Data Analytics and Management in Data Intensive Domains (DAMDID) 2024
23-25 October 2024, HSE University, Nizhny Novgorod, Russia

Time reveals all things:
Leveraging behavioral patterns
for anomaly detection and event prediction in time series

Andrey Goglachev, Yana Kraeva, Alexey Yurtin, and Mikhail Zymbler
fgoglachevai, kraevaya, iurtinaa, mzym}@susu.ru

South Ural State University, Chelyabinsk, Russia

This work is financially supported by the Russian Science Foundation (grant No. 23-21-00465)


mailto:kraevaya@susu.ru
mailto:mzym@susu.ru

We measure everything over time to predict the course of events
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Behavioral patterns are the key
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. Preprocessing

Take a representative fragment $ Discover f;> Build a training set(s)
of time series to be processed behavioral patterns for deep learning model(s)
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. Anomaly/event prediction

M : . . .
Determine a behavioral pattern\ Deep learning model Deep learning model
to which the subsequence for event prediction: for anomaly detection:
that came from a sensor,

: _ . According to all the patterns,
& IS most similar = what should be the next subsequence?

How much does the subsequence
differ from all the patterns?

.
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Similarity measure to find patterns in time series
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Euclidean distance Is for the structural similarity

Structural similarity
compares time series
point-by-point

Complexity: O(n)

ED(A,B) = \/Zn (ai - bi)z
i=1
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Matrix Profile distance Is for the behavioral similarity

Behavioral similarity
IS proportional
to the number
of subsequences
that are close
w.r.t. the Euclidean
distance (no matter
their locations)

MPdist" ~ 0

Complexity: 0(n?)

MPdist¥ (4, B) = AscSort(Pygp4)(k),
Pappa = Pap * Ppa,
Pag = {ED?(Ay4, B o) }ici
_ . 132
Bje = arglsqrsngy{)HED (Ai'f' Bq'{))'
where 0 < k < n, kgefaure = [0.11]

* Gharghabi S. et al. An ultra-fast time series distance measure to allow data mining in more complex real-world deployments. DMKD. 2020. (34). pp. 1104-1135. DOI: 10.1007/s10618-020-00695-8
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MPdist: Step 1, matrix profile AB

|A| = [B] =m
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F=(y o tm), =" i-th £-length subsequence in A
u=iym ¢, o= \/@ m(2) — 2 and its nearest £-length subsequence in B

n <= m<ii=1l- /
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MPdist; Step 2, matrix profile BA
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MPdist: Step 3, matrix profile ABBA
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MPdist: Step 4, sorting and selection

J 4l =Bl =m 5 s<i<m
1 1
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MPdist: phase-invariant, robust to spikes, warping, etc.
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Distance profile of the potential behavioral pattern

Distances to all the subsequences w.r.t. MPdist
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Distance profile of the potential behavioral pattern

Distances to all the subsequences w.r.t. MPdist
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Snippets formalize behavioral patterns of any domain

Snippets are segments
for which the area
under the MPdist curve
IS minimal

Proportion of activities
W.r.t. snippets

I .l ||||||||\\\\\\\\\\H‘||||||!!|!|||..........|||||n|||\\\HHHHHIHunm.H. ..................... |HHH||||H!||.... il

Time series labeling w.r.t. snippets
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This result was reported

PSF (Parallel Snippet Finder) algorithm for GPU“ |

Measurements of a wearable accelerometer during an athlete’s training Snippet dictionary
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Step forward: Can we set the snippet length without an expert?

m = 50
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PaSTiLa (Parallel Snippet-based Time series Labeling)

Unlabeled time series T
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Labeled time series T
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* Karmarkar N. Karp R.M. The differencing method of set partitioning. Tech report UCB/CSD 82/113. CS Division, University of California, Berkeley, USA, 1982.
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PaSTiLa: Predictor

Training set

m Runtime
Nmin Mmin tl
Nmax Mmax tN

Data
generator* .
Synthetic data PSF launches
/ N s N
My m L
~ ~ ~/ \ ) [TRRN
"'min n;n/in 1 2E [ PSF(TnmaX: Mmax) ]
Mumin Mmax
v TR
M{\/[\Mj ey oy
Nmax NMmax
- J

* Pearson K. The problem of the random walk. Nature. 1905. Vol. 72, no. 1865. P. 294. DOI: 10.1038/072342a0.

