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Abstract—Summarization aims at discovering a small set of typical subsequences (patterns) in the
given long time series that represent the whole series. Further, one can implement unsupervised
labeling of the given time series by assigning each subsequence a tag that corresponds to its most
similar pattern. In the previous research, we developed the PSF (Parallel Snippet-Finder) algorithm
for the time series summarization on GPU, where a snippet is the given-length subsequence, which
is similar to many other subsequences w.r.t. the bespoke distance measure MPdist. However, PSF
is limited by the demand that the snippet length be predefined by a domain expert. In this article,
we introduce the novel parallel algorithm PaSTiLa (Parallel Snippet-based Time series Labeling)
that discovers snippets and produces the labeling of the given time series on an HPC cluster with
GPU nodes. As opposed to its predecessor, PaSTiLa employs the automatic selection of the snippet
length from the specified range through our proposed heuristic criterion. In the experiments on
labeling quality over time series from the TSSB (Time Series Segmentation Benchmark) dataset,
PaSTiLa outperforms state-of-the-art segmentation-based competitors in average F1 score. In the
case of long-length time series (typically more than 8–10 K points), PaSTiLa outruns the rivals.
Finally, over the million-length time series, our algorithm demonstrates a close-to-linear speedup.
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INTRODUCTION

Over the last decade, a wide spectrum of subject domains have been faced with the processing of
long time series generated by high-frequency sensors: Internet of Things, digital industry, personal
healthcare, climate modeling and prediction of natural disasters, etc. Summarization is one of the basic
time series mining problems, and aims to discover a small set of patterns (typical subsequences) that
provide a concise representation the given long time series. Further, one can implement unsupervised
labeling of the time series by assigning each subsequence a tag that corresponds to its most similar
pattern. It is worth noting that the time series segmentation [4, 7, 20] is closely related to the
unsupervised labeling topic since the segmentation aims at splitting the given time series into intervals
that are semantically different from neighboring ones.

An apparent approach to summarization, the motif concept [16] is limited, since motifs cannot
indicate the coverage, a fraction of the given time series, of the pattern found. Another approach, the
shapelet concept [22] is limited as well, since it is supervised due to demand of training data. Recently
introduced, the snippet concept [11] eliminates the limitations above. A time series snippet is the given-
length subsequence, which is similar to many other subsequences w.r.t. the bespoke distance measure
MPdist [6]. In turn, the similarity of two equal-length subsequences w.r.t. MPdist is proportional to the
number of smaller-length sub-subsequences in them that are close to each other w.r.t. the normalized
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Euclidean distance, regardless of the order of matching sub-subsequences. The original Snippet-Finder
algorithm [11] provides unsupervised labeling of the given time series since all the subsequences that are
similar to a snippet are exactly specified and counted, however, at a cubic time complexity concerning
the time series length.

Our developed PSF (Parallel Snippet-Finder) algorithm [24] accelerates the original snippet discov-
ery schema on GPU (graphics processing unit) and ensures acceptable performance. However, PSF,
like its predecessor, is limited by the fact that the snippet length should be predefined by a domain
expert, whose choice may not be optimal. Figure 2 illustrates the low- and high-quality labeling of a
human’s electrocardiogram with two classes of signals: a normal heartbeat and a myocardial infarction,
depending on the snippet length chosen. Thus, PSF can be improved by the automatic selection of some
optimal snippet length from the specified range.

The article pushes our previous research forward and contributes as follows:

• We introduce the novel parallel algorithm PaSTiLa (Parallel Snippet-based Time series Labeling)
that discovers snippets and produces the labeling of the given time series on an HPC cluster with
GPU nodes. As opposed to PSF, its predecessor, instead of using the snippet length predefined by
a domain expert, PaSTiLa employs the automatic selection of the snippet length from the specified
range through our proposed heuristic criterion.

• We carry out extensive experiments to evaluate our algorithm over real-world time series against
state-of-the-art segmentation-based analogs [4, 7, 20]. In the experiments on labeling quality
over 75 time series from the TSSB (Time Series Segmentation Benchmark) dataset [4], PaSTiLa
outperforms competitors in average F1 score. In the case of long-length time series (typically
more than 8–10 K points), PaSTiLa outruns the rivals. Finally, over the millions-length time
series, our algorithm outruns the above rivals and demonstrates a close-to-linear speedup. To
facilitate the reproducibility of our study, we establish a repository [8] that contains the algorithm’s
source code, data, etc.

