
mathematics

Article

Matrix Profile-Based Approach to Industrial Sensor Data
Analysis Inside RDBMS

Mikhail Zymbler * and Elena Ivanova

����������
�������

Citation: Zymbler, M.; Ivanova, E.

Matrix Profile-Based Approach to

Industrial Sensor Data Analysis

Inside RDBMS. Mathematics 2021, 9,

2146. https://doi.org/10.3390/

math9172146

Academic Editor: Amir Mosavi

Received: 15 August 2021

Accepted: 29 August 2021

Published: 3 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electronic Engineering and Computer Science, South Ural State University, 454080 Chelyabinsk, Russia;
elena.ivanova@susu.ru
* Correspondence: mzym@susu.ru

Abstract: Currently, big sensor data arise in a wide spectrum of Industry 4.0, Internet of Things, and
Smart City applications. In such subject domains, sensors tend to have a high frequency and produce
massive time series in a relatively short time interval. The data collected from the sensors are subject to
mining in order to make strategic decisions. In the article, we consider the problem of choosing a Time
Series Database Management System (TSDBMS) to provide efficient storing and mining of big sensor
data. We overview InfluxDB, OpenTSDB, and TimescaleDB, which are among the most popular
state-of-the-art TSDBMSs, and represent different categories of such systems, namely native, add-ons
over NoSQL systems, and add-ons over relational DBMSs (RDBMSs), respectively. Our overview
shows that, at present, TSDBMSs offer a modest built-in toolset to mine big sensor data. This leads to
the use of third-party mining systems and unwanted overhead costs due to exporting data outside
a TSDBMS, data conversion, and so on. We propose an approach to managing and mining sensor
data inside RDBMSs that exploits the Matrix Profile concept. A Matrix Profile is a data structure
that annotates a time series through the index of and the distance to the nearest neighbor of each
subsequence of the time series and serves as a basis to discover motifs, anomalies, and other time-
series data mining primitives. This approach is implemented as a PostgreSQL extension that allows
an application programmer both to compute matrix profiles and mining primitives and to represent
them as relational tables. Experimental case studies show that our approach surpasses the above-
mentioned out-of-TSDBMS competitors in terms of performance since it assumes that sensor data are
mined inside a TSDBMS at no significant overhead costs.

Keywords: sensor data; time series DBMS; in-DBMS mining; InfluxDB; OpenTSDB; TimescaleDB;
matrix profile; discord discovery; motif discovery

1. Introduction

Currently, big sensor data arise in a wide spectrum of Industry 4.0 [1], Internet
of Things (IoT) [2], Smart City [3], and Smart Home [4] applications. In such subject
domains, sensors tend to have high frequency (for example, tens of times per second) and
produce time series of tens of millions to billions of elements in a relatively short time
interval. The data obtained from sensors should be stored permanently and subjected to
mining to extract hidden knowledge and make strategic decisions. In performing these
tasks, a Time Series Database Management System (TSDBMS) plays a critically important
role to provide an application programmer with means and tools to efficiently process and
analyze such amounts of sensor data.

In this article, we consider the problem of choosing an appropriate TSDBMS for man-
aging and mining big sensor data. TSDBMSs differ from both relational DBMSs (RDBMSs)
and NoSQL systems. A TSDBMS does not need a transaction mechanism since sensor
data are collected but not deleted or modified. Also, a TSDBMS should provide efficient
operations for adding new atomic values that arrive in streaming mode, yet efficient mining
operations where a time series is considered as a whole.

Mathematics 2021, 9, 2146. https://doi.org/10.3390/math9172146 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7491-8656
https://doi.org/10.3390/math9172146
https://doi.org/10.3390/math9172146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9172146
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9172146?type=check_update&version=1


Mathematics 2021, 9, 2146 2 of 19

At present, despite the widespread use of NoSQL systems, RDBMSs remain the basic
work tools to store and manipulate data in a wide spectrum of subject domains. This claim
is supported by the statistics of the DB-Engines.com portal

(see DBMS popularity broken down by database model, https://db-engines.com/en/
ranking_categories, accessed on 12 April 2021) pointing out that relational DBMSs hold up
to 75 percent of the market. By its nature, an RDBMS does not provide built-in data mining
functions, whereas the development of in-RDBMS data mining methods is a topical issue [5].
Indeed, if we consider an RDBMS only as a data repository, this may lead to significant
overheads when exporting large data volumes outside the RDBMS, changing data format,
and importing the results of the analysis back to RDBMS. In-RDBMS data mining methods
cover SQL-based implementations of various problems (for example, association rules [6,7],
clustering [8,9], graph mining [10,11], and others) as well as multipurpose libraries and
frameworks [12–15]. However, to the best of our knowledge, there are no developments
related to in-RDBMS time-series mining.

The article contributes as follows. We present an approach to managing and mining
sensor data inside RDBMS, based on the Matrix Profile concept. Matrix Profile [16] is a data
structure that annotates a time series through the index of and the distance to the nearest
neighbor of each subsequence of the series. Sensor data and Matrix Profile structures
that support the mining are represented as relational tables. Sensor data are mined inside
an RDBMS at no significant overhead costs for export-import data. We implemented
this approach as a PostgreSQL extension. Our experiments on real cases show that our
approach surpasses out-of-TSDBMS competitors in terms of performance.

The rest of the article is organized as follows. Section 2 provides a brief overview
of the most popular state-of-the-art TSDBMSs. Section 3 presents an approach to managing
and mining sensor data inside RDBMS. Section 4 describes the experimental evaluation
of our approach. Section 5 contain a summary of the results obtained and directions
for further research.

2. Overview of Modern Time Series DBMSs
2.1. Classification of Time Series DBMSs

In [17], the authors employ the following four-group classification of TSDBMSs.
The first group includes systems that provide time series storage based on a third-party
RDBMS or NoSQL system. The systems of the second group provide time series storage
independently. The third group consists of RDBMSs providing tools to store and process
time series. Finally, the fourth group is represented by commercial systems regardless
of their basic data model, an underlying third-party RDBMS or NoSQL system to store
time series, etc.

In this article, we distinguish native and add-on TSDBMSs. A native TSDBMS is
a stand-alone proprietary or free development with an original query language, database
engine, data storage system, and so forth. There is a wide spectrum of native systems:
InfluxDB [18], Prometheus [17], Druid [19], LittleTable [20], FluteDB [21], PhilDB [22],
EdgeDB [23], TSMMDB [24], and others.

An add-on TSDBMS is implemented on top of a third-party system that provides
the TSDBMS with a database engine and a data storage system. Depending on the data
model exploited by the basic system, one can distinguish between an add-on TSDBMS over
a NoSQL system or an RDBMS.

Currently, a wide range of add-on TSDBMSs is built on top of the following NoSQL
systems. The OpenTSDB [17] and Gorilla [25] add-on systems run over HBase [26].
BTrDB [27] is deployed on a distributed file systems, namely HDFS [28], GlusterFS [29],
or CephFS [29]. Also, BTrDB can exploit one of the NoSQL systems as a database engine,
namely MongoDB [30], Cassandra, or HBase [26]. KairosDB [17] is based on Cassandra [26].
The tsdb [31] system works in conjunction with the Berkeley DB [32] embedded DBMS.
HeteroTSDB [33] runs over the Amazon DynamoDB [34] system.

https://db-engines.com/en/ranking_categories
https://db-engines.com/en/ranking_categories


Mathematics 2021, 9, 2146 3 of 19

The subclass of add-on TSDBMSs based on relational DBMSs is pretty small; its basic
representatives are TimescaleDB [18] built over PostgreSQL [35], and RecovDB [36] based
on MonetDB [30].

Below, we give a more detailed overview of three systems, namely InfluxDB, OpenTSDB,
and TimescaleDB, which are currently the most popular representatives of the TSDBMS
categories listed above, according to the DB-Engines.com portal (see DB-Engines Ranking
of Time Series DBMS, https://db-engines.com/en/ranking/time+series+dbms, accessed
on 12 April 2021).

To illustrate the capabilities of TSDBMS, we use the toy subject domain of an Industry 4.0
application, as shown in Figure 1. This example simulates a manufacturing line of metal
products, which comprises two machines with sensors installed on them to provide predictive
maintenance of the line. The first machine is equipped with a temperature sensor and
an acoustic emission sensor to control the heating of the metal and capture waves occurring
as a result of changes in its structure (cracks, corrosion, etc.), respectively. Each sensor
outputs a single value. On the second machine, a vibration accelerometer is installed to
monitor machine vibrations; it outputs three values (vibration acceleration along the X, Y,
and Z axes).

(a)

(b)

Figure 1. Model subject domain. (a) Class diagram, (b) Illustrative example.

2.2. InfluxDB, Native Time Series DBMS

InfluxDB is a free TSDBMS implemented in the Go programming language and dis-
tributed as an executable file for major operating systems and hardware platforms. InfluxDB
supports command line and HTTP interfaces, as well as client libraries and plugins [37].

2.2.1. Organization of Data Storage

In InfluxDB, data are represented as a two-dimensional table called measurement.
One of the measurement columns contains timestamps. The other columns belong to one
of two categories: field or tag. Each field column stores time-series data and consists of field
keys and field values. Each tag column is the metadata of a field and consists of tag keys and
tag values. Fields are not indexed but indexes can be created for tags.