Runtime

NV

Linear regressor
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PaSTiLa: Selection heuristics
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PaSTiLa: Selection heuristics
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PaSTiLa outperforms s.o.t.a. rivals

Accuracy over pre-labeled data (higher is better), ~ Accuracy over unlabeled data (higher is better),

Time Series Segmentation Benchmark® Solar Power time series®
1.0
1L | — Snippet 1: 0.70 4_”/‘_ a . A | A 2
0.8+ —‘7 —|_ T L 100 S.nippct I2: 0.30 P’h [ | | ’ J \ f‘ ﬂ *1’ ;: !; | |
' I | | . - ' || I
%0-6_ l o 50 | ] | yl L . J M : |
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0 L L L_J i ] J | y | | | L | L J L 1 J | J Ly 1 J J
0.2k l 0 50K 100K 150K 200K 250K 300K
- [EESTC) O
T I R e

Our approach is more accurate in determining the day-night cycles

D Ermshaus A. et al. ClaSP: Parameter-free time series segmentation. Data Min. Knowl. Discov. 37, 1262-1300 (2023). DOI: 10.1007/S10618-023-00923-X

2 Truong C. et al. Selective review of offline change point detection methods. Signal Process 167, 107299 (2020). DOI: 10.1016/J.SIGPR0.2019.107299

%) Gharghabi S. et al. Domain agnostic online semantic segmentation for multi-dimensional time series. Data Min. Knowl. Discov. 33, 96-130 (2019). DOI: 10.1007/S10618-018-0589-3
4) Rakshitha G. et al. Solar Power Dataset (4 Seconds Observations). DOI: 10.5281/zenodo.4656027.
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SANNI (Snippet & ANN-based Imputation)

Q: Wliat’s his activity'n‘now? U Recognizer A: He’s running
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SANNI outperforms s.o.t.a. rivals

Average error (lower is better)

over datasets of the “Actor with activities” typ
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SALTO (Snippet & Autoencoder Labeling of Time series Online)

Unlabeled time series Labeled time series Snippet dictionary
| | 10 ™ )
10 1 |
PaSTi Le> 0 i
~101 5 - :
. B . Running | _,. umpingt |
[I,'I G [,'Il[,'l 0 ['] GU'UU :\_\201260[] 13200 7800 sa0
Athlete  Subsequence Encoder Decoder Recovered
Isrunning snippet
i—' Conle Conle —_-“-—-i ir_-—;—_GRU w ConvT1D CoanlDw i Running
' kernel: 3 kernel: 3 V[ | hidden:m kernel: 3 kernel: 3
qﬁ“ﬂ 128 filter: 64 L l J L filter: 64 J t fi lter 128 J IS the nearest
| neighbor
ReLU ReLU ReLLU e ReLU
< | L I ST [ _ Rt | ]_' of the recovered
C T T e snippet
Q: What’s his activity? A: He’s running
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SALTO outperforms s.o.t.a. rivals

Average performance of inference (lower is better) Average accuracy (higher is better)
over the Time Series Segmentation Benchmark?) over the Time Series Segmentation Benchmark?)
R 1.0
401(" The URLLC (Ultra-Reliable Low " T |
& Latency Communications) standard: '
< 301 response under 10 ms 0.8
=
= 0.7 -
2 20 - 1T = i
% 1 1 —— 0.6 1
X 10- T 9 -
I —— 1
0.4 o
O7TFCN? ROCKET  ResNet) InceptionTimed)|SALTO FCN2)  ROCKET3) ResNet!) nceptionTimed)|  gALTO
PaSTiLa  Ground
labeling truth

1 Ermshaus A. et al. ClaSP: Parameter-free time series segmentation. Data Min. Knowl. Discov. 37, 1262-1300 (2023). DOI: 10.1007/S10618-023-00923-X

2)Wang Z. et al. Time series classification from scratch with deep neural networks: A strong baseline. IEEE IJCNN 2017. DOI: 10.1109/ijcnn.2017.7966039

3) Dempster A. et al. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Discov. 34(5) 1454-1495
(2020). DOI: 10.1007/s10618-020-00701-z

4) He K. et al. Deep residual learning for image recognition. IEEE CVPR 2016. pp. 770-778. DOI: 10.1109/cvpr.2016.90

5 Ismail H. et al. InceptionTime: Finding AlexNet for time series classification. Data Min. Knowl. Discov. 34(6), 1936-1962 (2020). DOI: 10.1007/s10618-020-00710-y
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Discord formalizes anomaly of any domain

* Discord is the given-length subsequence whose distance
to 1ts nearest neighbor 1s greatest

* Nearest neighbor Is the same-length subsequence whose distance
to the given subsequence Is smallest

