

Data Analytics and Management in Data Intensive Domains (DAMDID) 2024

23-25 October 2024, HSE University, Nizhny Novgorod, Russia

Time reveals all things: Leveraging behavioral patterns for anomaly detection and event prediction in time series

Andrey Goglachev, Yana Kraeva, Alexey Yurtin, and Mikhail Zymbler

{goglachevai, kraevaya, iurtinaa, mzym}@susu.ru

South Ural State University, Chelyabinsk, Russia

We measure everything over time to predict the course of events

Smart manufacturing, Predictive maintenance

Internet of Things

Prediction of natural disasters

Weather forecasting, Climate modelling

Personal healthcare

Chemo- and bioinformatics

Fighting crime

Business and economics

© 2024 M. Zymbler et al.

Electronic education

Behavioral patterns are the key

Preprocessing

Take a representative fragment of time series to be processed

Discover behavioral patterns

Build a training set(s) for deep learning model(s)

Anomaly/event prediction

Determine a behavioral pattern to which the subsequence that came from a sensor, is most similar

Deep learning model for event prediction:

According to all the patterns, what should be the next subsequence?

Deep learning model for anomaly detection:

How much does the subsequence differ from all the patterns?

Similarity measure to find patterns in time series

Euclidean distance is for the structural similarity

 $ED \approx 8$

Structural similarity compares time series point-by-point

Matrix Profile distance is for the behavioral similarity

$MPdist^* \approx 0$

Complexity: $O(n^2)$

 $MPdist_{\ell}^{k}(A,B) = AscSort(P_{ABBA})(k),$ $P_{ABBA} = P_{AB} \cdot P_{BA},$ $P_{AB} = \{\widehat{ED}^2(A_{i,\ell}, B_{j,\ell})\}_{i=1}^{n-\ell+1},$ $B_{j,\ell} = \arg\min_{1 \le q \le n-\ell+1} \widehat{ED}^2(A_{i,\ell}, B_{q,\ell}),$ where 0 < k < n, $k_{\text{default}} = [0.1n]$

Behavioral similarity is proportional to the number of subsequences that are close w.r.t. the Euclidean distance (no matter their locations)

6/37

© 2024 M. Zymbler et al.

^{*} Gharghabi S. et al. An ultra-fast time series distance measure to allow data mining in more complex real-world deployments. DMKD. 2020. (34). pp. 1104-1135. DOI: 10.1007/s10618-020-00695-8

MPdist: Step 1, matrix profile AB

$$\widehat{\mathrm{ED}}(A,B) = \mathrm{ED}\big(\hat{A},\hat{B}\big)$$

$$\hat{T} = (\hat{t}_1, ..., \hat{t}_m), \quad \hat{t}_i = \frac{t_i - \mu}{\sigma}$$

$$\mu = \frac{1}{n} \sum_{i=1}^m t_i, \quad \sigma = \sqrt{(\frac{1}{m} \sum_{i=1}^m t_i^2) - \mu^2}$$

Normalized Euclidean distance between *i*-th ℓ -length subsequence in Aand its nearest ℓ -length subsequence in B

7/37

MPdist: Step 2, matrix profile BA

Normalized Euclidean distance between i-th ℓ -length subsequence in A and its nearest ℓ -length subsequence in B

MPdist: Step 3, matrix profile ABBA

MPdist: Step 4, sorting and selection

MPdist: phase-invariant, robust to spikes, warping, etc.

ED(A,B)	11.2
$\mathbf{MPdist}(A,B)$	0

© 2024 M. Zymbler et al.

Distance profile of the potential behavioral pattern

Distances to all the subsequences w.r.t. MPdist

Distance profile of the potential behavioral pattern

Distances to all the subsequences w.r.t. MPdist

Snippets formalize behavioral patterns of any domain

Snippets are segments for which the area under the MPdist curve is minimal

Distances to all the subsequences w.r.t. MPdist

Proportion of activities w.r.t. snippets

7800

© 2024 M. Zymbler et al.

