings of the 20th International Conference, DAM-
DID/RCDL 2018, Moscow, Russia, 9–12 October 2018; Revised Selected Papers; Manolopoulos, Y., Stupnikov, S.A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2018; Volume 1003, pp. 149–164. https://doi.org/10.1007/978-3-030-23584-0˙9.

9. Zymbler, M.; Kraeva, Y. Discovery of Time Series Motifs on Intel Many-Core Systems. Lobachevskii J. Math. 2019, 40, 2124–2132.
doi:10.1134/S199508021912014X.

10. Zymbler, M.; Grents, A.; Kraeva, Y.; Kumar, S. A Parallel Approach to Discords Discovery in Massive Time Series Data. Comput.
Mater. Continua 2021, 66, 1867–1878. https://doi.org/10.32604/cmc.2020.014232.

11. Zymbler, M.; Polyakov, A.; Kipnis, M. Time Series Discord Discovery on Intel Many-Core Systems. In Proceedings of the 13th
International Conference, PCT 2019, Kaliningrad, Russia, 2–4 April 2019, Revised Selected Papers; Communications in Computer
and Information Science; Sokolinsky, L., Zymbler, M., Eds.; Springer: Cham, Switzerland, 2019; Volume 1063, pp. 168–182.
https://doi.org/10.1007/978-3-030-28163-2˙12.

12. Zymbler, M.; Kraeva, Y. Parallel Algorithm for Time Series Motif Discovery on Graphic Processor. Bull. South Ural State Univ. Ser.
Comput. Math. Softw. Eng. 2020, 9, 17–34. (In Russian). https://doi.org/10.14529/cmse200302.

13. Zymbler, M.; Ivanova, E. Matrix profile-based approach to industrial sensor data analysis inside RDBMS. Mathematics 2021,
9, 2146. https://doi.org/10.3390/math9172146.

14. Keogh, E.J.; Lin, J. Clustering of time-series subsequences is meaningless: implications for previous and future research. Knowl.
Inf. Syst. 2005, 8, 154–177. https://doi.org/10.1007/s10115-004-0172-7.

15. Narang, A.; Bhattacherjee, S. Parallel Exact Time Series Motif Discovery. In Lecture Notes in Computer Science, Proceedings of the
16th International Euro-Par Conference, Ischia, Italy, 31 August–3 September 2010; D’Ambra, P., Guarracino, M.R., Talia, D., Eds.;
Springer: Berlin/Heidelberg, Germany, 2010; Volume 6272, pp. 304–315. https://doi.org/10.1007/978-3-642-15291-7˙28.

16. Fernandez, I.; Villegas, A.; Gutiérrez, E.; Plata, O.G. Accelerating time series motif discovery in the Intel Xeon Phi KNL processor.
J. Supercomput. 2019, 75, 7053–7075. https://doi.org/10.1007/s11227-019-02923-5.

17. Zhu, B.; Jiang, Y.; Gu, M.; Deng, Y. A GPU Acceleration Framework for Motif and Discord Based Pattern Mining. IEEE Trans.
Parallel Distrib. Syst. 2021, 32, 1987–2004. https://doi.org/10.1109/TPDS.2021.3055765.

18. Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley: Berlin/Heidelberg, Germany,
1990.
https://doi.org/10.1002/9780470316801.

19. Zimmerman, Z.; Kamgar, K.; Senobari, N.S.; Crites, B.; Funning, G.J.; Brisk, P.; Keogh, E.J. Matrix Profile XIV: Scaling Time
Series Motif Discovery with GPUs to Break a Quintillion Pairwise Comparisons a Day and Beyond. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC 2019, Santa Cruz, CA, USA, 20–23 November 2019; ACM: New York, NY, USA, 2019;
pp. 74–86. https://doi.org/10.1145/3357223.3362721.

20. Hendryx, E.P.; Rivière, B.M.; Sorensen, D.C.; Rusin, C.G. Finding representative electrocardiogram beat morphologies with CUR.
J. Biomed. Inform. 2018, 77, 97–110. https://doi.org/10.1016/j.jbi.2017.12.003.

21. Lu, L.; Zhang, H. Automated extraction of music snippets. In Proceedings of the 11th ACM International Conference on
Multimedia, Berkeley, CA, USA, 2–8 November 2003; Rowe, L.A., Vin, H.M., Plagemann, T., Shenoy, P.J., Smith, J.R., Eds.; ACM:
New York, NY, USA, 2003; pp. 140–147. https://doi.org/10.1145/957013.957043.

22. Luqian, S.; Yuyuan, Z. Human Activity Recognition Using Time Series Pattern Recognition Model-Based on tsfresh Features. In
Proceedings of the 17th International Wireless Communications and Mobile Computing, IWCMC 2021, Harbin City, China, 28
June–2 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1035–1040. https://doi.org/10.1109/IWCMC51323.2021.9498859.