There is no explicit database schema in InfluxDB. The concepts of series and points
are supported. A series is a named set of data that shares a measurement, a set of tags, and
field keys. A point is a data element consisting of the following components: a measure-
ment, a set of tags, a set of fields, and a timestamp. A point is uniquely identified by its
series and timestamp.

Figure 2 gives an example of the creation of a sensor database for the subject domain
described in Figure 1. The database contains three measurements: acoustic, temperature, and
accelerometer, which represent the data from the respective sensors. Each measurement has
a machine tag to indicate the device on where the sensor is installed. The measurement
fields, namely val for acoustic and temperature, and x, y, and z for accelerometer, reflect
the values measured by the respective sensor. The specified measurements are created

https://db-engines.com/en/ranking/time+series+dbms


Mathematics 2021, 9, 2146 4 of 19

simultaneously with the insertion of data points to the database since InfluxDB does not
support explicit schema definition.

1 −− Create a sensor database while adding data a t the same time
2 CREATE DATABASE SensorDB
3 INSERT acoust i c , machine = 1 val = 46
4 INSERT temperature , machine = 1 val = 21
5 INSERT accelerometer , machine = 2 x = 3 4 . 7 , y = 5 . 0 , z = 134 .4

Figure 2. Create a sensor database in InfluxDB.

At the physical level, InfluxDB employs the LSM (Log-structured Merge-tree) data
structure [38], which provides fast data access in the workload with frequent INSERT
queries. Also, InfluxDB supports automatic data compression to minimize the amount
of data stored.

2.2.2. Query Language

InfluxDB provides the InfluxQL query language with SQL-like syntax. Figure 3 depicts
an example of a query that finds the minimum value of the temperature sensor installed
on the first machine.

1 SELECT MIN( val )
2 FROM ‘ ‘ temperature ’ ’
3 WHERE ‘ ‘ machine ’ ’ = ‘1 ’

Figure 3. Data retrieval in InfluxDB.

As for mining tools, InfluxQL provides time series prediction through the Holt–
Winters method [39]. Figure 4 shows an example of the prediction of the values of a tem-
perature sensor.

1 −− Step 1 : c o n f i g u r a t i o n of parameters .
2 −− Retr ieve sensor data f o r v i s u a l parameter determinat ion
3 −− ( the i n t e r v a l between ‘ ‘ peaks ’ ’ and ‘ ‘ troughs ’ ’ and the o f f s e t i n t e r v a l ) .
4 SELECT ‘ ‘ val ’ ’
5 FROM ‘ ‘ SensorDB ’ ’
6 WHERE ‘ ‘ sensor ’ ’ = ‘ temperature ’ AND time≥ ‘2020 −08 −22 ’ AND time≤ ‘2020 −08 −28 ’
7 −− Step 2 : determine a trend l i n e based on the configured parameters .
8 SELECT FIRST ( ‘ ‘ val ’ ’ )
9 FROM ‘ ‘ SensorDB ’ ’

10 WHERE ‘ ‘ sensor ’ ’ = ‘ temperature ’ AND time≥ ‘2020 −08 −22 ’ AND time≤ ‘2020 −08 −28 ’
11 GROUP BY time (379m, 3 4 8m)
12 −− Step 3 : p r e d i c t i o n .
13 −− Prognose 10 points a f t e r 2020−08−28 (4 points in each o f f s e t i n t e r v a l ) .
14 SELECT HOLT_WINTERS_WITH_FIT( FIRST ( ‘ ‘ val ’ ’ ) , 10 , 4 )
15 FROM ‘ ‘ SensorDB ’ ’
16 WHERE ‘ ‘ sensor ’ ’ = ‘ temperature ’ AND time≥ ‘2020 −08 −22 ’ AND time≤ ‘2020 −08 −28 ’
17 GROUP BY time (379 m, 348 m)

Figure 4. Time series prediction in InfluxDB.

InfluxDB supports continuous queries, which run automatically at a specified frequency.
Figure 5 depicts an example of a continuous query that runs hourly and computes the min-
imum value of temperature sensor readings during an hour.



Mathematics 2021, 9, 2146 5 of 19

1 CREATE CONTINUOUS QUERY ‘ ‘ cq_minimum ’ ’ ON ’ ’ SensorDB ’ ’
2 BEGIN
3 SELECT MIN( ‘ ‘ val ’ ’ ) INTO ’ ’ min_temperature ’ ’
4 FROM ‘ ‘ SensorDB ’ ’
5 WHERE ‘ ‘ sensor ’ ’ = ‘ temperature ’
6 GROUP BY time (1 h )
7 END
8 SELECT * FROM ‘ ‘ min_temperature ’ ’

Figure 5. Continuous query in InfluxDB.

2.3. OpenTSDB, NoSQL-Based Time Series DBMS

OpenTSDB is a free TSDBMS implemented in the Java programming language.
It serves as an add-on over NoSQL column family store systems, such as HBase or Cas-
sandra [26]. OpenTSDB supports command line and HTTP interfaces, as well as client
libraries and plugins [37].

2.3.1. Organization of Data Storage

OpenTSDB treats an element of a time series as a collection of a real value, a unique
time series identifier (a metric in the original terminology), a timestamp, and a non-empty
set of tags. A tag is a character string to store metadata.

OpenTSDB inherits the way the data are organized from the underlying NoSQL sys-
tem, which uses a collection of system tables as a data storage, namely tsdb to manage
data from time series, and tsdb-uid tsdb-tree, and tsdb-meta to manage service data.
A tuple of the tsdb table contains the following attributes: a time series element, a times-
tamp, and a foreign key that references the table tsdb-uid and associates this tuple with
a specific time series. The tsdb-uid table stores metric names and time-series tag values.
In OpenTSDB, the tsdb-tree table allows for the definition and maintenance of a se-
mantic hierarchy of stored time series similar to the file structure in an operating system.
The tsdb-meta table allows for storing additional user-defined time-series information (for
example, text annotations).

Figure 6 gives an example of the creation of a database for the subject domain from
Figure 1, where OpenTSDB serves as an add-on over the HBase system. Initially, HBase
runs a standard script to create system tables for data storage. Next, a database is created
containing five metrics: acoustic, temperature, and accelerometer.x, accelerometer.y, and ac-
celerometer.z, which represent the data from the respective sensors. Each of these metrics has
a machine tag to indicate the device the sensor is installed on. The creation of the specified
metrics is performed simultaneously with the insertion of data points to the database
through the put command since OpenTSDB does not support explicit schema definition.
The put command is followed by the metric name, timestamp, data point value, and tags.

1 # Create system t a b l e s in HBase to be managed with OpenTSDB
2 env ./src/create_table.sh
3 # Create t a b l e s in OpenTSDB and i n s e r t sensor data
4 put a c o u s t i c 2020−08−22 2 2 : 1 2 : 0 0 46 machine = 1
5 put temperature 2020−08−22 2 2 : 1 2 : 0 0 21 machine = 1
6 put acce lerometer . x 2020−08−22 2 2 : 1 4 : 0 0 3 4 . 7 machine = 2
7 put acce lerometer . y 2020−08−22 2 2 : 1 4 : 0 0 5 . 0 machine = 2
8 put acce lerometer . z 2020−08−22 2 2 : 1 4 : 0 0 134 .4 machine = 2

Figure 6. Create a sensor database in OpenTSDB (as an add-on over HBase).

2.3.2. Query Language

In OpenTSDB, database queries are written in the JSON language. A query describes
a directed acyclic graph (execution graph) whose nodes define data sources and transforma-
tion operations. The queries support arithmetic and logical expressions, filters, grouping,
and others, as well as statistical and analytical functions, such as downsampling (decreas-



Mathematics 2021, 9, 2146 6 of 19

ing the sampling rate of a series), interpolation (imputation of missing values of a series),
and so forth.

Figure 7 shows an example of a query that performs grouping and computes the mini-
mum value of temperature sensor data received in the last hour. The query graph consists
of two nodes, namely temperature_node, which reads data from the temperature metric,
and the groupby_node, which groups data by machine tag and finds the minimal value.

1 { “start”: ‘ ‘ 1 h−ago ’ ’ ,
2 “executionGraph”: [
3 { “id”: ‘ ‘ temperature_node ’ ’ ,
4 “type”: ‘ ‘ TimeSeriesDataSource ’ ’ ,
5 “metric”: {
6 “type”: ‘ ‘ M e t r i c L i t e r a l ’ ’ ,
7 “metric”: ’ ’ temperature ’ ’ }
8 } ,
9 { “id”: ‘ ‘ groupby_node ’ ’ ,

10 “type”: ‘ ‘ groupby ’ ’ ,
11 “aggregator”: ‘ ‘ min ’ ’ ,
12 “tagKeys”: [ ‘ ‘ machine ’ ’ ] ,
13 “sources”: [ ‘ ‘ temperature_node ’ ’ ]
14 }
15 ]
16 }

(a)
(b)

Figure 7. Data retrieval in OpenTSDB. (a) query in JSON, (b) execution graph.

Figure 8 presents an example of a query that computes the total sum of data from
the temperature_node metric grouped in 5 minute time intervals. In the resulting empty
groups, the system automatically fills the gaps with the sum calculated by linear in-
terpolation (LERP) [40]. If there is not enough real data for LERP, the system outputs
an undefined value NaN.