The remainder of the article is organized as follows. Section 1 briefly discusses related works. In
Section 2, we introduce the notation and formal definitions, along with a short description of the Snippet-
Finder and PSF (Parallel Snippet-Finder) algorithms our study is based on Section 3 introduces
PaSTiLa, our novel parallel algorithm for automatic unsupervised labeling of long time series. In
Section 4, we discuss the results of the experimental evaluation of PaSTiLa. Finally, in Conclusions,
we summarize the results obtained and suggest directions for further research.

1. RELATED WORK

In this section, we briefly discuss several state-of-the-art approaches to the following topics closely
related to our research: time series summarization, time series segmentation, and change point
detection. Summarization aims at discovering a small set of patterns that can be used to represent
and label the given time series. Segmentation aims at splitting the given time series into intervals
that are semantically different from neighboring ones. Change point detection identifies the locations
of shifts from one segment to another that are caused by operational state changes in the process
being monitored. Despite the fact that segmentation and change point detection problems concern
discovering boundary locations and not producing representative patterns, further, we employ them in
the experimental evaluation of our approach.

A time series snippet [11] is the given-length subsequence, which is similar to many other subse-
quences w.r.t. the bespoke distance measure MPdist [6]. In turn, the similarity of two equal-length
subsequences w.r.t. MPdist is proportional to the number of smaller-length sub-subsequences in
them that are close to each other w.r.t. the normalized Euclidean distance, regardless of the order of
matching sub-subsequences. Informally speaking, the snippet discovery in the time series is somewhat
like K-medoids clustering [13] of the multidimensional points: the snippet and its nearest neighbors
correspond to the medoid and points of the cluster, respectively, where a medoid is a point whose sum
of dissimilarities to all the points in the cluster is minimal. Snippet-Finder [11] is the algorithm for
the snippet discovery that provides all the subsequences that are similar to a snippet to be exactly
specified and counted. Despite the fact that Snippet-Finder is unsupervised and demands only one
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Fig. 1. Parallelization scheme of PaSTiLa.

parameter, the snippet length, its time complexity is cubic w.r.t. the time series length. The PSF (Parallel
Snippet-Finder) algorithm [24] accelerates the original snippet discovery schema with GPU and ensures
acceptable performance. However, PSF can be improved if, instead of the predefined snippet length, we
employ the automatic selection of some optimal one from the specified range.

A time series motif [16] is a pair of the given-length subsequences that are very similar to each
other. The MK algorithm [16] employs the Euclidean distance and triangular inequality to effectively
prune unpromising candidates for motif. There are developments that accelerate MK on various parallel
architectures [25, 26]. However, being chosen as representative patterns, motifs cannot indicate the
coverage of each pattern.

A time series shapelet [22] is the given-length subsequence that is both the most similar one to most
of the subsequences of a given class and the most dissimilar one from the subsequences of other classes.
Since the shapelet assumes the subsequences of the given time series are pre-classified, such a concept
cannot be considered unsupervised.

The ClaSP (Classification Score Profile) algorithm [4] hierarchically splits the given time series into
two parts. A change point is determined by training a binary time series classifier for each possible
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(a) m = 30: Anorm(m) = 568.07, F1 score is 0.77

(b) mopt = 200: Anorm(mopt) = 988.89, F1 score is 0.95

(c) m = 500: Anorm(m) = 782.16, F1 score is 0.87

Fig. 2. An example of snippet selection (top: labeling, bottom: area between the MPdist-profile curves).

split point and selecting the one split that is best at identifying subsequences to be from either of the
partitions. ClaSP learns its main two model parameters from the data using two bespoke algorithms.

The FLUSS (Fast Low-cost Unipotent Semantic Segmentation) [7] takes a subsequence length and
the number of change points as parameters, based on the intuition that in the time series, subsequences
in similar segments are more similar than subsequences that occur after a change point. FLUSS
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produces a companion time series called the Arc Curve, which annotates the given time series with
information about the likelihood of a regime change at each location. To do this, for the given time series,
FLUSS calculates the matrix profile and matrix profile index [22]: the time series, where, respectively,
ith element is the distance to and index of the nearest neighbor for ith subsequence. As a next step, a
bespoke algorithm examines the Arc Curve obtained and decides how many regimes exist. However, the
FLUSS’s demand that the number of change points be known beforehand is hard to fulfill in practice.

