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Failures and outages Iin data centers is a serious problem )

Most organizations experienced Costs of failure/outage growth
failure/outage in recent years (proportion of over $100K loss cases increases)
------- Severe “ Under $100,000 Il $100,000 - $1 million Il Over $1 million
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1) Annual outages analysis 2023: The causes and impacts of IT and data center outages in USA. Uptime Institute. URL
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Tackle the problem: online prediction of anomaly/workload

Collect time series Build and learn Apply the model
on workload the model(s) and treat findings
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Unsupervised parallel algorithms & Deep learning models

Anomaly detection model:
DiSSiD®
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Anomaly discovery algorithms: | Pattern discovery algorithms:
PALMADY PADDi? | PaSTilLa%
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D Zymbler M., Kraeva Y. High-performance time series anomaly discovery on graphics processors. Mathematics. 2023. 11(14), 3193. DOI: 10.3390/math11143193.

2 Kraeva Y., Zymbler M. Anomaly detection in long time series on high-performance cluster with GPUs. Num. Meth. & Progr. 2023. 24(3), 291-304. DOI: 10.26089/NumMet.v24r320.

%) Zymbler M., Goglachev A. Fast summarization of long time series with graphics processor. Mathematics. 2022. 10(10). 1781. DOI: 10.3390/math10101781.

4 Zymbler M., Goglachev A. PaSTilLa: Scalable parallel algorithm for unsupervised labeling of long time series. LIM. 2024. 45(3), 1333-1347. DOI: 10.1134/S1995080224600766.

% Kraeva Ya. Detection of time series anomalies based on data mining and neural network technologies. Bulletin of SUSU, CMSE. 2023. 12(3). 50-71. DOI: 10.14529/cmse230304.

6 Zymbler M., Yurtin A. Imputation of missing values of a time series based on joint application of analytical algorithms and neural networks. Num. Meth. & Progr. 2023. 24 (3), 243-259. DOI: 10.26089/NumMet.v24r318.
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Unsupervised parallel algorithms for anomaly discovery

B [ Anomaly detéction‘model: ) - 2& Prediction model:
. "DISSIDY) ) T A S A NN
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l Anomaly discoery algorithms: \ 8- aloorithms:
\ PALMADY PADDi? J 3 B pasTiLa)

We formalize a time series anomaly as a discord and discover discords in parallel:

« PALMAD?Y discovers discords on a GPU
« PADDI? discovers discords on a multi-GPU cluster

D Zymbler M., Kraeva Y. High-performance time series anomaly discovery on graphics processors. Mathematics. 2023. 11(14), 3193. DOI: 10.3390/math11143193.
2 Kraeva Y., Zymbler M. Anomaly detection in long time series on high-performance cluster with GPUs. Num. Meth. & Progr. 2023. 24(3), 291-304. DOI: 10.26089/NumMet.v24r320.
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Discord formalizes anomaly of any domain

* DiscordV is the given-length subsequence whose distance
to 1ts nearest neighbor 1s greatest

* Nearest neighbor Is the same-length subsequence whose distance
to the given subsequence Is smallest

D Keogh E. ef al. HOT SAX: Efficiently finding the most unusual time series subsequence. ICDM 2005. pp. 226-233. DOIL: 10.1109/ICDM.2005.79
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Selma Patty Barney Quasimodo

Discord concept

Distance matrix:
the close neighbors,
the similar they are
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Patty Barney Quasimodo

Discord concept

4 6 8
3 6 10
4 6 9
Distance matrix 0.5 5 g
with calculated distances
to neighbors . : 8
5 0 7
8 7 0
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Patty Barney Quasimodo

Discord concept

4 6 8

3 6 10

Distance matrix 4 p g

with

distances to their 0.5 5 8

nearest neighbors 0 g o
(i.e. column-wise minima)

| 5 0 7

8 7 0
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ﬁ Marge Bart Selma Patty Barney Quasimodo