1 { “id”: ‘ ‘ data_recovery ’ ’ ,
2 “aggregator”: ‘ ‘ sum’ ’ ,
3 “interval”: ‘ ‘ 5 m’ ’ ,
4 “fill”: true ,
5 “interpolatorConfigs”: [
6 { “type”: ‘ ‘LERP ’ ’
7 “dataType”: ‘ ‘ numeric ’ ’ ,
8 “fillPolicy”: ‘ ‘NAN’ ’ ,
9 “realFillPolicy”: ‘ ‘NONE’ ’

10 }
11 ] ,
12 “sources”: [ ‘ ‘ temperature_node ’ ’ ]
13 }

(a)
(b)

Figure 8. Imputation of missing values in OpenTSDB. (a) query in JSON, (b) execution graph.

Except for LERP, OpenTSDB does not provide built-in time series mining tools. How-
ever, OpenTSDB allows third-party extensions that provide such functionality (for example,
the R2Time [41] library, implemented in the R programming language).

2.4. TimescaleDB, Relational-Based Time Series DBMS

TimescaleDB is a free TSDB implemented in the C programming language and dis-
tributed as an extension of PostgreSQL. TimescaleDB cooperates with a PostgreSQL in-
stance and normally supports the same operations as PostgreSQL.

2.4.1. Organization of Data Storage

In TimescaleDB, time-series data are stored and processed in hypertables. A hypertable
specifies a named set of time series and a way to split the data of the specified series into



Mathematics 2021, 9, 2146 7 of 19

physically stored relational tables. The partitioning information is used further for parallel
processing of the specified tables in PostgreSQL.

Figure 9 contains s the hypertables of data for the subject domain given in Figure 1.
Here, each hypertable stores the time series of sensor data from the corresponding machine.
The machine1 hypertable has the following attributes to store data from sensors installed
on the first machine: a timestamp, a sensor value, and a sensor type (an acoustic emission
sensor or a temperature sensor). The machine2 hypertable defines a way to store the vibra-
tion accelerometer data along the X, Y, and Z axes from the sensor installed on the second
machine. Both hypertables define a time series split into disjoint subsequences correspond-
ing to periods of one month. Additionally, the machine1 hypertable stores the data from
different sensors in separate tables.

Figure 9. Hypertables in TimescaleDB.

Figure 10 gives an example of the creation of a database in TimescaleDB with the hy-
pertables shown in Figure 9. Initially, a new database and its tables are produced. Next, we
employ TimescaleDB as a PostgreSQL extension and convert the tables into hypertables
using the system function that specifies the partitioning method. Finally, sensor data are
inserted in the hypertables through the regular SQL command INSERT.

1 −− Create database and ordinary t a b l e s in PostgreSQL
2 CREATE DATABASE SensorsDB
3 CREATE TABLE machine1 ( stamp TIMESTAMP, val REAL , sensor TEXT )
4 CREATE TABLE machine2 ( stamp TIMESTAMP, x , y , z REAL )
5 −− Employ TimescaleDB extens ion and transform t a b l e s i n t o hyper tables
6 CREATE EXTENSION TimescaleDB
7 SELECT create_hypertable ( ’ machine1 ’ , ’ stamp ’ , ’ sensor ’ , 2 ,
8 chunk_time_interval => INTERVAL ’ 1 month ’ )
9 SELECT create_hypertable ( ’ machine2 ’ , ’ stamp ’ ,

10 chunk_time_interval => INTERVAL ’ 1 month ’ )
11 −− I n s e r t sensor data in hyper tables
12 INSERT INTO machine1 VALUES ( NOW() , 4 6 . 0 , ’ a c o u s t i c ’ )
13 INSERT INTO machine1 VALUES ( NOW() , 2 1 . 0 , ’ temperature ’ )
14 INSERT INTO machine2 VALUES ( NOW() , 3 4 . 7 , 5 . 0 , 1 3 4 . 4 )

Figure 10. Create a sensor database in TimescaleDB.

2.4.2. Query Language

In TimescaleDB, data from hypertables are retrieved through the ordinary SQL SELECT
command with a wide range of standard features, such as subqueries, sorting, grouping,
and others. Additionally, in TimescaleDB, SQL is extended by facilities to perform statistical
analysis of time series, namely calculating the median, the moving average, and percentiles,
building histograms, grouping in time intervals of a given length, and so on.

Also, the TimescaleDB supports continuous aggregates, which are views to automatically
compute and materialize the results of a specified query in the background. Continuous
aggregates are similar to materialized views in PostgreSQL but, unlike the latter, they are



Mathematics 2021, 9, 2146 8 of 19

updated automatically as data are inserted or modified. Figure 11 provides an example
of a continuous aggregate that calculates the average value of temperature sensor data and
groups these values in one-hour periods.

1 CREATE VIEW ca_minimum WITH ( t imescaledb . continuous ) AS
2 SELECT t ime_bucket (INTERVAL ’ 1 hour ’ , time ) AS bucket , MIN( val )
3 FROM temperature
4 GROUP BY bucket
5 SELECT * FROM ca_minimum

Figure 11. Continuous aggregate in TimescaleDB.

The TimescaleDB does not provide an application programmer with built-in time
series mining functions. However, it inherits from PostgreSQL the ability to integrate with
third-party libraries that implement data mining functions inside DBMS (for example,
Apache MADlib [12]).

3. Mining Sensor Data Inside RDBMS
3.1. Matrix Profile Concept

The recently proposed Matrix Profile (MP) [16] is a data structure that annotates a time
series through the index of and the distance to the nearest neighbor of each subsequence
of the series. MP naturally allows one to detect both motifs and anomalies in a time
series and can serve as a basis for discovering more sophisticated time-series mining
primitives, such as semantic segments [42], chains (evolving patterns) [43], snippets (typical
patterns) [44], and others.

Currently, MP and accompanying algorithms are extensively employed to mine sensor
data in various Industry 4.0 applications. In [45], the authors describe how MP can be used
to detect meter-swapping and prevent electricity theft. In [46], the authors present an MP-
based approach to automatically labeling the system events in the synchrophasor data.
In [47], MP is applied to discover discords in an energy time series for large commercial
building load modeling. In [48], MP is applied to discover motifs and track the operational
status of a machine through its vibration sensor data. In [49], the authors employ MP
in Industrial IoT production maintenance.

Below, we follow [16,46], give basic definitions regarding MP, and thereafter describe
an approach to embedding MP functionality into PostgreSQL.

Sensor data that undergo collection and mining are a form of time series.

Definition 1. A time series is a chronologically ordered sequence of real-valued numbers:
T = {ti}n

i=1, where ti ∈ R.

Time series data mining is primarily addressed in discovering patterns of fixed rela-
tively small length segments of a time series, or subsequences.

Definition 2. A subsequence Ti,m of a time series T is its subset of m successive elements that
starts at the i-th position: Ti,m = {tk}i+m−1

k=i , where 1 ≤ i ≤ n−m + 1, and 1 ≤ m� n.

For further definitions, we specify all the subsequences of a given time series by sliding
an m-length window throughout the time series (without physically extracting them).

Definition 3. An all-subsequence set SA
T of a time series T is an ordered set of all possible m-length

subsequences contained in T. Specifically, these subsequences are sorted in ascending order with
respect to their starting elements: SA

T = {Ti,m}n−m+1
i=1 .

Next, for a given subsequence, we compute its distance to each element in an all-
subsequence set.



Mathematics 2021, 9, 2146 9 of 19

Definition 4. A distance profile DT
i is a vector of the distances between a given query subsequence

Ti,m and each subsequence Tj,m in an all-subsequence set: DT
i = {dist(Ti,m, Tj,m)}n−m+1

j=1 , where
dist(·, ·) denotes the Euclidean distance between z scores of two subsequences.

By the distance profile, we aim to find the nearest neighbor of each subsequence
of a time series, except for trivial neighbors.

Definition 5. A subsequence Tj,m is the nearest neighbor of a subsequence Ti,m if dist(Ti,m, Tj,m) =

min(DT
i ). A subsequence Tj,m is a trivial neighbor of Ti,m if |i− j| ≤ m

2 .

Now, the matrix profile may be formally defined as follows.

Definition 6. A matrix profile PT of a time series T is a vector of distances between each sub-
sequence Ti,m and its nearest nontrivial neighbor: PT = {nnnt(DT

i )}
n−m+1
i=1 , where nnnt(DT

i )
denotes the minimal distance between Ti,m and its nontrivial neighbors.

A matrix profile is accompanied by a supplemental structure to locate the nearest
nontrivial neighbors.

Definition 7. A matrix profile index IT of a time series T is a vector that stores the index
of the nearest nontrivial neighbor of each subsequence: IT = {IT

i }
n−m+1
i=1 , where IT

i = j if
nnnt(DT

i ) = dist(Ti,m, Tj,m).

The matrix profile can be considered as metadata to annotate corresponding time series.
For example, the maximal value of the profile corresponds to an anomalous subsequence
(a discord [50]), whereas the minimal values correspond to the best motif subsequence pair
in the series.

The matrix profile and the matrix profile index can be generalized to the case of two
time series when the query subsequence and the all-subsequence set are taken from dif-
ferent time series. In this case, we call PT1,T2 and IT1,T2 the join matrix profile and the join
matrix profile index, respectively. Commonly, PT1,T2 6= PT2,T1 and IT1,T2 6= IT2,T1.