The BinSeg (Binary Segmentation) algorithm [20] employs greedy sequential approach: first, one
change point is detected in the complete input time series, then series is split around this change point,
then the operation is repeated on the two resulting sub-series until a stopping criterion is met. The time
complexity of BinSeg is O(n log n) w.r.t. the time series length. However, this low complexity comes at
the expense of optimality: in general, BinSeg’s output is only an approximation of the optimal solution.
The problem is that the estimated change points are not estimated from homogeneous segments, and
each estimate depends on the previous ones. Moreover, change points that are close are often imprecisely
detected.

Concluding our review of related work, we can see that the snippet concept [11] is one of the most
promising approaches to unsupervised time series summarization and labeling. Currently, the PSF
(Parallel Snippet-Finder) algorithm [24] is the only parallel implementation of snippet discovery, to the
best of our knowledge. However, PSF does not fit computer cluster architecture and can be improved
by employing the automatic selection of some optimal snippet length from the specified range instead of
the predefined one. Thus, in this article, we address the issues above.

2. PRELIMINARIES

Prior to introducing the proposed algorithm for unsupervised labeling of long time series, below, in
Subsections 2.2.1 and 2.2.2, respectively, we first give basic notation and concepts our approach is based
on (the matrix profile [22], MPdist distance measure [6], and snippet [11]) and then briefly describe our
previous development, the PSF (Parallel Snippet-Finder) algorithm [24].

2.1. Notation and Basic Concepts

Time Series and Subsequence. A time series is a chronologically ordered sequence of real-valued
numbers

T = {ti}ni=1, ti ∈ R.

The length of a time series, n, is denoted by |T |.
A subsequence Ti,m of a time series T is its subset of m successive elements that starts at the ith

position

Ti,m = {tk}i+m−1
k=i , 1 ≤ i ≤ n−m+ 1, 3 ≤ m � n.

Matrix Profile. For the given m-length query subsequence Q and time series T , a distance profile
is a vector of the distances between Q and each subsequence of T

Dm
T (Q) = {Dist(Q,Ti,m)}n−m+1

i=1 , (1)

where Dist(·, ·) is a non-negative and symmetric function.
A subsequence Ti,m is the nearest neighbor of an m-length query subsequence Q if

Ti,m = argminDm
T (Q).

For the given two n-length time series A and B, and the subsequence length m, a matrix profile Pm
AB

is a vector of distances between each subsequence in A and its nearest neighbor in B

Pm
AB = {minDm

B (Ai,m)}n−m+1
i=1 .

It is worth noting that, commonly, Pm
AB �= Pm

BA. Aside snippets, there are diverse time series mining
primitives that are based on the matrix profile concept: novelets [15], semantic motifs [10], chains [23],
etc.
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The MPdist distance measure. Let us have two m-length time series A and B, and the
subsequence length � (typically, it is taken from range �0.3m� ≤ � ≤ �0.8m� [6]).1) Let us denote
the concatenation of the matrix profiles P �

AB and P �
BA as P �

ABBA, |P �
ABBA| = 2(m− �+ 1). Let

SORTEDP �
ABBA denotes the P �

ABBA’s version, where the elements are sorted in ascending order. Then,
the MPdist distance between A and B is calculated as follows

MPdist�(A,B) =

{
SORTEDP �

ABBA(k), o|P �
ABBA| > k

SORTEDP �
ABBA

(
2(m− �+ 1)

)
, otherwise,

(2)

where k = �0.1 ·m�. Here the parameter k is set to be equal to 5 percent of 2m, which is the length of
concatenation of A and B. If the subsequence length � is close to the time series length m, then the
maximum value of SORTEDP �

ABBA is used as a result, since |P �
ABBA| < �0.1 ·m� [6].

To calculate distance between subsequences, MPdist uses the Euclidean distance as the Dist(·, ·)
function, which is defined as below

ED(X,Y ) =

√√√√ �∑
i=1

(xi − yi)2.

Despite the fact that MPdist does not obey the triangular inequality, it is robust to spikes, warping, linear
trends, etc. [6].

Snippets. Hereinafter, without a loss of generality, we assume that the time series length n is a
multiple of the subsequence length m (if n/m is not an integer, we pad the time series right to the end
by zeros until the result of the division above becomes an integer). Next, let us represent T as a set
of m-length segments (non-overlapped subsequences), and denote such a set as Sm

T

Sm
T = {Si|Si = Tm·(i−1)+1,m, 1 ≤ i ≤ n/m}.