Discord concept

2 4 4 6 8
D!stance matrix ) 3 3 6 10
with the 1 .
farthest distance 2.5 0 4 4 6 2
t_o the ne_arest neighbor & . ) 05 . 8
(I.e. maximum
among 4 0.5 0 5 8
column-wise minima)
........ (LCTRECEN DERRORR < PRCTPRUE FUETRUEH ~ TEPRRPRE SRUTRRS -cLRSPUEN TPPORRY o PIPARIPRS. 7
10 9 8 8 7 0
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Marge Bart Selma Patty Barney Quasimodo

Discord concept

2 4 4 6 8
IS an object 2.5 3 3 6 10
with the : Q 2 2.5 0 4 4 6 9
farthest nearest neighbor £
(I1.e. argument 4 3 4 0 0.5 5 8
of the maximum
4 3 4 0.5 0 5 8
among
column-wise minima) 6 6 6 5 5 0 7
8 10 9 8 8 7 0

Parallel unsupervised algorithms and deep learning models for anomaly detection and load prediction in large computing systems ~ © 2024 M. Zymbler et al. June 7, 2024 11/33



PALMAD and PADDI grab anomalies in real time series

Average speed in Guangzhou, China®)
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u, China. 2018. DOI: 10.5281/zen0d0.1205229.

Day of Victory over Japan
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PALMAD and PADD:i outperform S.O.T.A. analogs

Average runtime per discord on a single GPU
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Time series length, x 104 shuttle demand

DThuy T.T.H. et al. A new discord definition and an efficient time series discord detection method using GPUs. ICSED 2021. pp. 63-70. DOI: 10.1145/3507473.3507483
2 Zhu B. et al. A GPU acceleration framework for motif and discord based pattern mining. IEEE TPDS. 2021. 32(8). 1987-2004. DOI: 10.1109/TPDS.2021.3055765
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PADDi is the only algorithm o [z2sr» e
for discord discovery |

on HPC clusters

with multi-GPU nodes N

# GPU
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Unsupervised parallel algorithms for pattern discovery

B [ Anomaly detéction‘model: ) - 2& Prediction model:
. 'DISSIDY) - ) T A A NN

lgorithms:
¥ PADDI?

We formalize a time series pattern as a snippet and discover snippets in parallel:
« PSF? discovers snippets on a GPU
« PaSTilLa? discovers snippets on a multi-GPU cluster

%) Zymbler M., Goglachev A. Fast summarization of long time series with graphics processor. Mathematics. 2022. 10(10). 1781. DOI: 10.3390/math10101781.
4) Zymbler M., Goglachev A. PaSTiLa: Scalable parallel algorithm for unsupervised labeling of long time series. LIJM. 2024. 45(3), 1333-1347. DOI: 10.1134/S1995080224600766.
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Similarity measure for time series
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Euclidean distance is for the structural similarity

Structural similarity
compares time series
point-by-point

Euclidean distance =~ 8

Complexity: 0(n)

ED(A,B) = \/Zn (al- - bi)z
i=1
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MPdist distance is for the behavioral similarity

Behavioral similarity
IS proportional
to the number
of subsequences
that are close
w.r.t. the Euclidean
distance (no matter
their locations)

MPdist? distance =~ 0

Complexity: 0(n?)

MPdist¥ (4, B) = AscSort(Pagga)(k),
Prgpa = Pap - Ppa,
Pag = {EDZorm(Ai 0, Bj o) Yioi ™,
Bjy=arg _min  EDform (4is Bge)
where 0 < k < n, kdefault = [Oln]

1 Gharghabi S. et al. An ultra-fast time series distance measure to allow data mining in more complex real-world deployments. DMKD. 2020. (34). pp. 1104-1135. DOI: 10.1007/s10618-020-00695-8
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Distance profile of the potential behavioral pattern

Distances to all the subsequences w.r.t. MPdist
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Distance profile of the potential behavioral pattern

Distances to all the subsequences w.r.t. MPdist

N
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Snippets formalize behavioral patterns of any domain

- -
ans®ly

Snippets are segments
for which the area
under the MPdist curve
IS minimal

Proportion of activities
w.r.t. snippets

6

4 60%

2 | .