Step forward: Can we set the snippet length without an expert?

5000

5000

6000

6000

PaSTiLa (Parallel Snippet-based Time series Labeling)

Predicted runtime of PSF

Scheduler

Karmarkar–Karp algorithm*

Optimal schedule

Selection heuristics

PSF(T, maxL - 1)

^{*} Karmarkar N. Karp R.M. The differencing method of set partitioning. Tech report UCB/CSD 82/113. CS Division, University of California, Berkeley, USA, 1982.

PaSTiLa: Predictor

Data

PSF launches

Training set

n	m	Runtime						
n_{\min}	$m_{ m min}$	t_1						
n_{\max}	$m_{ m max}$	t_N						

^{*} Pearson K. The problem of the random walk. Nature. 1905. Vol. 72, no. 1865. P. 294. DOI: 10.1038/072342a0.

PaSTiLa: Selection heuristics

PaSTiLa: Selection heuristics

PaSTiLa outperforms s.o.t.a. rivals

Our approach is more accurate in determining the day-night cycles

¹⁾ Ermshaus A. et al. ClaSP: Parameter-free time series segmentation. Data Min. Knowl. Discov. 37, 1262–1300 (2023). DOI: 10.1007/S10618-023-00923-X

²⁾ Truong C. et al. Selective review of offline change point detection methods. Signal Process 167, 107299 (2020). DOI: 10.1016/J.SIGPRO.2019.107299

³⁾ Gharghabi S. et al. Domain agnostic online semantic segmentation for multi-dimensional time series. Data Min. Knowl. Discov. 33, 96–130 (2019). DOI: 10.1007/S10618-018-0589-3

⁴⁾ Rakshitha G. et al. Solar Power Dataset (4 Seconds Observations). DOI: 10.5281/zenodo.4656027.

SANNI (Snippet & ANN-based Imputation)

SANNI outperforms s.o.t.a. rivals

Average error (lower is better) over datasets of the "Actor with activities" type

SALTO (Snippet & Autoencoder Labeling of Time series Online)

Q: What's his activity?

A: He's running

SALTO outperforms s.o.t.a. rivals

Average performance of inference (lower is better) over the Time Series Segmentation Benchmark¹⁾

Average accuracy (higher is better)

over the Time Series Segmentation Benchmark¹⁾

¹⁾ Ermshaus A. et al. ClaSP: Parameter-free time series segmentation. Data Min. Knowl. Discov. 37, 1262–1300 (2023). DOI: 10.1007/S10618-023-00923-X

²⁾ Wang Z. *et al.* Time series classification from scratch with deep neural networks: A strong baseline. IEEE IJCNN 2017. DOI: <u>10.1109/ijcnn.2017.7966039</u>

³⁾ Dempster A. *et al.* ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Discov. 34(5) 1454–1495 (2020). DOI: 10.1007/s10618-020-00701-z

⁴⁾ He K. et al. Deep residual learning for image recognition. IEEE CVPR 2016. pp. 770–778. DOI: 10.1109/cvpr.2016.90

⁵⁾ Ismail H. et al. InceptionTime: Finding AlexNet for time series classification. Data Min. Knowl. Discov. 34(6), 1936–1962 (2020). DOI: 10.1007/s10618-020-00710-y

Discord formalizes anomaly of any domain

- *Discord** is the given-length subsequence whose distance to its nearest neighbor is greatest
- *Nearest neighbor* is the same-length subsequence whose distance to the given subsequence is smallest

^{*} Keogh E. et al. HOT SAX: Efficiently finding the most unusual time series subsequence. ICDM 2005. pp. 226-233. DOI: 10.1109/ICDM.2005.79