A time series snippet is an actual segment of T . Let us denote a set of m-length snippets of T as Cm
T ,

Cm
T = {Ci|Ci ∈ Sm

T , 1 ≤ i ≤ n/m}, (3)

where a time series snippet Ci ∈ Cm
T is provided with the following attributes: an index, a set of nearest

neighbors, and a fraction. We denote these attributes, respectively, as Ci.index, Ci.NN , and Ci.frac.

An index of a snippet Ci ∈ Cm
T is a number j of a segment that corresponds to the snippet, i.e.,

Sj = Tm·(j−1)+1, m.

Nearest neighbors of a snippet Ci ∈ Cm
T is a set of subsequences that are the most similar to the

corresponding segment w.r.t. the MPdist distance measure

Ci.NN = {Tj,m|SCi.index = arg min
1≤s≤n/m

MPdist(Tj,m, Ss), 1 ≤ j ≤ n−m+ 1}.

A fraction of a snippet Ci ∈ Cm
T is a ratio of the number of the snippet’s nearest neighbors to the

total number of m-length subsequences in the time series

Ci.frac =
|Ci.NN |
n−m+ 1

.

Snippets are ordered in descending order of their fraction

∀Ci, Cj ∈ Cm
T : i < j ⇔ Ci.frac ≥ Cj.frac.

1)In this definition, we use m and � instead of n and m to designate the length of the time series and subsequence,
respectively, since below, MPdist is calculated between subsequences, not time series.
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2.2. The Snippet-Finder Algorithm and its Parallelization

The Snippet-Finder algorithm [11] is given by a time series T , a segment length m, and an integer
parameter K (1 ≤ K ≤ n/m), and should find top-K snippets {Ci}Ki=1 ⊂ Cm

T by fraction, including all
attributes of each snippet. Snippet-Finder performs as follows.

By analogy with the distance profile (1), Snippet-Finder employs the MPdist-profile, the vector
MPD ∈ R

n−m+1 of the MPdist-distances between the given m-length query subsequence Q and each
subsequence of the time series T

MPDm
T (Q) = {MPdist(Q,Ti,m)}n−m+1

i=1 . (4)

Let us denote a K-combination of Sm
T (i.e., a subset of K distinct elements of the set of m-length

segments) and a set of all K-combinations as σK(Sm
T ) and PK(Sm

T ), respectively. Then, the function
ProfileArea, defined as below, plays the role of the objective function in the snippet discovery

ProfileArea(σK(Sm
T )) =

n−m∑
i=1

min
S∈σK(Sm

T
)

MPDm
T (S)i. (5)

Such a function calculates an area under the curves of MPdist-profiles, in which query subsequences
are the time series segments. Since in the case when all the segments are employed in the area under
the curves, the area is exactly zero, i.e., ProfileArea(σn/m(Sm

T )) ≡ 0, Snippet-Finder selects a smaller
number K of segments as snippets that approach ProfileArea to zero

{Ci}Ki=1 = arg min
σK(Sm

T
)∈PK(Sm

T
)

ProfileArea(σK(Sm
T )).

In the PSF (Parallel Snippet-Finder) algorithm [24], aiming at highest possible performance, while
calculating MPdist between subsequences, instead of the Euclidean distance, we use the squared
z-normalized Euclidean distance that is defined as follows

ED2
norm(X,Y ) = ED2(X̂, Ŷ ), x̂i =

xi − μx

σx
, μx =

1

�

�∑
i=1

xi, σx =

√√√√1

�

�∑
i=1

x2i − μ2
x.

In contrast with the original algorithm, where the calculation of an MPdist-profile for a segment
and each subsequence of the time series is one serial step, in PSF [24], it is performed in several steps,
where each step is parallelized with GPU. At the first step, for each segment S ∈ Sm

T , we calculate
EDmatr ∈ R

(m−�+1)×(n−�+1), the distance matrix of all �-length subsequences of S and T

EDmatr(i, j) = ED2
norm(Si,�, Tj,�).

At the second step, we calculate the vector allPBA ∈ R
n−�+1 that stores column-wise minima of the

matrix EDmatr

allPBA(j) = min
1≤i≤m−�+1

EDmatr(i, j).

At the third step, we calculate the matrix allPAB ∈ R
(m−�+1)×(n−�+1) that stores row-wise minima in

the �-length sliding windows of the matrix EDmatr

allPAB(i, j) = min
j≤c≤j+m−�+1

EDmatr(i, c).

