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Failures and outages in data centers is a serious problem
1)

1) Annual outages analysis 2023: The causes and impacts of IT and data center outages in USA. Uptime Institute. URL
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Most organizations experienced 

failure/outage in recent years

Costs of failure/outage growth

(proportion of over $100K loss cases increases)

https://uptimeinstitute.com/uptime_assets/6768eca6a75d792c8eeede827d76de0d0380dee6b5ced20fde45787dd3688bfe-2022-data-center-industry-survey-en.pdf
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Tackle the problem: online prediction of anomaly/workload  
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Unsupervised parallel algorithms & Deep learning models
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1) Zymbler M., Kraeva Y. High-performance time series anomaly discovery on graphics processors. Mathematics. 2023. 11(14), 3193. DOI: 10.3390/math11143193.
2) Kraeva Y., Zymbler M. Anomaly detection in long time series on high-performance cluster with GPUs. Num. Meth. & Progr. 2023. 24(3), 291-304. DOI: 10.26089/NumMet.v24r320.
3) Zymbler M., Goglachev A. Fast summarization of long time series with graphics processor. Mathematics. 2022. 10(10). 1781. DOI: 10.3390/math10101781.
4) Zymbler M., Goglachev A. PaSTiLa: Scalable parallel algorithm for unsupervised labeling of long time series. LJM. 2024. 45(3), 1333-1347. DOI: 10.1134/S1995080224600766.
5) Kraeva Ya. Detection of time series anomalies based on data mining and neural network technologies. Bulletin of SUSU, CMSE. 2023. 12(3). 50-71. DOI: 10.14529/cmse230304.
6) Zymbler M., Yurtin A. Imputation of missing values of a time series based on joint application of analytical algorithms and neural networks. Num. Meth. & Progr. 2023. 24 (3), 243-259. DOI: 10.26089/NumMet.v24r318.

Anomaly detection model:

DiSSiD5)

Prediction model: 

SANNI6)

Anomaly discovery algorithms:

PALMAD1)                         PADDi2)

Pattern discovery algorithms:

PSF3)                         PaSTiLa4)

https://doi.org/10.3390/math11143193
https://doi.org/10.26089/NumMet.v24r320
https://doi.org/10.3390/math10101781
https://doi.org/10.1134/S1995080224600766
htps://doi.org/10.14529/cmse230304
htps://doi.org/10.26089/NumMet.v24r318
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Unsupervised parallel algorithms for anomaly discovery
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1) Zymbler M., Kraeva Y. High-performance time series anomaly discovery on graphics processors. Mathematics. 2023. 11(14), 3193. DOI: 10.3390/math11143193.
2) Kraeva Y., Zymbler M. Anomaly detection in long time series on high-performance cluster with GPUs. Num. Meth. & Progr. 2023. 24(3), 291-304. DOI: 10.26089/NumMet.v24r320.
3) Zymbler M., Goglachev A. Fast summarization of long time series with graphics processor. Mathematics. 2022. 10(10). 1781. .

4) Zymbler M., Goglachev A. PaSTiLa: Scalable parallel algorithm for unsupervised labeling of long time series. LJM. 2024. 45(3), 1333-1347. .

5) Kraeva Ya. Detection of time series anomalies based on data mining and neural network technologies. Bulletin of SUSU, CMSE. 2023. 12(3). 50-71.

6) Zymbler M., Yurtin A. Imputation of missing values of a time series based on joint application of analytical algorithms and neural networks. Num. Meth. & Progr. 2023. 24 (3), 243-259.

Anomaly detection model:

DiSSiD5)

Prediction model: 

SANNI6)

Anomaly discovery algorithms:

PALMAD1)                         PADDi2)

Pattern discovery algorithms:

PSF3)                         PaSTiLa4)

We formalize a time series anomaly as a discord and discover discords in parallel:

• PALMAD1) discovers discords on a GPU

• PADDi2) discovers discords on a multi-GPU cluster

https://doi.org/10.3390/math11143193
https://doi.org/10.26089/NumMet.v24r320
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Discord formalizes anomaly of any domain

• Nearest neighbor is the same-length subsequence 
the given subsequence is smallest

June 7, 2024Parallel unsupervised algorithms and deep learning models for anomaly detection and load prediction in large computing systems 6

10.1109/ICDM.2005.79

5 2.5
2

0.5 5
8

4
7

https://doi.org/10.1109/ICDM.2005.79


/33© 2024 M. Zymbler et al.