The matrix profile is a domain-agnostic technique where an application programmer
specifies the only parameter (a subsequence length). Among other advantages, the matrix
profile allows for its parallel computing [51] and gradual updating [45].

3.2. Embedding Matrix Profile Management into RDBMS

Embedding MP functionality into RDBMS has two basic merits. By encapsulating
time series data mining inside DBMS, we avoid overheads due to export–import large data.
Moreover, being computed and stored in the database once, a matrix profile and related
time series data mining primitives can then be used repeatedly.

To embed MP functionality into RDBMS, we represent a sensor database as depicted
in Figure 12. Time series data are represented by the Time Series Directory (TSD) table,
a set of univariate time series tables, and a set of multivariate time series tables. The TSD
table stores information on each time series, namely its dimension, length, and the name
of the table. Each univariate time series is implemented as a table with columns represent-
ing a serial number, a timestamp, and a sensor value itself. A multivariate time series is
implemented as a table with a similar structure where each dimension is represented as
a real-valued column.



Mathematics 2021, 9, 2146 10 of 19

Figure 12. Database structure to manage Matrix Profile in RDBMS.

Matrix Profile data consist of the Matrix Profile Directory (MPD) table, a set of Matrix
Profile (MP) tables, a set of Join Matrix Profile (JMP) tables, and a set of Distance Profiles
(DP) tables. The MPD table stores metadata on the matrix profiles managed within the sys-
tem and references corresponding time series in the TSD table (one or two foreign keys
for an ordinary or join matrix profile, respectively). Each MP table, in the same manner
as a JMP table, stores one matrix profile of the stored time series for a given subsequence
length, using to this end one real-valued column for the distance to the nearest neighbor
subsequence and one integer-valued column for the index thereof (that is, the MP table
also stores a matrix profile index). Each DP table stores all the distance profiles of a time
series for a given subsequence length, using for this purpose two integer-valued columns
for the indices of subsequences and one real-valued column for the distance between them.
The naming of Matrix Profile data objects reflects their indirect connection to Time series
data objects and the subsequence length. For example, let us store acoustic sensor data
in the ts_acoustic table and let us mine these data along 128-length subsequences. Then
the sensor database contains the mp_acoustic_128 table and the dp_acoustic_128 table
to store the Matrix Profile and the Distance Profiles of the time series, respectively.

The Time series data mining (TSDM) API provides an application programmer with
tools to discover discords and motifs and compute matrix profiles. Similar to TimescaleDB,
our API (which was called MPPostgres) is implemented as a PostgreSQL extension con-
sisting of PL/pgSQL functions that return tables (see Figure 13). PL/pgSQL (Procedural
Language/PostgreSQL) is a fully featured programming language that supported by
PostgreSQL and allows much more procedural control than traditional SQL.

In MPPostgres, a discord table representation includes the following items: the index
of the discord in the time series, the distance to its nearest neighbor, and the discord
itself as an array. A motif is represented as a tuple with the following attributes: the left
and right parts of the motif, their indices, and the distance between them. A PL/pgSQL
function result can be stored in the database as a table or exploited as a view (virtual
table). The API can be complemented with functions to search for other mining primitives
(chains, snippets, etc.). Discords and motifs are computed through SQL queries that select
the rows of the MP table with the maximal and minimal values of the distance to the nearest
neighbor (the nnDist column), respectively. The PL/pgSQL functions to compute matrix
profiles are implemented as wrappers over the in-memory algorithm [51]. Note that such
PL/pgSQL function is implemented in such a manner that it is called only if the respective
MP table has not been created yet.



Mathematics 2021, 9, 2146 11 of 19

1 −− Discover discords and return them as a t a b l e
2 discoverDiscords ( tsName TEXT , subseqLen INT , topK INT ) RETURNS
3 TABLE ( nnDist REAL , idx BIGINT , d iscord REAL [ subseqLen ] )
4 −− Discover mot i fs and return them as a t a b l e
5 discoverMot i f s ( tsName TEXT , subseqLen INT , topK INT ) RETURNS
6 TABLE ( nnDist REAL , i d x L e f t BIGINT , m o t i f L e f t REAL [ subseqLen ] ,
7 idxRight BIGINT , moti fRight REAL [ subseqLen ] )
8 d i s c o v e r M o t i f s J o i n ( tsName1 , tsName2 TEXT , subseqLen INT , topK INT ) RETURNS
9 TABLE ( nnDist REAL , i d x L e f t BIGINT , m o t i f L e f t REAL [ subseqLen ] ,

10 idxRight BIGINT , moti fRight REAL [ subseqLen ] )
11 −− System f u n c t i o n s to compute matrix p r o f i l e s t r u c t u r e s
12 _ m a t r i x P r o f i l e ( tsName TEXT , subseqLen INT ) RETURNS
13 TABLE (num BIGINT , nnDist REAL , nnIdx BIGINT )
14 _ m a t r i x P r o f i l e J o i n ( tsName1 TEXT , tsName2 TEXT , subseqLen INT ) RETURNS
15 TABLE (num BIGINT , nnDist REAL , nnIdx BIGINT )

Figure 13. Time series data mining API, MPPostgres.

MPPostgres can seamlessly work in tandem with TimescaleDB on top of PostgreSQL,
as the example in Figure 14 shows (cf. Figure 10; note that, for the sake of simplicity, we
have left only one sensor). After the typical steps (create a database in PostgreSQL, employ
TimescaleDB, transform tables into hypertables, and insert sensor data in hypertables),
we employ MPPostgres to discover discords and motifs based on the matrix profile and
display the findings.

1 −− Create database and ordinary t a b l e s in PostgreSQL
2 CREATE DATABASE SensorsDB
3 CREATE TABLE ts_mach1Temperature (num BIGSERIAL , stamp TIMESTAMP, val REAL )
4 −− Employ TimescaleDB extens ion and transform t a b l e s i n t o hyper tables
5 CREATE EXTENSION TimescaleDB
6 SELECT create_hypertable ( ’ ts_mach1Temperature ’ , ’ stamp ’ ,
7 chunk_time_interval => INTERVAL ’ 1 month ’ )
8 −− I n s e r t sensor data in hyper tables
9 INSERT INTO ts_mach1Temperature VALUES ( NOW() , 2 1 . 0 )

10 ...
11 −− Employ MPPostgres extens ion and compute matrix p r o f i l e s t r u c t u r e s
12 CREATE EXTENSION MPPostgres
13 −− Discover discords and motifs , and make them a v a i l a b l e as top −100 views
14 CREATE VIEW discords_mach1Temperature_128 AS
15 SELECT * FROM discoverDiscords ( ’ ts_mach1Temperature ’ , 128 , 100)
16 CREATE VIEW motifs_mach1Temperature_128 AS
17 SELECT * FROM discoverMotifs ( ’ ts_mach1Temperature ’ , 128 , 100)
18 −− Display ten most valuable discords and moti fs
19 SELECT * FROM discords_mach1Temperature_128 LIMIT 10
20 SELECT * FROM motifs_mach1Temperature_128 LIMIT 10

Figure 14. Create and use a sensor database with TimescaleDB and MPPostgres in tandem.

4. Experimental Case Studies

We embedded MP functionality into PostgreSQL v. 13.2 and evaluated the proposed
approach in experiments conducted on a workstation (CPU: Intel Xeon Gold 6254 @4 GHz,
RAM: 64 Gb, HDD: 1 Tb). In the experiments, we considered three cases of real Industry 4.0
applications related to mining big sensor data and implemented them based on the pro-
posed approach. In these cases, we assumed that sensor data were stored and mined inside
PostgreSQL and assessed the performance (running time) of our approach. We also com-
pared our results with those of solutions based on InfluxDB and OpenTSDB, assuming that
the sensor data were firstly exported outside these TSDBMSs, then converted to an appro-
priate format and mined with third-party tools [52], and finally, the results were imported
back into those TSDBMSs. We keep in mind the fact that out-of-TSDBMS time series data
mining is potentially faster than the in-TSDBMS one, but the absence of export-import
overhead costs in our approach allows us to hope for an eventual advantage.



Mathematics 2021, 9, 2146 12 of 19

4.1. Electricity Theft Detection

In [45], the authors exploit the matrix profile concept to detect electricity theft. They
simulate a meter-swapping event in a dataset of household electric power demand collected
from twenty households [53] by swapping the traces of two time series (chosen randomly)
starting at a specific date. Next, to discover the swapped pair, they divide each time series
into two sections: the “Head”, before the selected date, and the “Tail”, after that date.
Finally, among all possible pairs of houses, the resulting pair {Housei, Housej} should
have the minimal swap-score, which is computed as

SwapScore(Housei, Housej) =
min(PHead(Housei),Tail(Housej))

min(PHead(Housei),Tail(Housei)) + ε
,

where ε denotes the machine epsilon (an upper bound on the relative error due to rounding
in floating-point arithmetic).

Figure 15 shows how we implemented that case in MPPostgres (here and below, we
use pseudo-code with a PL/pgSQL-like syntax, where the EXEC_QUERY statement runs
a query with a specified character string, and an italicized variable name denotes the value
of the respective variable, rather than the query text that is actually written). Note that all
“Head”s and “Tail”s are represented by views (virtual tables), so we do not have overheads
caused by physically extracting them for further processing.

