Параллельные вычислительные технологии (ПаВТ'2023) Санкт-Петербург, 28–30 марта 2023 г.

Восстановление пропущенных значений в потоковом временном ряде с применением центрального и графического процессоров

М.Л. Цымблер¹, <u>А.Н. Полуянов</u>²,

¹Южно-Уральский государственный университет (Челябинск), ²Институт математики им. С.Л. Соболева СО РАН (Омск)

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 23-21-00465)

Восстановление по опорным рядам

Эвристика

похожие промежутки в исходном ряде возникают в тех же интервалах времени, что и в опорных рядах

Поиск k ближайших соседей

Применение CPU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023

3/34

Реконструкция пропущенного значения

Применение CPU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023

4/34

ParaDI: Parallel DTW-based Imputation*

ПаВТ'2022 ПаВТ'2023

- Версия алгоритма CPU+GPU
 - Вычисление нижних границ на графическом процессоре с применением CUDA
- Инициализация *bsf*
 - Улучшен выбор начального приближения DTW
- Эксперименты
 - Расширен перечень наборов данных и алгоритмовконкурентов

^{*} Цымблер М.Л., Полуянов А.Н., Краева Я.А. Параллельный алгоритм восстановления сенсорных данных в режиме реального времени для многоядерного процессора // Вестник ЮУрГУ. Серия: Вычислительная математика и информатика. 2022. Т. 11, № 3. С. 68–89. DOI: <u>10.14529/cmse220305</u>.

DTW (Dynamic Time Warping) мера расстояния*

* Berndt D.J., Clifford J. Using Dynamic Time Warping to Find Patterns in Time Series. KDD & AAAI Workshop 1994. TR-WS-94-03. P. 359-370.

Применение CPU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 6/34

DTW: точность *VS.* сложность

Ускорение подсчета DTW: полоса Сако-Чиба*

* Sakoe H., Chiba S. Dynamic Programming Algorithm Optimization for Spoken Word Recognition. IEEE Trans. on Acoustics, Speech, and Signal Processing. 1978. Vol. 26. P. 43-49.

Применение СРU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 8/34

Ускорение подсчета DTW: отбрасывание*

- Нижняя граница
 - функция LB: $\mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}_+$ с вычислительной сложностью менее $O(m^2)$
- Текущий минимум DTW
 bsf (best-so-far)
- Отбрасывание соседей, далеких от образца, без вычисления DTW

-если LB(R[i:m], Q) > bsf, то DTW(R[i:m], Q) > bsf

• Нормализация

– Соседей и образец нужно нормализовать

* Rakthanmanon T., *et al.* Addressing Big Data Time Series: Mining Trillions of Time Series Subsequences Under Dynamic Time Warping. ACM Trans. Knowl. Discov. Data. 2013. Vol. 7, no. 3. 10:1–10:31.

Применение СРU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 9/34

Отбрасывание: нижние границы

Применение СРU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 10/34

Параллелизм fork-join

Применение CPU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 11/34

ParaDI: Опорные ряды

ParaDI: поиск соседей по образцу

ParaDI: скоринг интервалов

ParaDI: Реконструкция

Применение CPU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта

Параллельный поиск соседей по образцу

ParaDI: Нормализация

Применение СРU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 17/34

ParaDI: Нижние границы

Применение CPU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 18/34

ParaDI: Вычисление нижних границ на GPU

Применение СРU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 19/34

ParaDI: Инициализация bsf

Применение СРU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 20/34

ParaDI: Битовая карта

Применение СРU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 21/34

ParaDI: Матрица кандидатов

Применение СРU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 22/34

ParaDI: Вычисление DTW

Применение СРU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 23/34

ParaDI: Улучшение порога bsf

Применение CPU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 24/34

ParaDI: Скоринг

Применение СРU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 25/34

Эксперименты: платформа и данные

- **CPU:** Intel Xeon E5-2687W v2 (8 ядер @3.40 GHz)
- GPU: NVIDIA Ampere A100 PCIe (6912 ядер CUDA, 80 GB)

• Данные

Набор	# рядов, <i>d</i> + 1	Длина, $n\cdot 10^3$	Предметная область	
BAFU	10	50	Сброс воды в реках Швейцарии	
Chlorine	50	1	Моделирование концентрации хлора в питьевой воде	
Climate	10	5	Погода в различных локациях Северной Америки	
MADRID	10	25	Трафик автодорог Мадрида	
MAREL	10	50	Характеристики морской воды в проливе Ла-Манш	

• Конкуренты: ORBITS¹, OGD-Impute², SPIRIT³, SAGE⁴, TKCM⁵

- Параметры (фреймворк ORBITS¹):
 - Сценарий: пропуски в 10% последних точек
 - Конкуренты: лучшие параметры, рекомендованные их авторами
 - ParaDI: m = 50, k = 3, r = 0.25m

¹ Khayati M., et al. ORBITS: Online Recovery of Missing Values in Multiple Time Series Streams. Proc. VLDB Endow. 2020. Vol. 14, no. 3. P. 294-306.

- ² Anava O., *et al.* Online Time Series Prediction with Missing Data. Proc. ICML 2015. P. 2191-2199.
- ³ Papadimitriou S., *et al.* Streaming Pattern Discovery in Multiple Time-Series. VLDB 2005. P. 697-708.
- ⁴ Balzano L., et al. Streaming PCA and Subspace Tracking: The Missing Data Case. Proc. of IEEE. 2018. Vol. 106, no. 8. P. 1293-1310.
- ⁵ Wellenzohn K., et al. Continuous Imputation of Missing Values in Streams of Pattern-Determining Time Series. EDBT 2017. P. 330-341.

Эксперименты: точность

Применение СРU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 27/34

Эксперименты: восстановление 100 точек*

Применение CPU и GPU для восстановления пропущенных значений потокового временного ряда 30

30 марта 2023 28/34

Эксперименты: производительность

• ORBITS (k=2) • ORBITS (k=3)

ParaDI CPU ParaDI CPU+GPU

Применение CPU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 29/34

OGD-Impute

TKCM

Эксперименты: разбивка по фазам

Применение CPU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 30/34

Эксперименты: время вычисления LB

MAREL

BAFU

GPU ускоряет вычисление нижних границ (самую трудоемкую часть алгоритма) до 2 раз

- Intel Xeon E5-2687W v2 (8 ядер @3.40 GHz)

Применение CPU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта

Эффективность применения нижних границ

ParaDI: режим реального времени

Wir	Время ParaDI, <mark>мсек</mark>			
# сенсоров	min время обновления, сек	худшее	лучшее	ParaDI подходит
100	8			для режима
50	4	60.9	0.8	реального времени
12	1			

* Emerson temperature sensors catalogue 2021. URL: <u>https://www.c-o-k.ru/library/catalogs/emerson/110477.pdf</u>

Применение СРU и GPU для восстановления пропущенных значений потокового временного ряда 30 марта 2023 33/34

Заключение

- ParaDI: параллельный CPU+GPU алгоритм восстановления пропусков во временных рядах
 - Точность: лучше многих, но не всех конкурентов
 - Скорость: ниже конкурентов, но приемлемо для режима реального времени
 - Применение: цикличные, сезонные временные ряды
- Будущие исследования:
 - Калибровка алгоритма для автоматического подбора параметров *n*, *m*, *r*, *k*

Спасибо за внимание! Вопросы? Михаил Цымблер, Андрей Полуянов