Discord concept
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Discord concept
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Discord concept
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Discord concept
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Discord concept
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PALMAD and PADDi grab anomalies in real time series
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1)  Chen X, Chen Y, He Z. Urban traffic speed dataset of Guangzhou, China. 2018. DOI: 10.5281/zenodo.1205229.

Top-1 discordTop-2 discord Top-3 discord

Typhoon Nida Mid-Autumn FestivalDay of Victory over Japan
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https://doi.org/10.5281/zenodo.1205229
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PALMAD and PADDi outperform S.O.T.A. analogs
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1) Thuy T.T.H. et al. A new discord definition and an efficient time series discord detection method using GPUs. ICSED 2021. pp. 63-70. DOI: 10.1145/3507473.3507483
2) Zhu B. et al. A GPU acceleration framework for motif and discord based pattern mining. IEEE TPDS. 2021. 32(8). 1987-2004. DOI: 10.1109/TPDS.2021.3055765

Time series length, × 104

1) Zhu B. et al. of2) 

PADDi is the only algorithm 

for discord discovery 

on HPC clusters 

with multi-GPU nodes

Average runtime per discord on a single GPU

(node)

(node)
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https://doi.org/10.1145/3507473.3507483
https://doi.org/10.1109/TPDS.2021.3055765
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Unsupervised parallel algorithms for pattern discovery
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Anomaly detection model:

DiSSiD5)

Prediction model: 

SANNI6)

Anomaly discovery algorithms:

PALMAD1)                         PADDi2)

Pattern discovery algorithms:

PSF3)                         PaSTiLa4)

We formalize a time series pattern as a snippet and discover snippets in parallel:

• PSF3) discovers snippets on a GPU

• PaSTiLa4) discovers snippets on a multi-GPU cluster
1) Zymbler M., Kraeva Y. High-performance time series anomaly discovery on graphics processors. Mathematics. 2023. 11(14), 3193.
2) Kraeva Y., Zymbler M. Anomaly detection in long time series on high-performance cluster with GPUs. Num. Meth. & Progr. 2023. 24(3), 291-304.
3) Zymbler M., Goglachev A. Fast summarization of long time series with graphics processor. Mathematics. 2022. 10(10). 1781. DOI: 10.3390/math10101781.
4) Zymbler M., Goglachev A. PaSTiLa: Scalable parallel algorithm for unsupervised labeling of long time series. LJM. 2024. 45(3), 1333-1347. DOI: 10.1134/S1995080224600766.
5) Kraeva Ya. Detection of time series anomalies based on data mining and neural network technologies. Bulletin of SUSU, CMSE. 2023. 12(3). 50-71. 
6) Zymbler M., Yurtin A. Imputation of missing values of a time series based on joint application of analytical algorithms and neural networks. Num. Meth. & Progr. 2023. 24 (3), 243-259.

https://doi.org/10.3390/math10101781
https://doi.org/10.1134/S1995080224600766
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Similarity measure for time series
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Euclidean distance is for the structural similarity
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Euclidean distance ≈ 8

Structural similarity 

compares time series 

point-by-point

Complexity: 𝑶(𝒏)

ED(𝐴, 𝐵) = 
𝑖=1

𝑛

𝑎𝑖 − 𝑏𝑖
2
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MPdist distance is for the behavioral similarity
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0 0.5 0 0 5𝐌𝐏𝐝𝐢𝐬𝐭1) distance≈ 𝟎

Behavioral similarity 

is proportional 

to the number 

of subsequences 

that are close 

w.r.t. the Euclidean 

distance (no matter 

their locations)