Next, for each segment, we obtain the matrix profile by concatenating each column of the allPAB matrix
and all (m− �)-length subsequences from the vector allPBA and denoting the resulting structure as
PABBA ∈ R

2(m−�+1)

PABBA(Tj,�) = {allPAB(i, j)}m−�+1
i=1 {allPBA(i)}m−�+1

i=j .

Finally, through the obtained matrix profiles, we calculate the MPdist distances between each segment
and each m-length subsequence according to (2), then calculate the area under the curves (5) and
discover snippets (3).
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3. METHOD

Below, we introduce PaSTiLa (Parallel Snippet-based Time series Labeling), novel parallel algorithm
for labeling long time series on GPU-based high-performance (HPC) clusters. In Subsection 3.3.1, we
describe the parallelization scheme, whereas in Subsections 3.3.2 and 3.3.3, we discuss postprocessing
techniques that improve the quality of labeling through automatic choice of the segment length and
merging the similar activities, respectively.

3.1. Parallelization Scheme
In what follows, we assume that a high-performance cluster for the task at hand is homogeneous

and consists of P nodes (P > 1) with the same number of graphics processors onboard for each node.
Let us given the n-length time series T and the snippet length that ranges from minL to maxL, where
minL < maxL � n. Our approach supposes that T is replicated for each of the P cluster nodes.

Figure 1 depicts the parallelization scheme of PaSTiLa. One of the cluster nodes is claimed as a
master to perform preprocessing and postprocessing, whereas the rest of the nodes perform parallel
calculations. At the first step of preprocessing, for each segment length in the specified range, Predictor
produces the estimated running time of the snippet discovery on a single cluster node. Next, based on
the Predictor’s results, Scheduler completes preprocessing, creating for each cluster node a batch job
that consists of one to �R/P � (R = maxL−minL+ 1) segment lengths to process, where all the jobs
eventually provide the HPC cluster with a balanced load.

Predictor is implemented through the polynomial regression based on the fact that the serial Snippet-
Finder algorithm has cubic time complexity w.r.t. the time series length [11]. To provide Predictor with
the training data, we run the PSF algorithm [24] on a single cluster node over synthetic data generated
through the Random walk model [17]. In such experiments, we varied the time series length from 103 to
106 with step 102 while changing the segment length from 5% to 25% of the time series with step 1%.

Scheduler treats the task of creating batch jobs for the cluster nodes as the multiway number
partitioning problem [9], where a multiset of numbers is to be partitioned into a fixed number of subsets,
such that the sums of the subsets are as similar as possible. Although the problem is NP-hard [9], there
are various algorithms that solve it efficiently in many cases. To implement Scheduler, in our study,
we employ the Karmarkar–Karp algorithm (or, the largest differencing method) [12] that has the time
complexity of O(R logR).

During the calculation phase, GPUs at each node discover snippets of the lengths assigned through
the PSF algorithm independently of those at the other nodes. After completing the calculations,
each node sends the results (the snippets found and their MPdist-profiles) to the master node, which
further performs postprocessing. Data exchanges across cluster nodes are implemented through MPI
(Message Passing Interface) [19].

Postprocessing is performed in two steps, where, respectively, Selector determines the optimal
snippet length in the specified range according to our proposed heuristic criterion (see Subsection 3.3.2)
and Merger, taking the optimal snippet length found, improves the labeling quality through combining
activities represented by snippets that are the most similar w.r.t. MPdist (see Subsection 3.3.3).

3.2. Unsupervised Selection of the Snippet Length

In this study, we propose a heuristic criterion to automatically choose the segment length in the
specified range. The criterion employs all MPdist-profiles (4), where a query subsequence is one of
the snippets found that are part of the input for postprocessing. According to the criterion, we should
determine the segment length at which the area between the curves of such MPdist-profiles will be
maximum. Let us denote the optimal segment length as mopt, then it can be found as below

mopt = arg max
minL≤m≤maxL

Anorm(m), Anorm(m) =
A(m)

Amax(m)
, (6)

A(m) =
∑

1≤p �=q≤K
Cp,Cq∈Cm

T

n−m+1∑
i=1

|MPDm
T (Cp)i −MPDm

T (Cq)i|, Amax(m) = max
1≤i≤n−m+1

Cp∈Cm
T

MPDm
T (Cp)i.
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Table 1. Empirical evaluation of the criterion (6) over the ECG time series (an excerpt of numerical data)