) P N — %
Time series labeling w.r.t. snippets
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PSF and PaSTiLa grab behavioral patterns in real time series

Measurements of a wearable accelerometer during an athlete’s training |:> Snippets discovered
10 1
10 &
=
0 =)
x
—10 s |
31200 31800
—20 10
1 =4
=
0 9001 20002 33002 g
12600 13200
' Labeling of the training w.r.t. snippets 101
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o
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Training schedule (ground truth) =
« I - '
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PSF and PaSTiLa outperform S.O.T.A. analogs

Accuracy over pre-labeled data, Accuracy over unlabeled data,
Time Series Segmentation Benchmark? Solar Power time series®
1.0
T ——— Snippet 1: 0. _ﬂ_ / M o A y A ra
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[PaSTiLa)
)

ClaSP

).

3
FLUSS

BinSe | ClaSP | PSE PSE_ PaSTiLa
meee FLUSS (h=0.05n) (m=0.25n,)

Our approach is more accurate in determining the day-night cycles

D Ermshaus A. et al. ClaSP: Parameter-free time series segmentation. Data Min. Knowl. Discov. 37, 1262-1300 (2023). DOI: 10.1007/S10618-023-00923-X

2 Truong C. et al. Selective review of offline change point detection methods. Signal Process 167, 107299 (2020). DOI: 10.1016/J.SIGPR0.2019.107299

3) Gharghabi S. et al. Domain agnostic online semantic segmentation for multi-dimensional time series. Data Min. Knowl. Discov. 33, 96-130 (2019). DOI: 10.1007/S10618-018-0589-3
4) Rakshitha G. et al. Solar Power Dataset (4 Seconds Observations). DOI: 10.5281/zenodo.4656027.
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Behavioral patterns are the key to online processing

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
*
0

. Preprocessing

Take a representative fragment f;> Discover f;> Build a training set(s)
of time series to be processed behavioral patterns for deep learning model(s)

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

. Online processing

(- . . D :
Determine a behavioral pattern Deep learning model
to which the subsequence fl> for anomaly detection:
that (?ame fror_n a SEensar, How much does the subsequence
< IS most similar J differ from all the patterns?

.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Deep learning model
for load prediction:

According to all the patterns,
what should be the next subsequence?

Parallel unsupervised algorithms and deep learning models for anomaly detection and load prediction in large computing systems ~ © 2024 M. Zymbler et al. June 7, 2024 23/33



Deep learning model for online anomaly detection

“Prediction model:
~SANNI®

algorithms:- -
i SPasTiLa?)
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e

DiSSID learns to differ subsequences of typical behavior from abnormal ones:

* snippets represent typical behavior
discords represent abnormal behavior

5 Kraeva Ya. Detection of time series anomalies based on data mining and neural network technologies. Bulletin of SUSU, CMSE. 2023. 12(3). 50-71. DOI: 10.14529/cmse230304.
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DISSID differs normal data from the opposite ones

O O — typical activities (big-sized sets
‘%0 0 o #— . | |
o' © o O O/ o of snippets and their nearest neighbors)

O OOO A — rare activity (small-sized sets

_____ EID M of snippets and their nearest neighbors)

L ‘gD0_0O O O[O — noises within activities

AA/ a5 DM 2 abnormal activity (discords)

\ O < — iscords

¥ RN e ) g )

___________ , xl
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DISSID: Discord, Snippet, and Siamese Net-based Detector of anomalies

_____________________

Q: Does it look like he’s running?

Q: What’s he doing?
P Y
¢ : =

Athlete

Is falling )

Parallel unsupervised algorithms and deep learning models for anomaly detection and load prediction in large computing systems

Siamese

Sub-net 1

' sub-nets

A
-shared :

'Welghts !
-& blases'

Sub-net 2

_____________________

Embeddings

Siamese

' sub-nets
: Sub-net 1

7}
'shared :

.welghts '
'& blases.

e e i

\
s_)‘_______ - = = = ==

_________________________

No

________________________________
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_________________________

Differencing

A: Likely, No

MPdist(hy, h,) )

o
-

Modification of ResNet

esidual block 1 Residual block 2 Residual block 3 GlobalAverPool
X mx 128 mx 128 128 x 1
= (fn, = 128) = 1:

Uy = 128)

ConvlD

kemel: 1 x 1

feature map: [,

________________________________________________________________________
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Deep learning model for online prediction

.
5
-~

- o -

“Anomaly detéction‘model:/ ) - Prediction model:
'DiSSIDY. - g SANNI®

SANNI learns to predict future subsequences based on past ones,
classified by typical behavior using previously discovered snippets

D Zymbler M., Kraeva Y. High-performance time series anomaly discovery on graphics processors. Mathematics. 2023. 11(14), 3193.