1 CREATE FUNCTION t h e f t D e t e c t i o n ( numHouses INT , pivotDate DATE, subseqLen INT )
2 RETURNS swapPair INT [ 2 ] AS
3 DECLARE
4 i , j INT ; minMP, minJoinMP , swapScore , minScore REAL ;
5 tsTabName , tsHeadName , tsTailName TEXT ;
6 BEGIN
7 minScore :=+∞ ;
8 FOR i IN 1 . . numHouses
9 −− Implement ‘ ‘Head ’ ’ and ‘ ‘ Tai l ’ ’ of i −th house as views

10 tsTabName := ’ ts_house_ ’ ‖ i ; tsHeadName := ’Head_ ’ ‖ i ; tsTailName := ’ T a i l _ ’ ‖ i ;
11 EXEC_QUERY
12 CREATE VIEW tsHeadName AS
13 SELECT * FROM tsTabName WHERE stamp≤pivotDate ;
14 EXEC_QUERY
15 CREATE VIEW tsTailName AS
16 SELECT * FROM tsTabName WHERE stamp>pivotDate ;
17 −− Minimum of J o i n MP of ‘ ‘Head ’ ’ and ‘ ‘ Ta i l ’ ’ of i −th house
18 EXEC_QUERY
19 SELECT MIN( nnDist )
20 FROM _matrixProfileJoin ( tsHeadName , tsTailName , subseqLen )
21 INTO minMP;
22 FOR j IN ( i + 1 ) . . numHouses
23 −− Implement ‘ ‘ Ta i l ’ ’ of j −th house as view
24 tsTabName := ’ ts_house_ ’ ‖ j ; tsTailName := ’ T a i l _ ’ ‖ j ;
25 EXEC_QUERY
26 CREATE VIEW tsTailName AS
27 SELECT * FROM tsTabName WHERE stamp>pivotDate ;
28 −− Minimum of J o i n MP of ‘ ‘Head ’ ’ of i −th house and ‘ ‘ Ta i l ’ ’ of j −th house
29 EXEC_QUERY
30 SELECT MIN( nnDist )
31 FROM SELECT _matrixProfileJoin ( tsHeadName , tsTailName , subseqLen )
32 INTO minJoinMP ;
33 −− Compute SwapScore and f ind the meter−swapping pai r of houses
34 swapScore := minJoinMP/(minMP+ε ) ;
35 IF swapScore<minScore THEN
36 minScore := swapScore ; swapPair [ 1 ] : = i ; swapPair [ 2 ] : = j ;
37 RETURN swapPair ;
38 END;

Figure 15. Implementation of the electricity theft detection case in MPPostgres.

Figure 16 shows experimental results associated with the electricity theft detection
case. It can be seen that all the competitors perform matrix profile computations of the same



Mathematics 2021, 9, 2146 13 of 19

duration. MPPostgres requires a short-time preprocessing for extracting data from tables
through SQL queries. Also, all the solutions perform auxiliary computations (finding
the minimum, computing SwapScore, etc.), where MPPostgres is slightly ahead of rivals.
Finally, data export (extraction of data and its transference to a third-party application) intro-
duces significant overheads due to out-of-TSDBMS solutions and is absent in our approach.

Figure 16. Performance of different TSDBMSs in the electricity theft detection case.

4.2. Detection of Active Electricity Consumption

The authors of [47] apply the matrix profile concept for modeling electricity consump-
tion in three buildings of an academic campus located in Zurich, Switzerland. The authors
exploit the Building Data Genome (BDG) dataset [54], where the reference buildings repre-
sent an office, a classroom, and a laboratory, identified through their nicknames: Travis,
Tracy, and Teri, respectively. Among other things, the authors determine for each building
the periods of active electricity consumption by discovering the top three discords as
maximal points in the matrix profile of the consumer-side building electric power time
series, where the subsequence length parameter corresponds to one week (seven days
of hourly readings and a total of 168 points).

The implementation of the case in MPPostgres is shown in Figure 17. To find the dis-
cords, we simply call the discoverDiscords function of the TSDM API three times, spec-
ifying the respective parameters. The remaining code shows how the above-mentioned
function is implemented. The rows of the resulting table are formed through the following
loop. Using an SQL query, we select the rows with top-K maximal distance to the near-
est neighbor from the MP table and take the values of the index and the distance fields
for a row of the resulting table. At last, using the index found, we select all the points
of the respective discord subsequence by an SQL query.

Figure 18 depicts the experimental results associated with the case of active electricity
consumption in buildings (for illustrative purposes, we replicated the BDG dataset, so that
it corresponds to data for 32 years). We can observe a situation similar to the previous
case. All the competitors compute the matrix profile equally fast. According to their nature,
out-of-TSDBMS solutions introduce significant overhead costs on data export, in contrast
to our approach. MPPostgres also outperforms the rivals at the discord discovery step
since it exploits the built-in database indexing by table primary key when finding top-K
values and retrieving rows from tables. It is worth noting that in the typical scenario, when
the matrix profile has already been computed and saved in the MP table, our approach
would outperform our rivals even more significantly.



Mathematics 2021, 9, 2146 14 of 19

1 −− Detect periods of a c t i v e e l e c t r i c i t y consumption as top three discords
2 SELECT discoverDiscords ( ‘ O f f i c e _ T r a v i s ’ , 168 , 3 ) ;
3 SELECT discoverDiscords ( ‘ Classroom_Terrie ’ , 168 , 3 ) ;
4 SELECT discoverDiscords ( ‘ Laboratory_Tracy ’ , 168 , 3 ) ;
5 −− Implementation of the discords discovery funct ion
6 CREATE FUNCTION discoverDiscords ( tsName TEXT , subseqLen INT , topK INT )
7 RETURNS TABLE( nnDist REAL , idx BIGINT , d iscord REAL [ subseqLen ] ) AS
8 DECLARE
9 tsTabName , mpTabName TEXT ;

10 tsRow , mpRow RECORD ;
11 BEGIN
12 tsTabName : = ‘ t s _ ’ ‖ tsName ; mpTabName: = ‘mp_ ’ ‖ tsName ‖ ‘ _ ’ ‖ subseqLen ;
13 FOR mpRow IN EXEC_QUERY
14 −− Retr ieve rows from the MP t a b l e with top −K maximal d i s t a n c e
15 SELECT * FROM mpTabName ORDER BY nnDist DESC LIMIT topK
16 nnDist :=mpRow. nnDist ; idx :=mpRow.num;
17 FOR tsRow IN EXEC_QUERY
18 −− Retr ieve a discord subsequence from the time s e r i e s t a b l e
19 SELECT val FROM tsTabName
20 WHERE num BETWEEN idx AND idx+subseqLen−1
21 discord :=array_append ( discord , tsRow . val ) ;
22 RETURN NEXT ROW ;
23 END;

Figure 17. Implementation of the active electricity consumption detection case in MPPostgres.

Figure 18. Performance of different TSDBMSs in the active electricity consumption detection case.

4.3. Tracking the Operational Status of an Industrial Machine

The authors of [48] track the operational status of an industrial two-mode (high and
low speed) exhaust fan through the matrix profile computed for a time series collected by
a vibration sensor installed on the fan. While collecting the data, the authors deliberately
control the fan blowing duration and speed. Switching the fan modes affects the vibrations,
while the motifs in the time series indicate the moments when the machine status changes.
The authors discover motifs through the matrix profile and compute the total duration
of time intervals when the fan is in “high-speed” and “low-speed” mode, as well as the ratio
of such intervals. The experimental results show that the ratio computed through the matrix
profile is almost identical to ground truth data.

The authors of [48] do not provide the vibration dataset. We conducted in our study
experiments similar to the one described in [48] and collected vibration data from a small-
sized crushing machine which is located at the South Ural State University (Chelyabinsk,
Russia) and is used for training engineers. The collected time series consists of more than
240 thousand points corresponding to a 3 minute time interval of machine work. During



Mathematics 2021, 9, 2146 15 of 19

the process, we started up the crushing machine eight times, so that the machine status
changed sixteen times, from “crushing stops” to “crushing starts” and back. As in the orig-
inal case, the ratio of time intervals when the machine works in different modes, computed
in our experiments through motif discovery, almost coincides with ground truth data.

The implementation of the described case in MPPostgres is shown in Figure 19. After
computing the matrix profile of an input time series, we use an SQL query to retrieve
top-K motifs as rows of the MP table with top-K minimal distance to the nearest neighbor
of the respective subsequence. Then, we scan the time series from left to right through
the indices of motifs found while computing the length of the interval between the previous
and current motif and alternately adding the result to a total duration that indicates
when the machine works in the first or the second mode. Finally, after similar one-time
computations over the remaining part of the input time series, we obtain the resulting ratio.

In Figure 20, we see the experimental results obtained in the crushing machine oper-
ational status tracking case. Similar to previous cases, MPPostgres outperforms the out-
of-TSDBMS rivals since the latter are forced to export the data before processing it. Also,
in the typical scenario when the matrix profile has already been computed and saved
in the MP table, MPPostgres would show even higher performance.