Snippet length, m Area between MPdist profiles, Anorm(m) Labeling quality, F1 score

30 568.09 0.77

100 968.65 0.86

150 897.09 0.92

200 988.89 0.95

250 942.46 0.89

350 895.64 0.90

500 782.16 0.87

Indeed, formula (6) involves the set of MPdist-profiles {MPDm
T (Ci)}Ki=1, where query subsequences are

snippets {Ci}Ki=1 ⊂ Cm
T . In the numerator, the area between the above curves is calculated as the sum

of the absolute differences between their correspondent points, which is taken for every pair of snippets
found. The denominator plays the role of the normalizing factor since the area above decreases when the
segment length increases.

The criterion is based on our observation that the more the snippets found are dissimilar from each
other, the larger the area between the above-mentioned curves (despite such a property being performed
frequently, we are not claiming that this follows a strict pattern). Our observation was evaluated over the
TSSB (Time Series Segmentation Benchmark) dataset [4], which is a collection of 75 different-length
time series from diverse domains, where each time series represents some subject’s activities, where the
number of activities varies in the range 2..7, and the subject changes activity from one to another up to
6 times. Table 1 depicts an excerpt of the evaluation over the ECG time series included in TSSB, where
snippets represent two classes: a normal heartbeat and a myocardial infarction.

In Fig. 2, we visualize three cases given in Table 1: for m = 30, m = 200, and m = 500 (see Figs. 2a,
2b, and 2c, respectively). As can be seen, the value mopt = 200 provides the biggest values of Anorm and
F1 score.

3.3. Merging Similar Snippets

To improve the quality of labeling, we propose the following technique. At first, having obtained
the snippet length from Selector, instead of the given number of snippets to be found, K, through
PSF, we discover many times more snippets, dK, where integer d is a user-defined parameter (2 ≤
d ≤ �n/K ·mopt�). Next, we calculate MPdist distance for every pair of snippets found. Finally, we
merge every two closest snippets until it results in exactly K snippets. For the pair of merged snippets,
we choose the resulting snippet as one with the greatest fraction. The nearest neighbors of two merged
snippets are combined and obtain the same label.

In Fig. 3, we illustrate the proposed technique over a time series from the ADIAC dataset [2, 3]. In
Fig. 3a, we depict the time series labeling produced by our algorithm, where the number of snippets,
K = 3, and the matrix of MPdist-distances between the snippets were found; initially, labeling quality
w.r.t. the F1 score is 0.89. Figure 3b shows the labeling and distance matrix for the greater number
of snippets, K = 2 · 3 = 6. As can be seen from the distance matrix, the pairs of the closest snippets,
sorted by the MPdist distance between them in ascending order, are C1 and C4, C1 and C5, and C3 and
C6. In each pair above, the snippets are to be merged into the former snippet in the pair since it has a
bigger fraction. Finally, Fig. 3c depicts the labeling and distance matrix after the merging. As can be
seen, the labeling quality has improved to 0.94 w.r.t. the F1 score, and final snippets are more distinct
from each other than at the initial stage.
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Fig. 3. An example of snippet merging (left: labeling, right: MPdist distance matrix for snippets).

4. EXPERIMENTAL EVALUATION

To evaluate the proposed algorithm, we carried out experiments over various real-world time series.
We designed the experiments to be easily reproducible with our repository [8], which contains the
algorithm’s source code and all the datasets used in this work. Below, we describe the experimental
setup and discuss the results of the experiments, in Subsections 4.4.1 and 4.4.2, respectively.

4.1. Experimental Setup

Goals. In the experiments, we evaluated the quality and performance of labeling PaSTiLa provides,
in comparison with the rival algorithms mentioned above: FLUSS [7, 14], ClaSP [4, 5], and Bin-
Seg [20, 21]. In addition, we assessed the algorithm’s speedup, i.e., its ability to decrease the running
time when the same-length time series is processed on the increasing number of GPUs.