* Keogh E. et al. HOT SAX: Efficiently finding the most unusual time series subsequence. [CDM 2005. pp. 226-233. DOI: 10.1109/ICDM.2005.79
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Barney Quasimodo

Discord concept

Distance matrix:
the close neighbors,
the similar they are
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Marge Bart Selma Patty Barney Quasimodo

Discord concept

2 4 4 6 8

2.5 3 3 6 10

2.5 0 4 4 6 9

Distance matrix 4 0 0.5 5 8
with calculated distances

to neighbors 4 U2 . : 8

6 5 5 0 7

10 9 8 8 7 0
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Patty Barney Quasimodo

s

Discord concept

4 6 8

3 6 10

Distance matrix A ) .

with

distances to their 0.5 5 8

nearest neighbors 2 ) - .
(1.e. column-wise minima) = *

1= 5 0 7

8 7 0
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Patty Barney Quasimodo

Discord concept

4 6 8
Distance matrix 3 6 10
with the
farthest distance 4 ° ’
to the nearest neighbor 05 5 8
(1.e. maximum '
among ! 5 8
column-wise minima)
........ SRR g 7
38 7 0
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Patty Barney Quasimodo

Discord concept

4 6 8
IS an object 3 6 10

with the . ) .
farthest nearest neighbor
(i.e. argument Fy 05 | 5 g
of the maximum

0 5 8
among
column-wise minima) 5 0 7

38 7 0
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Discords grab anomalies In real time series

Average speed in Guangzhou, China”
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“Chen X, Chen Y, e Z. Urban traffic speed datasef of GUan zhou, China. 2018. DOI: 10.5281/zen0d0.1205229.
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PALMAD and PADDI outperform s.o.t.a. rivals

Average runtime per discord on a single GPU (Iower is better)
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DThuy T.T.H. et al. A new discord definition and an efficient time series discord detection method using GPUs. ICSED 2021. pp. 63-70. DOI: 10.1145/3507473.3507483
2) Zhu B. et al. A GPU acceleration framework for motif and discord based pattern mining. IEEE TPDS. 2021. 32(8). 1987-2004. DOI: 10.1109/TPDS.2021.3055765

PADDI is the only algorithm
for discord discovery
on HPC clusters
with multi-GPU nodes

501

604 == 1 x Tesla P100 (node)
-#-2 x Tesla P100 (node)
-e-ideal

124 8 16 32

Time reveals all things: Leveraging behavioral patterns for anomaly detection and event prediction in time series

64

© 2024 M. Zymbler et al.

October 24, 2024 33/37


https://doi.org/10.1145/3507473.3507483
https://doi.org/10.1109/TPDS.2021.3055765

How to differ normal behavior from the opposite one
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DISSID: Discord, Snippet & Siamese net-based anomaly Detection

______________________________________________

Siamese

Q: Does it look like he’s running? |
. sub-nets

shared |
,,,,, weights 1

& biases,
A 4

\ 4

Q: What’s he doing? ] Sub-net 2

/

4

===t --

Modification of ResNet

E E E : i Residual block 1 Residual l:)lm:kz Residual block 3 lobalAverPon
4 ' sub-nets I IR, e
,,,,, : Sub-net 1 i i . i: = |
Athlete : r (1A Likely, No . T g
is falling ishared | X ! —
,,,,,,,,,, weights t{(MPdist(hy, hy) )i || ey ey
‘& biases, ¥ i o b
: : : ——————————— r: [ BatchNorm ] atchNorm
S > Sub-net 2 1L--" ' (puors)
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DISSID outperforms s.o.t.a. rivals

Anomaly detection accuracy, VUS-PR (higher is better)

Method Time series

SMD OPP | Daphnet | ECG-1 | ECG-2 ECG-3 MITDB lI0PS | YAHOoO | Average | Average

accuracy rank

IForest  |0.0673 (13)] 0.9731 (2) | 0.3255 (5) | 0.6559 (4) | 0.5893 (3) | 0.5519 (4) | 0.2618 (6) | 0.8595 (5) |0.7360 (1)| 0.5578 (2) | 4.78 (2)