23. Bascol, K.; Emonet, R.; Fromont, É.; Odobez, J. Unsupervised Interpretable Pattern Discovery in Time Series Using Autoencoders.
In Structural, Syntactic, and Statistical Pattern Recognition—Joint IAPR International Workshop, S+SSPR 2016, Mérida, Mexico, 29
November–2 December 2016, Proceedings; Lecture Notes in Computer Science; Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F.,
Wilson, R.C., Eds.; Springer: Cham, Switzerland, 2016; Volume 10029, pp. 427–438. https://doi.org/10.1007/978-3-319-49055-7˙38.

24. Noering, F.K.; Schröder, Y.; Jonas, K.; Klawonn, F. Pattern discovery in time series using autoencoder in comparison to nonlearning
approaches. Integr. Comput. Aided Eng. 2021, 28, 237–256. https://doi.org/10.3233/ICA-210650.

https://doi.org/10.1109/ICDM.2016.0179
https://doi.org/10.1109/ICBK.2018.00058
https://doi.org/10.1007/s10618-020-00695-8
https://doi.org/10.1007/s10618-020-00695-8
https://doi.org/10.1007/s10618-020-00702-y
https://doi.org/10.1007/978-3-030-23584-0_9
https://doi.org/10.1134/S199508021912014X
https://doi.org/10.32604/cmc.2020.014232
https://doi.org/10.1007/978-3-030-28163-2_12
https://doi.org/10.14529/cmse200302
https://doi.org/10.3390/math9172146
https://doi.org/10.1007/s10115-004-0172-7
https://doi.org/10.1007/978-3-642-15291-7_28
https://doi.org/10.1007/s11227-019-02923-5
https://doi.org/10.1109/TPDS.2021.3055765
https://doi.org/10.1002/9780470316801
https://doi.org/10.1145/3357223.3362721
https://doi.org/10.1016/j.jbi.2017.12.003
https://doi.org/10.1145/957013.957043
https://doi.org/10.1109/IWCMC51323.2021.9498859
https://doi.org/10.1007/978-3-319-49055-7_38
https://doi.org/10.3233/ICA-210650

Mathematics 2022, 10, 1781 19 of 19

25. Lloyd, S.P. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–136. https://doi.org/10.1109/TIT.1982.1056489.
26. Kirk, D.B. NVIDIA CUDA software and GPU parallel computing architecture. In Proceedings of the 6th International Symposium

on Memory Management, ISMM 2007, Montreal, QC, Canada, 21–22 October 2007; Morrisett, G., Sagiv, M., Eds.; ACM: New York,
NY, USA, 2007; pp. 103–104. https://doi.org/10.1145/1296907.1296909.

27. Zhu, Y.; Zimmerman, Z.; Senobari, N.S.; Yeh, C.M.; Funning, G.J.; Mueen, A.; Brisk, P.; Keogh, E.J. Exploiting a novel algorithm
and GPUs to break the ten quadrillion pairwise comparisons barrier for time series motifs and joins. Knowl. Inf. Syst. 2018,
54, 203–236. https://doi.org/10.1007/s10115-017-1138-x.

28. Goglachev, A.; Zymbler, M. Parallel Snippet Finder Algorithm for CUDA. 2022. Available online: https://github.com/
goglachevai/PSF (accessed on 14 May 2022).

29. Imani, S.; Madrid, F.; Ding, W.; Crouter, S.E.; Keogh, E.J. Snippet-Finder Supporting Website. 2021. Available online:
https://sites.google.com/site/snippetfinderinfo/ (accessed on 30 September 2021).

30. Reiss, A.; Stricker, D. Introducing a New Benchmarked Dataset for Activity Monitoring. In Proceedings of the 16th International
Symposium on Wearable Computers, ISWC 2012, Newcastle, UK, 18–22 June 2012; IEEE Computer Society: Piscataway, NJ, USA,
2012; pp. 108–109. https://doi.org/10.1109/ISWC.2012.13.

31. Pearson, K. The problem of the random walk. Nature 1905, 72, 294. https://doi.org/10.1038/072342a0.
32. de Supinski, B.R.; Scogland, T.R.W.; Duran, A.; Klemm, M.; Bellido, S.M.; Olivier, S.L.; Terboven, C.; Mattson, T.G. The Ongoing

Evolution of OpenMP. Proc. IEEE 2018, 106, 2004–2019. https://doi.org/10.1109/JPROC.2018.2853600.

https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1145/1296907.1296909
https://doi.org/10.1007/s10115-017-1138-x
https://github.com/goglachevai/PSF
https://github.com/goglachevai/PSF
https://sites.google.com/site/snippetfinderinfo/
https://doi.org/10.1109/ISWC.2012.13
https://doi.org/10.1038/072342a0
https://doi.org/10.1109/JPROC.2018.2853600

	Introduction
	Related Work
	Preliminaries
	Notation and Definitions
	The MPdist Measure
	The Serial Algorithm

	Accelerating Snippet Discovery with GPU
	Experimental Evaluation
	The Experimental Setup
	Results and Discussion
	Summarization
	Performance
	Impact of the Segment Length
	Impact of the Subsequence Length
	Applying EDnorm2 Instead of EDnorm

	Conclusions
	References