1 CREATE FUNCTION trackMachineStatus ( tsName TEXT , subseqLen INT , topK INT )
2 RETURNS r a t i o REAL [ 2 ] AS
3 DECLARE
4 s ta tus1 , s ta tus2 , tsLength , prevMotifIdx , i BIGINT ;
5 tsTabName , mpTabName TEXT ; motifRow RECORD ;
6 BEGIN
7 prevMotifIdx : = 0 ; i : = 0 ; s t a t u s 1 : = 0 ; s t a t u s 2 : = 0 ;
8 tsTabName := ’ t s _ ’ ‖ tsName ; mpTabName:= ’mp_ ’ ‖ tsName ‖ ’ _ ’ ‖ subseqLen ;
9 FOR motifRow IN EXEC_QUERY

10 −− Discover top −K motifs , . . .
11 SELECT * FROM (
12 SELECT num FROM _matrixProfile ( tsName , subseqLen )
13 ORDER BY nnDist LIMIT topK )
14 ORDER BY num
15 −− . . . scan them and c a l c u l a t e t o t a l durat ion of each s t a t u s
16 i := i +1;
17 IF i %2=1 THEN
18 s t a t u s 1 := s t a t u s 1 +motifRow . idxLef t −prevMotifIdx ;
19 ELSE
20 s t a t u s 2 := s t a t u s 2 +motifRow . idxLef t −prevMotifIdx ;
21 prevMotifIdx := motifRow . i d x L e f t ;
22 −− C a l cu l a t e durat ion f o r the r e s t part of time s e r i e s and return the r e s u l t
23 EXEC_QUERY SELECT COUNT( * ) FROM tsTabName INTO tsLength ;
24 IF i %2=1 THEN
25 s t a t u s 1 := s t a t u s 1 +tsLength −prevMotifIdx ;
26 ELSE
27 s t a t u s 2 := s t a t u s 2 +tsLength −prevMotifIdx ;
28 r a t i o [ 1 ] : = s t a t u s 1 *100/ tsLength ; r a t i o [ 2 ] : = s t a t u s 2 *100/ tsLength ;
29 RETURN r a t i o ;
30 END;

Figure 19. Implementation of the machine operational status tracking case in MPPostgres.



Mathematics 2021, 9, 2146 16 of 19

Figure 20. Performance of different TSDBMSs in the machine operational status tracking case.

5. Conclusions

In this article, we addressed the problem of choosing an appropriate tool for managing
and mining big sensor data. Currently, such data arise in a wide spectrum of Industry 4.0
and Internet of Things applications, such as predictive maintenance, smart cities and
factories, digital twins, and others. Such sensors have high frequency and produce time
series containing up to tens of millions of elements in a relatively short time interval.
The data collected from the sensors are subject to mining in order to make strategic decisions.
To efficiently do this, we need specific Time Series DBMSs (TSDBMSs), which differ from
relational DBMSs (RDBMSs) and NoSQL systems.

We suggest distinguishing native and add-on TSDBMSs. A native TSDBMS is a stand-
alone development with an original query language, a database engine, and a data storage
system. An add-on TSDBMS is implemented on top of a third-party system that provides
the TSDBMS with a database engine and a data storage system. We briefly described
the most popular representatives of the above-mentioned categories: InfluxDB (native
TSDBMS), OpenTSDB (add-on over a NoSQL system), and TimescaleDB (add-on over
a relational DBMS). Our overview showed that the above-mentioned systems provide
an application programmer with a modest built-in toolset to mine time series data. This
leads to unwanted overhead costs since we should use third-party mining systems that
need to connect to a sensor database server first, then export the data outside the TSDBMS,
convert them to an appropriate format before mining, and finally, import the results back
into the TSDBMS.

We presented an approach to managing and mining sensor data inside RDBMS based
on the Matrix Profile concept [16]. The Matrix Profile annotates a time series through
the index of and the distance to the nearest neighbor of each subsequence of the time
series. The Matrix Profile serves as a basis to discover motifs and discords in time series.
Sensor data are stored as a set of univariate and multivariate time series tables, and their
metadata are provided by the Time Series Directory table. Moreover, the sensor database
contains tables to store the Matrix Profile data and the Matrix Profile Directory table to
store metadata. We implemented this approach as a PostgreSQL extension which provides
an application programmer with a set of user-defined functions (UDFs) to compute a matrix
profile and time series data mining primitives and represent them as relational tables.

To evaluate the suggested approach, we performed an experimental study of three
cases of real Industry 4.0 applications related to mining big sensor data, namely electricity
meter-swapping detection, determining of active electricity consumption in buildings, and
tracking operational status of machines. We assessed the performance of our approach
against solutions based on InfluxDB and OpenTSDB. Our approach surpassed these out-of-



Mathematics 2021, 9, 2146 17 of 19

TSDBMS competitors since it assumes that sensor data are mined inside a TSDBMS at no
significant overhead costs due to data export and conversion, etc.

In further studies, we plan to enhance our TSDBMS extension of PostgreSQL with
other sophisticated time series primitives, such as semantic segments, evolving and typical
patterns, and others.

Author Contributions: Conceptualization, M.Z.; Data curation, E.I.; Methodology, M.Z.; Software,
E.I.; Visualization, E.I.; Writing—original draft, M.Z.; Writing—review& editing, M.Z. and E.I. All
authors contributed equally to the main text. Both authors have read and agreed to the published
version of the manuscript.

Funding: This work was financially supported by the Russian Foundation for Basic Research
(Grant No. 20-07-00140) and by the Ministry of Science and Higher Education of the Russian
Federation (Government Order FENU-2020-0022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, L.D.; Duan, L. Big Data for cyber physical systems in Industry 4.0: A survey. Enterp. Inf. Syst. 2019, 13, 148–169. [CrossRef]
2. Kumar, S.; Tiwari, P.; Zymbler, M.L. Internet of Things is a revolutionary approach for future technology enhancement: A review.

J. Big Data 2019, 6, 111. [CrossRef]
3. Ivanov, S.; Nikolskaya, K.; Radchenko, G.; Sokolinsky, L.; Zymbler, M. Digital twin of city: Concept overview. In Proceedings

of the 2020 Global Smart Industry Conference, GloSIC 2020, Chelyabinsk, Russia, 17–19 November 2020; pp. 178–186. [CrossRef]
4. Zymbler, M.; Kraeva, Y.; Latypova, E.; Kumar, S.; Shnayder, D.; Basalaev, A. Cleaning sensor data in smart heating control

system. In Proceedings of the 2020 Global Smart Industry Conference, GloSIC 2020, Chelyabinsk, Russia, 17–19 November 2020;
pp. 375–381. [CrossRef]

5. Ordonez, C. Can we analyze big data inside a DBMS? In Proceedings of the 16th International Workshop on Data Warehousing
and OLAP, DOLAP 2013, San Francisco, CA, USA, 28 October 2013; Song, I., Bellatreche, L., Cuzzocrea, A., Eds.; 2013; pp. 85–92.
[CrossRef]

6. Baralis, E.; Cerquitelli, T.; Chiusano, S. Index Support for Frequent Itemset Mining in a Relational DBMS. In Proceedings
of the 21st International Conference on Data Engineering, ICDE 2005, Tokyo, Japan, 5–8 April 2005; Aberer, K., Franklin, M.J.,
Nishio, S., Eds.; 2005; pp. 754–765. [CrossRef]

7. Sidló, C.I.; Lukács, A. Shaping SQL-Based Frequent Pattern Mining Algorithms. In Proceedings of the Knowledge Discovery
in Inductive Databases, 4th International Workshop, (KDID 2005), Porto, Portugal, 3 October 2005; Revised Selected and Invited
Papers; Lecture Notes in Computer Science; Bonchi, F., Boulicaut, J., Eds.; Springer: Berlin, Germany, 2005; Volume 3933,
pp. 188–201. [CrossRef]

8. Pelekis, N.; Tampakis, P.; Vodas, M.; Panagiotakis, C.; Theodoridis, Y. In-DBMS Sampling-based Sub-trajectory Clustering. In
Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, 21–24 March 2017;
Markl, V., Orlando, S., Mitschang, B., Andritsos, P., Sattler, K., Breß, S., Eds.; 2017; pp. 632–643. [CrossRef]

9. Zymbler, M.L.; Kraeva, Y.; Grents, A.; Perkova, A.; Kumar, S. An Approach to Fuzzy Clustering of Big Data Inside a Parallel
Relational DBMS. In Proceedings of the Data Analytics and Management in Data Intensive Domains—21st International
Conference, DAMDID/RCDL 2019, Kazan, Russia, 15–18 October 2019; Revised Selected Papers; Communications in Computer
and Information Science; Elizarov, A.M., Novikov, B., Stupnikov, S.A., Eds.; Springer: Berlin, Germany, 2019; Volume 1223,
pp. 211–223. [CrossRef]

10. Pan, C.S.; Zymbler, M.L. Very Large Graph Partitioning by Means of Parallel DBMS. In Proceedings of the Advances
in Databases and Information Systems—17th East European Conference, ADBIS 2013, Genoa, Italy, 1–4 September 2013;
Catania, B., Guerrini, G., Pokorný, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2013; Volume 8133,
pp. 388–399. [CrossRef]