Measures. To measure the quality of labeling, we employ the commonly used F1 score, which is
defined as the harmonic mean of precision and recall

F1 = 2
Precision · Recall

Precision + Recall
, Precision =

TP

TP + FP
, Recall =

TP

TP + FN
,

where TP , FP , TN , and FN denote, respectively, the number of true positive, false positive, true
negative, and false negative points w.r.t. the pre-labeled time series. For the segmentation-based
algorithms, we calculate the F1 score over the predicted change points in comparison with the ground
truth ones w.r.t. margin of 1% of the time series length [4].
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Table 2. Hardware platform of the experiments

Feature GPU CPU

Brand and product line NVIDIA Kepler Intel Sandy Bridge

Model K20X E5-2660

Number of cores 2688 8

Core frequency, GHz 0.732 2.2

RAM, Gb 6 64

Peak performance (double precision), TFLOPS 1.31 0.282

The algorithm’s performance is interpreted as its running time. For each experiment, we ran PaSTiLa
ten times and took the average value as the final running time. The speedup of our algorithm employing
k graphics processors is calculated as S(k) = t1/tk, where t1 and tk are the running times of PSF [24]
(i.e., predecessor of PaSTiLa) on one GPU and PaSTiLa on k GPUs, respectively.

Datasets. To evaluate the quality and performance of labeling, we employ the above-mentioned
TSSB dataset [4] (see Subsection 3.3.2), which was also used by the authors of the above rival
algorithms to evaluate the segmentation quality. To assess our algorithm’s speedup, we use the Solar
Power time series [18], which contains more than 7.39 million points representing the daily solar power
production in Australia recorded per every 4 seconds starting from August 1, 2019.

Hardware. We carry out our evaluation on up to 64 nodes of the Lobachevsky supercomputer
(University of Nizhny Novgorod, Russia) [1], where the node characteristics are summarized in Table 2.
Our algorithm runs on GPU(s) of the node(s), whereas each rival algorithm being serial runs on one
core of CPU.

4.2. Results and Discussion

Labeling quality. In Fig. 4, for all competitors, we show the quality of labeling as F1 score boxplots
over all time series from the TSSB dataset. As can be seen, PaSTiLa outperforms the segmentation-
based competitors BinSeg, FLUSS, and ClaSP. In addition, we assess if our proposed snippet selection
scheme improves the labeling quality. As can be seen, for the segment length liberately chosen as 5%
or 25% of the time series length, PSF, the parallel version of the original snippet discovery algorithm, is
inferior to PaSTiLa, where the segment length is calculated according to formula (6).

In addition, in Fig. 5, we depict the labeling of the Solar Power time series produced by PaSTiLa and
the best segmentation-based competitors. Despite the fact that this time series does not have ground
truth labeling, it can be seen that PaSTiLa is more accurate than rival algorithms in determining the day-
night cycles: in fact, two snippets found represent increasing and decreasing solar power production,
respectively.

Performance and speedup. Figure 6 depicts the experimental results on performance of labeling
over the TSSB dataset for all competitors. To illustrate the insights found, we split TSSB into two
groups w.r.t. the length of time series: short (2000 < n ≤ 8000), and long (8000 < n ≤ 27000), where
56 and 19 time series are included in the groups, respectively. For each group, we show the total running
time of labeling all the time series therein on 2, 4, 8, 16, 32, and 64 single-GPU nodes, respectively. It
can be seen that over small-length time series (see Fig. 6a), BinSeg outruns both serial FLUSS and
ClaSP, and parallel PaSTiLa when it is running on four or fewer nodes. The reason is that our algorithm
does not fit small-length time series since for such data, the running time spent for exchanges between
cluster nodes becomes comparable with the rest calculations. In case of long-length time series (see
Fig. 6b), PaSTiLa outruns the above rivals when it is running on eight or more nodes.

In Fig. 7, we show the performance and speedup of our algorithm over the Solar Power time
series. PaSTiLa, as expected, significantly outruns its serial rivals over the millions-length time series
(see Fig. 7a). PaSTiLa demonstrates close-to-linear speedup, which slightly decreases starting from
32 GPUs our algorithm is running on (see Fig. 7b). The reason is the algorithm’s overhead on one-time

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 3 2024



1344 ZYMBLER, GOGLACHEV

1.0

0.8

0.6

0.4

0.2

0

F
1-

sc
or

e

BinSeg FLUSS ClaSP PSF
(m = 0.05n) (m = 0.25n)

PSF PaSTiLa

Fig. 4. Labeling quality over the TSSB dataset.

100

50

0
0

PaSTiLa

Snippet 1: 0.70

Snippet 2: 0.30

ClaSP

FLUSS

50K 100K 150K 200K 250K 300K

Fig. 5. Labeling the Solar Power time series.