26/37

Distance matrix: the close neighbors, the similar they are

Selma

Patty

Barney

Marge Bart

Homer

Quasimodo

Homer

Selma

Barney Quasimodo

Distance matrix with calculated distances to neighbors

_						Captalo Captalo	4 8
	0	5	2	4	4	6	8
	5	0	2.5	3	3	6	10
	2	2.5	0	4	4	6	9
	4	3	4	0	0.5	5	8
	4	3	4	0.5	0	5	8
	6	6	6	5	5	0	7
	8	10	9	8	8	7	0

Distance matrix
with
distances to their
nearest neighbors
(i.e. column-wise minima)

Selma

Patty

Barney

Quasimodo

Marge Bart

Homer

Distance matrix
with the
farthest distance
to the nearest neighbor
(i.e. maximum
among
column-wise minima)

Selma

Patty

Barney

Marge Bart

Homer

Quasimodo

Discord is an object with the farthest nearest neighbor (i.e. argument of the maximum among column-wise minima)

Homer

					La Maria	A
0	5	2	4	4	6	8
5	0	2.5	3	3	6	10
2	2.5	0	4	4	6	9
4	3	4	0	0.5	5	8
4	3	4	0.5	0	5	8
6	6	6	5	5	0	7
8	10	9	8	8	7	0

Selma

Patty

Barney

Quasimodo

Marge Bart

Discords grab anomalies in real time series

Time reveals all things: Leveraging behavioral patterns for anomaly detection and event prediction in time series

PALMAD and PADDi outperform s.o.t.a. rivals

Average runtime per discord on a single GPU (lower is better)

¹⁾ Thuy T.T.H. *et al.* A new discord definition and an efficient time series discord detection method using GPUs. ICSED 2021. pp. 63-70. DOI: <u>10.1145/3507473.3507483</u>
²⁾ Zhu B. *et al.* A GPU acceleration framework for motif and discord based pattern mining. IEEE TPDS. 2021. 32(8). 1987-2004. DOI: <u>10.1109/TPDS.2021.3055765</u>

PADDi is the only algorithm for discord discovery on HPC clusters with multi-GPU nodes

How to differ normal behavior from the opposite one

DiSSiD: Discord, Snippet & Siamese net-based anomaly Detection

DiSSiD outperforms s.o.t.a. rivals

Anomaly detection accuracy, VUS-PR (higher is better)