2) Kraeva Y., Zymbler M. Anomaly detection in long time series on high-performance cluster with GPUs. Num. Meth. & Progr. 2023. 24(3), 291-304.

%) Zymbler M., Goglachev A. Fast summarization of long time series with graphics processor. Mathematics. 2022. 10(10). 1781. .

4) Zymbler M., Goglachev A. PaSTiLa: Scalable parallel algorithm for unsupervised labeling of long time series. LIM. 2024. 45(3), 1333-1347.

5 Kraeva Ya. Detection of time series anomalies based on data mining and neural network technologies. Bulletin of SUSU, CMSE. 2023. 12(3). 50-71.

6 Zymbler M., Yurtin A. Imputation of missing values of a time series based on joint application of analytical algorithms and neural networks. Num. Meth. & Progr. 2023. 24 (3), 243-259. DOI: 10.26089/NumMet.v24r318.
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SANNI: Snippet & ANN-based online prediction

Q: What will
he do next?

/T_> ”

A\ 4

A

\8

Athlete
IS running
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A\ 4

Q: If he’s running,
what will he do next?

Q: What s his act1v1ty now?

\ 4
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Sensor data

A: He’s running

Patterns
of running
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with predicted values
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Case study:

iINREL

MATIONAL RENEWABLE EMERGY LABDRATORY

Whole Building

S D D B
TH s———

T

% 7

Total Cooling (kW)

Total Heating (kW)

40 1 500 -
250 A
T T T 0 T T T T
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120 -
100 A
05-2011 082011 11-2011 052011 08-2011 112011
Total Building (kW) Building Net (kW)
500 4
04
250 ~ —500 A
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1 Sheppy M. et al. National Renewable Energy Laboratory (NREL) Research and Support Facility (RSF) Measured Data 2011. DOI: 10.25984/1845288
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:-iNREL case: Behavioral pattern discovery

MNATIOMAL RENEWABLE EMERGY LABDRATORY
GOLDEN, COLORADO, USA

. # heating F1-score (higher
Total Heating (kW) 1 non-heating 05 0.89 is better)
800 A '
e 0.85
600 - |
500 A |
0.8
400 - 0.78
300 ~
0.75
200 A
100 A 07
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- m PaSTiLam ClaSP = FLUSS
Ground truth =

. 4 I
vasiL our approach
eLuss | S S Detter detects

change points

ciese | . y
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:.iNIREL case: Anomaly detection

N#TII'."'NAL RENEWAEBLE EMERGY LABDRATORY

Total Heating (kW) VUS-PR

900 (higher is better)

800: 1

700 0.79

o0 0.8 0.68
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200 04
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| 5 Anomaly score 0
A nm H threshold r LSTM-AD
O-Z_M | E w MWM TANOGAN
09-2011 09-2011 :“re-‘zmg\ 1o 2011“"*-—~---_______\11-2611 11-2011 = DISSID
4 .. ﬂ- ) z o e Abnormal )
Transition o = consumotion

from cooling period | = - of the buFi)I din

to heating period | = 0 : : 9
N - In heating period )

09-2011 09-2011 09-2011 10-2011 10-2011 10-2011
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:-iNREL case: Load prediction

MNATIOMAL RENEWABLE EMERGY LABDRATORY
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We're ready to apply our ideas to your tasks if given a chance

Mikhail
Zymbler
Dr.Sci.
Assioc. Prof.

 Parallel unsupervised algorithms,
which outperform S.O.T.A. rivals

— Discord discovery: PALMAD, PADDI
(on GPU and multi-GPU clusters, respectively)

— Snippet discovery: PSF, PaSTilLa
(on GPU and multi-GPU clusters, respectively)

* Deep learning models,
which outperform S.O.T.A. rivals
— Anomaly detection: DISSID
— Prediction: SANNI
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