5 LOF 0.1492 (5) |0.0395 (14)[0.5055 (1)]0.3195 (12)[0.4048 (10)| 0.3583 (9) | 0.1864 (7) | 0.4887 (11) | 0.6789 (8) | 0.3479 (11) | 8.56 (9)
2 MP 0.2762 (3) 0.0392 (15)| 0.3552 (3) [0.2910 (14)| 0.4582 (9) | 0.2981 (12) | 0.3608 (2) | 0.7471(8) | 0.7353 (2) | 0.3957 (8) | 7.56 (7)
S| DAMP  [0.0879 (11)]0.0581 (13)] 0.2366 (8) [0.2464 (16)[0.2699 (13)| 0.2347 (14) |0.1034 (11) | 0.2234 (15) [ 0.1583 (17) | 0.1799 (17) | 13.11 (15)
g NormA | 0.3412 (2) [0.0361 (16)]0.2058 (12)]0.2263 (17)] 0.3086 (11)| 0.1470 16) | 0.1565 (9) | 0.7227 (9) | 0.5276 (13) | 0.2969 (13) | 11.67 (12)
PCA 0.1443 (6) [0.9946 (1)]0.1219 (17)| 0.6115 (5) | 0.5685 (4) | 05214 (5) | 0.3013 (5) |0.9253 (1)] 0.6806 (7) | 0.5410 3) | 5.67 (4)

POLY | 0.1243(8) | 0.9063 (3) [0.2213 (10)] 0.5582 (6) | 0.5113 (7) | 0.4797 (6) | 0.3070 (4) | 0.5567 (10) | 0.6975 (6) | 0.4847 (5) | 6.67 (6)

AE 0.0767 (12)[0.1979 (18) [0.2160 (11) | 0.7758 (2) | 0.5589 (5) | 0.7651 (2) |0.0759 (15) | 0.3720 (12) | 0.7238 (4) | 0.4181 (7) | 7.89 (8)
Bagel  |0.0559 (15)| nan (17) | 0.2269 (9) |0.3302 (11)]0.1878 (17)| 0.2988 (11) |0.0833 (12) |0.2678 (13) | 0.4871 (14) | 0.2422 (14) | 13.22 (16)
DeepAnT |0.0522 (16)|0.0605 (12)| 0.2573 (7) [0.3350 (10)|0.2346 (14)| 0.2906 (13) |0.0795 (14) | 0.1834 (16) | 0.5659 (12) | 0.2288 (15) | 12.67 (14)

= | IE-CAE | 0.1297 (7) | 0.9002 (4) | 0.3079 (6) | 05234 (8) | 05397 (6) | 0.4739(7) | 0.1713(8) | 0.9163(2) | 0.7050 (5) | 0.5186 (4) | 5.89 (5)
£ | LSTM-AD [0.0653 (14) [0.0650 (11)]0.1711 (14) |0.2897 (15)[0.1934 (16)| 0.2330 (15) |0.0799 (13)]0.1595 (17) | 0.4478 (16) | 0.1894 (16) | 14.56 (17)
& | OceanWNN | 0.1075 (9) | 0.4678 (7) [0.1812 (13)| 0.5544 (7) [0.2003 (15)| 0.3596 (8) |0.1058 (10) | 0.9085 (4) | 0.6126 (10) | 0.3886 (9) | 9.22 (10)
£ | ocsvM 00119 (17)] 0.1795 (9) [0.1388 (16) | 0.3548 (9) [0.3069 (12)| 0.3315 (10) | 0.0474 (17)[ 0.7533(7) | 0.6639 (9) | 0.3098 (12) | 11.78 (13)
S| TAnoGAN [0.0965 (10)| 0.8090 (5) [0.1609 (15)[0.3002 (13)[ 0.4634 (8) | 0.1430 (17) |0.0714 (16) | 0.9230 (3) | 0.4591 (15) [ 0.3796 (10) | 11.33 (12)
Dﬁ;D 0.1543 (4) [0.1222 (10)| 0.4124 (2) | 0.7477 (3) [0.8008 (1)| 0.7505(3) |0.3718 (1)|0.2464 (14) | 0.5961 (11) | 0.4669 (6) | 5.45 (3)
([,\’/I'ﬁg;g) 0.4889 (1)| 0.5340 (6) | 0.3332 (4) [0.7801 (1)| 0.7927 (2) | 0.8124 (1) | 0.3544 (3) | 0.7922(6) | 0.7306 (3) |0.6243 (1)| 3.00 (1)
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Do you have time series to predict events/anomalies in?

 Parallel unsupervised algorithms, D
which outperform s.o.t.a. rivals nosos. ot
— Snippet discovery: PSF, PaSTiLa Yo

(on GPU and multi-GPU clusters, respectively) Kraeva
— Discord discovery: PALMAD, PADDI
(on GPU and multi-GPU clusters, respectively) Andrey

» Deep learning models, D s
which outperform s.o.t.a. rivals
— Prediction: SANNI, SALTO o o

’ A \Sc

— Anomaly detection: DISSID
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