11. McCaffrey, J.D. A Hybrid System for Analyzing Very Large Graphs. In Proceedings of the 9th International Conference
on Information Technology: New Generations (ITNG 2012), Las Vegas, NV, USA, 16–18 April 2012; Latifi, S., Ed.; pp. 253–257.
[CrossRef]

12. Hellerstein, J.M.; Ré, C.; Schoppmann, F.; Wang, D.Z.; Fratkin, E.; Gorajek, A.; Ng, K.S.; Welton, C.; Feng, X.; Li, K.; et al. The
MADlib Analytics Library or MAD Skills, the SQL. Proc. VLDB Endow. 2012, 5, 1700–1711. [CrossRef]

http://doi.org/10.1080/17517575.2018.1442934
http://dx.doi.org/10.1186/s40537-019-0268-2
http://dx.doi.org/10.1109/GloSIC50886.2020.9267879
http://dx.doi.org/10.1109/GloSIC50886.2020.9267813
http://dx.doi.org/10.1145/2513190.2513198
http://dx.doi.org/10.1109/ICDE.2005.80
http://dx.doi.org/10.1007/11733492_11
http://dx.doi.org/10.5441/002/edbt.2017.84
http://dx.doi.org/10.1007/978-3-030-51913-1_14
http://dx.doi.org/10.1007/978-3-642-40683-6_29
http://dx.doi.org/10.1109/ITNG.2012.43
http://dx.doi.org/10.14778/2367502.2367510


Mathematics 2021, 9, 2146 18 of 19

13. Feng, X.; Kumar, A.; Recht, B.; Ré, C. Towards a unified architecture for in-RDBMS analytics. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, 20–24 May 2012; pp. 325–336.
[CrossRef]

14. Mahajan, D.; Kim, J.K.; Sacks, J.; Ardalan, A.; Kumar, A.; Esmaeilzadeh, H. In-RDBMS Hardware Acceleration of Advanced
Analytics. Proc. VLDB Endow. 2018, 11, 1317–1331. [CrossRef]

15. Rechkalov, T.; Zymbler, M.L. Integrating DBMS and Parallel Data Mining Algorithms for Modern Many-Core Processors. In
Proceedings of the Data Analytics and Management in Data Intensive Domains—XIX International Conference (DAMDID/RCDL
2017), Moscow, Russia, 10–13 October 2017; Revised Selected Papers; Communications in Computer and Information Science;
Kalinichenko, L.A., Manolopoulos, Y., Malkov, O., Skvortsov, N.A., Stupnikov, S.A., Sukhomlin, V., Eds.; Springer: Berlin,
Germany, 2017; Volume 822, pp. 230–245. [CrossRef]

16. Yeh, C.M.; Zhu, Y.; Ulanova, L.; Begum, N.; Ding, Y.; Dau, H.A.; Zimmerman, Z.; Silva, D.F.; Mueen, A.; Keogh, E.J. Time series
joins, motifs, discords and shapelets: A unifying view that exploits the matrix profile. Data Min. Knowl. Discov. 2018, 32, 83–123.
[CrossRef]

17. Bader, A.; Kopp, O.; Falkenthal, M. Survey and Comparison of Open Source Time Series Databases; Datenbanksysteme fur Business,
Technologie und Web (BTW 2017), 17. Fachtagung des GI-Fachbereichs “Datenbanken und Informationssysteme” (DBIS),
6.–10. Marz 2017, Stuttgart, Germany, Workshopband; Mitschang, B., Ritter, N., Schwarz, H., Klettke, M., Thor, A., Kopp, O.,
Wieland, M., Eds.; Gesellschaft für Informatik e.V.: Bonn, Germany, 2017; pp. 249–268.

18. Grzesik, P.; Mrozek, D. Comparative analysis of time series databases in the context of Edge computing for low power
sensor networks. In Proceedings of the 20th International Conference on Computational Science (ICCS 2020), Amsterdam,
The Netherlands, 3–5 June 2020; pp. 371–383. [CrossRef]

19. Yang, F.; Tschetter, E.; Léauté, X.; Ray, N.; Merlino, G.; Ganguli, D. Druid: A real-time analytical data store. In Proceedings of the
International Conference on Management of Data (SIGMOD 2014), Snowbird, UT, USA, 22–27 June 2014; Dyreson, C.E., Li, F.,
Ozsu, M.T., Eds.; ACM: New York, NY, USA, 2014; pp. 157–168. [CrossRef]

20. Rhea, S.; Wang, E.; Wong, E.; Atkins, E.; Storer, N. LittleTable: A Time-Series Database and Its Uses. In Proceedings of the 2017
ACM International Conference on Management of Data (SIGMOD Conference 2017), Chicago, IL, USA, 14–19 May 2017;
Salihoglu, S., Zhou, W., Chirkova, R., Yang, J., Suciu, D., Eds.; 2017; pp. 125–138. [CrossRef]

21. Li, C.; Li, B.; Bhuiyan, M.Z.A.; Wang, L.; Si, J.; Wei, G.; Li, J. FluteDB: An efficient and scalable in-memory time series database
for sensor-cloud. J. Parallel Distributed Comput. 2018, 122, 95–108. [CrossRef]

22. MacDonald, A. PhilDB: The time series database with built-in change logging. PeerJ Comput. Sci. 2016, 2, e52. [CrossRef]
23. Yang, Y.; Cao, Q.; Jiang, H. EdgeDB: An Efficient Time-Series Database for Edge Computing. IEEE Access 2019, 7, 142295–142307.

[CrossRef]
24. Lan, L.; Shi, R.; Wang, B.; Zhang, L.; Shi, J. A Lightweight Time Series Main-Memory Database for IoT Real-Time Services. In

Proceedings of the Internet of Vehicles, Technologies and Services Toward Smart Cities—6th International Conference (IOV 2019),
Kaohsiung, Taiwan, 18–21 November 2019; Lecture Notes in Computer Science; Hsu, C., Khemiri-Kallel, S., Lan, K., Zheng, Z.,
Eds.; Springer: Berlin, Germany, 2019; Volume 11894, pp. 220–236. [CrossRef]

25. Pelkonen, T.; Franklin, S.; Cavallaro, P.; Huang, Q.; Meza, J.; Teller, J.; Veeraraghavan, K. Gorilla: A Fast, Scalable, In-Memory
Time Series Database. Proc. VLDB Endow. 2015, 8, 1816–1827. [CrossRef]

26. Matallah, H.; Belalem, G.; Bouamrane, K. Evaluation of NoSQL Databases: MongoDB, Cassandra, HBase, Redis, Couchbase,
OrientDB. Int. J. Softw. Sci. Comput. Intell. 2020, 12, 71–91. [CrossRef]

27. Andersen, M.P.; Culler, D.E. BTrDB: Optimizing Storage System Design for Timeseries Processing. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies (FAST 2016), Santa Clara, CA, USA, 22–25 February 2016; Brown, A.D.,
Popovici, F.I., Eds.; 2016; pp. 39–52.

28. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The Hadoop Distributed File System. In Proceedings of the IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST 2012), Lake Tahoe, NV, USA, 3–7 May 2010; Khatib, M.G., He, X., Factor, M.,
Eds.; 2010; pp. 1–10. [CrossRef]

29. Sim, H.; Khan, A.; Vazhkudai, S.S.; Lim, S.; Butt, A.R.; Kim, Y. An Integrated Indexing and Search Service for Distributed File
Systems. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 2375–2391. [CrossRef]

30. Idreos, S.; Groffen, F.; Nes, N.; Manegold, S.; Mullender, K.S.; Kersten, M.L. MonetDB: Two Decades of Research in Column-
oriented Database Architectures. IEEE Data Eng. Bull. 2012, 35, 40–45.

31. Deri, L.; Mainardi, S.; Fusco, F. tsdb: A Compressed Database for Time Series. In Proceedings of the Traffic Monitoring
and Analysis—4th International Workshop (TMA 2012), Vienna, Austria, 12 March 2012; Lecture Notes in Computer Science;
Pescapè, A., Salgarelli, L., Dimitropoulos, X.A., Eds.; Springer: Berlin, Germany, 2012; Volume 7189, pp. 143–156. [CrossRef]

32. Seltzer, M.I. Berkeley DB: A Retrospective. IEEE Data Eng. Bull. 2007, 30, 21–28.
33. Tsubouchi, Y.; Wakisaka, A.; Hamada, K.; Matsuki, M.; Abe, H.; Matsumoto, R. HeteroTSDB: An Extensible Time Series Database

for Automatically Tiering on Heterogeneous Key-Value Stores. In Proceedings of the 43rd IEEE Annual Computer Software and
Applications Conference (COMPSAC 2019), Milwaukee, WI, USA, 15–19 July 2019; Getov, V., Gaudiot, J., Yamai, N., Cimato, S.,
Chang, J.M., Teranishi, Y., Yang, J., Leong, H.V., Shahriar, H., Takemoto, M., et al., Eds.; 2019; Volume 1, pp. 264–269. [CrossRef]

http://dx.doi.org/10.1145/2213836.2213874
http://dx.doi.org/10.14778/3236187.3236188
http://dx.doi.org/10.1007/978-3-319-96553-6_17
http://dx.doi.org/10.1007/s10618-017-0519-9
http://dx.doi.org/10.1007/978-3-030-50426-7_28
http://dx.doi.org/10.1145/2588555.2595631
http://dx.doi.org/10.1145/3035918.3056102
http://dx.doi.org/10.1016/j.jpdc.2018.07.021
http://dx.doi.org/10.7717/peerj-cs.52
http://dx.doi.org/10.1109/ACCESS.2019.2943876
http://dx.doi.org/10.1007/978-3-030-38651-1_19
http://dx.doi.org/10.14778/2824032.2824078
http://dx.doi.org/10.4018/IJSSCI.2020100105
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/TPDS.2020.2990656
http://dx.doi.org/10.1007/978-3-642-28534-9_16
http://dx.doi.org/10.1109/COMPSAC.2019.00046