	Method	Time series										
		SMD	OPP	Daphnet	ECG-1	ECG-2	ECG-3	MITDB	IOPS	УАНОО	Average accuracy	Average rank
	IForest	0.0673 (13)	0.9731 (2)	0.3255 (5)	0.6559 (4)	0.5893 (3)	0.5519 (4)	0.2618 (6)	0.8595 (5)	0.7360 (1)	0.5578 (2)	4.78 (2)
7	LOF	0.1492 (5)	0.0395 (14)	0.5055 (1)	0.3195 (12)	0.4048 (10)	0.3583 (9)	0.1864 (7)	0.4887 (11)	0.6789 (8)	0.3479 (11)	8.56 (9)
vise	MP	0.2762 (3)	0.0392 (15)	0.3552 (3)	0.2910 (14)	0.4582 (9)	0.2981 (12)	0.3608 (2)	0.7471 (8)	0.7353 (2)	0.3957 (8)	7.56 (7)
per	DAMP	0.0879 (11)	0.0581 (13)	0.2366 (8)	0.2464 (16)	0.2699 (13)	0.2347 (14)	0.1034 (11)	0.2234 (15)	0.1583 (17)	0.1799 (17)	13.11 (15)
Unsupervised	NormA	0.3412 (2)	0.0361 (16)	0.2058 (12)	0.2263 (17)	0.3086 (11)	0.1470 (16)	0.1565 (9)	0.7227 (9)	0.5276 (13)	0.2969 (13)	11.67 (12)
7	PCA	0.1443 (6)	0.9946 (1)	0.1219 (17)	0.6115 (5)	0.5685 (4)	0.5214 (5)	0.3013 (5)	0.9253 (1)	0.6806 (7)	0.5410 (3)	5.67 (4)
	POLY	0.1243 (8)	0.9063 (3)	0.2213 (10)	0.5582 (6)	0.5113 (7)	0.4797 (6)	0.3070 (4)	0.5567 (10)	0.6975 (6)	0.4847 (5)	6.67 (6)
	AE	0.0767 (12)	0.1979 (18)	0.2160 (11)	0.7758 (2)	0.5589 (5)	0.7651 (2)	0.0759 (15)	0.3720 (12)	0.7238 (4)	0.4181 (7)	7.89 (8)
	Bagel	0.0559 (15)	nan (17)	0.2269 (9)	0.3302 (11)	0.1878 (17)	0.2988 (11)	0.0833 (12)	0.2678 (13)	0.4871 (14)	0.2422 (14)	13.22 (16)
	DeepAnT	0.0522 (16)	0.0605 (12)	0.2573 (7)	0.3350 (10)	0.2346 (14)	0.2906 (13)	0.0795 (14)	0.1834 (16)	0.5659 (12)	0.2288 (15)	12.67 (14)
$p_{\tilde{e}}$	IE-CAE	0.1297 (7)	0.9002 (4)	0.3079 (6)	0.5234 (8)	0.5397 (6)	0.4739 (7)	0.1713 (8)	0.9163 (2)	0.7050 (5)	0.5186 (4)	5.89 (5)
rvisa	LSTM-AD	0.0653 (14)	0.0650 (11)	0.1711 (14)	0.2897 (15)	0.1934 (16)	0.2330 (15)	0.0799 (13)	0.1595 (17)	0.4478 (16)	0.1894 (16)	14.56 (17)
Semi-supervised	OceanWNN	0.1075 (9)	0.4678 (7)	0.1812 (13)	0.5544 (7)	0.2003 (15)	0.3596 (8)	0.1058 (10)	0.9085 (4)	0.6126 (10)	0.3886 (9)	9.22 (10)
ni-s	OCSVM	0.0119 (17)	0.1795 (9)	0.1388 (16)	0.3548 (9)	0.3069 (12)	0.3315 (10)	0.0474 (17)	0.7533 (7)	0.6639 (9)	0.3098 (12)	11.78 (13)
Sei	TAnoGAN	0.0965 (10)	0.8090 (5)	0.1609 (15)	0.3002 (13)	0.4634 (8)	0.1430 (17)	0.0714 (16)	0.9130 (3)	0.4591 (15)	0.3796 (10)	11.33 (11)
	DiSSiD (L1)	0.1543 (4)	0.1222 (10)	0.4124 (2)	0.7477 (3)	0.8008 (1)	0.7505 (3)	0.3718 (1)	0.2464 (14)	0.5961 (11)	0.4669 (6)	5.45 (3)
	DiSSiD (MPdist)	0.4889 (1)	0.5340 (6)	0.3332 (4)	0.7801 (1)	0.7927 (2)	0.8124 (1)	0.3544 (3)	0.7922 (6)	0.7306 (3)	0.6243 (1)	3.00 (1)

Do you have time series to predict events/anomalies in?

- Parallel unsupervised algorithms, which outperform s.o.t.a. rivals
 - Snippet discovery: PSF, PaSTiLa
 (on GPU and multi-GPU clusters, respectively)
 - Discord discovery: PALMAD, PADDi
 (on GPU and multi-GPU clusters, respectively)
- Deep learning models, which outperform s.o.t.a. rivals
 - Prediction: SANNI, SALTO
 - Anomaly detection: DiSSiD

Mikhail
Zymbler
Dr.Sci.
Assoc. Prof.

Yana Kraeva Cand.Sci.

Andrey
Goglachev
PhD student
MSc

© 2024 M. Zymbler et al.

Alexey
Yurtin
PhD student
MSc