40

30

20

10

0To
ta

l r
un

ni
ng

 ti
m

e,
 s

To
ta

l r
un

ni
ng

 ti
m

e,
 s

BinSeg

Number of GPUs: 2 4 8 16 32 64

FLUSS ClaSP PaSTiLa

40

50

30

20

10

0 BinSeg FLUSS ClaSP PaSTiLa

(a) Short-length time series (b) Long-length time series

Fig. 6. Performance of PaSTiLa over the TSSB dataset.

data exchange, the impact of which increases starting from the aforementioned number of GPUs. Our
algorithm’s performance and speedup are weakly proportional to the number of GPUs installed on a
cluster node.

CONCLUSIONS

In this article, we addressed the problems of unsupervised summarization and labeling of long time
series arised in a wide spectrum of subject domains: Internet of Things, digital industry, personal
healthcare, climate modeling and prediction of natural disasters, etc. Summarization aims to discover
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a small set of patterns (typical subsequences) that provide a concise representation the given long time
series. Further, labeling of the time series can be implemented by assigning each subsequence a tag that
corresponds to its most similar pattern.

Our study is based on the snippet concept [11], where a snippet is the given-length subsequence,
which is similar to many other subsequences of the given time series w.r.t. the normalized Euclidean
distance-based measure MPdist [6]. Our previously developed PSF (Parallel Snippet-Finder) algorithm
[24] accelerates the original snippet discovery schema on GPU. However, in PSF, like in its predecessor,
the snippet length should be predefined by a domain expert. In this article, we introduce the novel parallel
algorithm PaSTiLa (Parallel Snippet-based Time series Labeling) that performs the snippet discovery
and labeling of the given time series on an HPC cluster with GPU nodes, employing the automatic
selection of the snippet length from the specified range through our proposed heuristic criterion.

PaSTiLa performs according to the scenario that, for the task at hand, an HPC cluster is homoge-
neous with the same number of GPUs onboard for each node, and the given time series is replicated for
each of the cluster nodes. Then, one of the cluster nodes is claimed as a master to perform preprocessing
and postprocessing, whereas the rest of the nodes perform parallel calculations. At the first step of
preprocessing, for each segment length in the specified range, Predictor produces the estimated running
time of the snippet discovery on a single cluster node. Predictor is implemented through the polynomial
regression, where the training data are obtained through runs of PSF on a single cluster node over
synthetic time series with varied the lengths of both the time series and segment. Next, based on
the Predictor’s results, Scheduler employs the Karmarkar–Karp algorithm and, for each cluster node,
creates a batch job consisting of segment lengths to process, where all the jobs eventually provide the
HPC cluster with a balanced load. Further, at each cluster node, for each length in the node’s job, GPUs
discover snippets through the PSF algorithm independently of the other nodes. The resulting snippets
and their MPdist-profiles are sent through MPI to the master node for postprocessing. At the first step
of postprocessing, Selector determines the segment length at which the area between the curves of such
MPdist-profiles will be maximum. Next, the segment length found through such a criterion is given to
Merger that discovers many times more snippets than the given input number of the subject’s activities
and then combines every two closest snippets w.r.t. the MPdist distance and their labels until it results
in exactly the given number of snippets.

We carried out extensive experiments to evaluate our algorithm against state-of-the-art segmentation-
based analogs: FLUSS [7], ClaSP [4], and BinSeg [20]. In the experiments on labeling quality over the
TSSB dataset [4], which consists of 75 time series from diverse domains with varying both numbers of
activities and their changes from one to another, PaSTiLa outperforms competitors in average F1 score.
As for labeling performance, over small-length time series (typically less than 8–10 K points), PaSTiLa
is inferior to serial competitors since for such data, the running time spent for exchanges between
cluster nodes becomes comparable with the rest calculations. In the case of long-length time series,
PaSTiLa outruns the rivals. In addition, we assessed our algorithm’s scalability over the Solar Power
time series [18], which contains more than 7 million points, where PaSTiLa demonstrates a close-to-
linear speedup compared to the PSF running time on a single cluster node and is more accurate than
rival algorithms in determining the day-night cycles.
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Finally, we establish a repository [8] that contains the algorithm’s source code and datasets involved
in the experiments to facilitate the reproducibility of our study.

Our further research might elaborate on the application of PaSTiLa in the development of deep
learning model(s) for online human activity recognition through analysis of time series collected from
wearable devices.
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