Mathematics 2021, 9, 2146 19 of 19

34. Sivasubramanian, S. Amazon dynamoDB: A seamlessly scalable non-relational database service. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD 2012), Scottsdale, AZ, USA, 20–24 May 2012; pp. 729–730.
[CrossRef]

35. Stonebraker, M.; Rowe, L.A.; Hirohama, M. The implementation of POSTGRES. In Making Databases Work: The Pragmatic Wisdom
of Michael Stonebraker; Brodie, M.L., Ed.; ACM/Morgan & Claypool: San Rafael, CA, USA, 2019; pp. 519–559. [CrossRef]

36. Arous, I.; Khayati, M.; Cudré-Mauroux, P.; Zhang, Y.; Kersten, M.L.; Stalinlov, S. RecovDB: Accurate and Efficient Missing Blocks
Recovery for Large Time Series. In Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE 2019),
Macao, China, 8–11 April 2019; pp. 1976–1979. [CrossRef]

37. Petre, I.; Boncea, R.; Radulescu, C. A time-series database analysis based on a multi-attribute maturity model. Stud. Inf. Control
2019, 2, 177–188. [CrossRef]

38. O’Neil, P.E.; Cheng, E.; Gawlick, D.; O’Neil, E.J. The Log-Structured Merge-Tree (LSM-Tree). Acta Inf. 1996, 33, 351–385.
[CrossRef]

39. Holt, C. Forecasting seasonals and trends by exponentially weighted averages. Int. J. Forecast. 2004, 20, 5–10. [CrossRef]
40. Petersen, D.P.; Middleton, D. Linear interpolation, extrapolation, and prediction of random space-time fields with a limited

domain of measurement. IEEE Trans. Inf. Theory 1965, 11, 18–30. [CrossRef]
41. Agrawal, B.; Chakravorty, A.; Rong, C.; Wlodarczyk, T.W. R2Time: A Framework to Analyse Open TSDB Time-Series Data in

HBase. In Proceedings of the IEEE 6th International Conference on Cloud Computing Technology and Science (CloudCom 2014),
Singapore, 15–18 December 2014; pp. 970–975. [CrossRef]

42. Gharghabi, S.; Ding, Y.; Yeh, C.M.; Kamgar, K.; Ulanova, L.; Keogh, E.J. Matrix Profile VIII: Domain Agnostic Online Semantic
Segmentation at Superhuman Performance Levels. In Proceedings of the 2017 IEEE International Conference on Data Mining
(ICDM 2017), New Orleans, LA, USA, 18–21 November 2017; pp. 117–126. [CrossRef]

43. Zhu, Y.; Imamura, M.; Nikovski, D.; Keogh, E.J. Matrix Profile VII: Time Series Chains: A New Primitive for Time Series
Data Mining. In Proceedings of the 2017 IEEE International Conference on Data Mining, ICDM 2017, New Orleans, LA, USA,
18–21 November 2017; pp. 695–704. [CrossRef]

44. Imani, S.; Madrid, F.; Ding, W.; Crouter, S.E.; Keogh, E.J. Matrix Profile XIII: Time Series Snippets: A New Primitive for Time
Series Data Mining. In Proceedings of the 2018 IEEE International Conference on Big Knowledge, ICBK 2018, Singapore,
17–18 November 2018; Wu, X., Ong, Y., Aggarwal, C.C., Chen, H., Eds.; 2018; pp. 382–389. [CrossRef]

45. Zhu, Y.; Gharghabi, S.; Silva, D.F.; Dau, H.A.; Yeh, C.M.; Senobari, N.S.; Almaslukh, A.; Kamgar, K.; Zimmerman, Z.;
Funning, G.J.; et al. The Swiss army knife of time series data mining: Ten useful things you can do with the matrix profile and
ten lines of code. Data Min. Knowl. Discov. 2020, 34, 949–979. [CrossRef]

46. Shi, J.; Yu, N.; Keogh, E.; Chen, H.; Yamashita, K. Discovering and Labeling Power System Events in Synchrophasor Data
with Matrix Profile. In Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China,
21–23 November 2019; p. 19303617. [CrossRef]

47. Nichiforov, C.; Stancu, I.; Stamatescu, I.; Stamatescu, G. Information Extraction Approach for Energy Time Series Modelling.
In Proceedings of the 24th International Conference on System Theory, Control and Computing (ICSTCC 2020), Sinaia, Romania,
8–10 October 2020; Barbulescu, L., Ed.; 2020; pp. 886–891. [CrossRef]

48. Lee, Y.Q.; Beh, W.L.; Ooi, B.Y. Tracking Operation Status of Machines through Vibration Analysis using Motif Discovery. J. Phys.
Conf. Ser. 2020, 1529, 052005. [CrossRef]

49. Pizoń, J.; Kulisz, M.; Lipski, J. Matrix profile implementation perspective in Industrial Internet of Things production maintenance
application. J. Phys. Conf. Ser. 2021, 1736, 012036. [CrossRef]

50. Yankov, D.; Keogh, E.J.; Rebbapragada, U. Disk aware discord discovery: Finding unusual time series in terabyte sized datasets.
Knowl. Inf. Syst. 2008, 17, 241–262. [CrossRef]

51. Zhu, Y.; Zimmerman, Z.; Senobari, N.S.; Yeh, C.M.; Funning, G.J.; Mueen, A.; Brisk, P.; Keogh, E.J. Matrix Profile II: Exploiting
a Novel Algorithm and GPUs to Break the One Hundred Million Barrier for Time Series Motifs and Joins. In Proceedings
of the IEEE 16th International Conference on Data Mining (ICDM 2016), Barcelona, Spain, 12–15 December 2016; Bonchi, F.,
Domingo-Ferrer, J., Baeza-Yates, R., Zhou, Z., Wu, X., Eds.; 2016; pp. 739–748. [CrossRef]

52. Benschoten, A.V.; Ouyang, A.; Bischoff, F.; Marrs, T. MPA: A novel cross-language API for time series analysis. J. Open Source
Softw. 2020, 5, 2179. [CrossRef]

53. Murray, D.; Liao, J.; Stankovic, L.; Stankovic, V.; Hauxwell-Baldwin, R.; Wilson, C.; Coleman, M.; Kane, T.; Firth, S. A data
management platform for personalised real-time energy feedback. In Proceedings of the 8th International Conference on Energy
Efficiency in Domestic Appliances and Lighting (EEDAL 2015), Lucerne, Switzerland, 26–28 August 2015; pp. 1–15. [CrossRef]

54. Miller, C.; Meggers, F. The Building Data Genome Project: An open, public data set from non-residential building electrical
meters. Energy Procedia 2017, 122, 439–444. [CrossRef]

http://dx.doi.org/10.1145/2213836.2213945
http://dx.doi.org/10.1145/3226595.3226639
http://dx.doi.org/10.1109/ICDE.2019.00218
http://dx.doi.org/10.24846/v28i2y201906
http://dx.doi.org/10.1007/s002360050048
http://dx.doi.org/10.1016/j.ijforecast.2003.09.015
http://dx.doi.org/10.1109/TIT.1965.1053734
http://dx.doi.org/10.1109/CloudCom.2014.84
http://dx.doi.org/10.1109/ICDM.2017.21
http://dx.doi.org/10.1109/ICDM.2017.79
http://dx.doi.org/10.1109/ICBK.2018.00058
http://dx.doi.org/10.1007/s10618-019-00668-6
http://dx.doi.org/10.1109/iSPEC48194.2019.8975286
http://dx.doi.org/10.1109/ICSTCC50638.2020.9259635
http://dx.doi.org/10.1088/1742-6596/1529/5/052005
http://dx.doi.org/10.1088/1742-6596/1736/1/012036
http://dx.doi.org/10.1007/s10115-008-0131-9
http://dx.doi.org/10.1109/ICDM.2016.0085
http://dx.doi.org/10.21105/joss.02179
http://dx.doi.org/10.2790/105448
http://dx.doi.org/10.1016/j.egypro.2017.07.400

	Introduction
	Overview of Modern Time Series DBMSs
	Classification of Time Series DBMSs
	InfluxDB, Native Time Series DBMS
	Organization of Data Storage
	Query Language

	OpenTSDB, NoSQL-Based Time Series DBMS
	Organization of Data Storage
	Query Language

	TimescaleDB, Relational-Based Time Series DBMS
	Organization of Data Storage
	Query Language


	Mining Sensor Data Inside RDBMS
	Matrix Profile Concept
	Embedding Matrix Profile Management into RDBMS

	Experimental Case Studies
	Electricity Theft Detection
	Detection of Active Electricity Consumption
	Tracking the Operational Status of an Industrial Machine

	Conclusions
	References