1) Gharghabi S. et al. An ultra-fast time series distance measure to allow data mining in more complex real-world deployments. DMKD. 2020. (34). pp. 1104-1135. DOI: 10.1007/s10618-020-00695-8

Complexity: 𝑶(𝒏𝟐)

MPdistℓ
𝑘 𝐴, 𝐵 = AscSort 𝑃𝐴𝐵𝐵𝐴 𝑘 ,

𝑃𝐴𝐵𝐵𝐴 = 𝑃𝐴𝐵 ∙ 𝑃𝐵𝐴,

𝑃𝐴𝐵 = {EDnorm
2 𝐴𝑖,ℓ, 𝐵𝑗,ℓ }𝑖=1

𝑛−ℓ+1,

𝐵𝑗,ℓ = arg min
1≤𝑞≤𝑛−ℓ+1

EDnorm
2 𝐴𝑖,ℓ, 𝐵𝑞,ℓ ,

where 0 < 𝑘 < 𝑛, 𝑘default = ⌈0.1𝑛⌉

http://www.doi.org/10.1007/s10618-020-00695-8
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Distance profile of the potential behavioral pattern
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Distance profile of the potential behavioral pattern
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Snippets formalize behavioral patterns of any domain

June 7, 2024Parallel unsupervised algorithms and deep learning models for anomaly detection and load prediction in large computing systems 20
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PSF and PaSTiLa grab behavioral patterns in real time series

Measurements of a wearable accelerometer during an athlete’s training Snippets discovered

Labeling of the training w.r.t. snippets

Training schedule (ground truth)
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PSF and PaSTiLa outperform S.O.T.A. analogs
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1) Ermshaus A. et al. ClaSP: Parameter-free time series segmentation. Data Min. Knowl. Discov. 37, 1262–1300 (2023). DOI: 10.1007/S10618-023-00923-X
2) Truong C. et al. Selective review of offline change point detection methods. Signal Process 167, 107299 (2020). DOI: 10.1016/J.SIGPRO.2019.107299
3) Gharghabi S. et al. Domain agnostic online semantic segmentation for multi-dimensional time series. Data Min. Knowl. Discov. 33, 96–130 (2019). DOI: 10.1007/S10618-018-0589-3
4) Rakshitha G. et al. Solar Power Dataset (4 Seconds Observations). DOI: 10.5281/zenodo.4656027.

2) FLUSS3) 1)

Accuracy over unlabeled data,

Solar Power time series4)

PaSTiLa

3)

1)

Our approach is more accurate in determining the day-night cycles

Accuracy over pre-labeled data,

Time Series Segmentation Benchmark1)

𝑛 𝑛
PaSTiLaFLUSS

https://doi.org/10.1007/S10618-023-00923-X
https://doi.org/10.1016/J.SIGPRO.2019.107299
https://doi.org/10.1007/S10618-018-0589-3
https://doi.org/10.5281/zenodo.4656027
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Behavioral patterns are the key to online processing
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Take a representative fragment 

of time series to be processed 

Discover 

behavioral patterns

Build a training set(s) 

for deep learning model(s)

Preprocessing

Determine a behavioral pattern 

to which the subsequence 

that came from a sensor,

is most similar

Online processing

Deep learning model 

for anomaly detection:

How much does the subsequence 

differ from all the patterns?

Deep learning model 

for load prediction:

According to all the patterns, 

what should be the next subsequence?
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Deep learning model for online anomaly detection
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Anomaly detection model:

DiSSiD5)

Prediction model: 

SANNI6)

Anomaly discovery algorithms:

PALMAD1)                         PADDi2)

Pattern discovery algorithms:

PSF3)                         PaSTiLa4)

DiSSiD learns to differ subsequences of typical behavior from abnormal ones: 

• snippets represent typical behavior 

• discords represent abnormal behavior
1) Zymbler M., Kraeva Y. High-performance time series anomaly discovery on graphics processors. Mathematics. 2023. 11(14), 3193. 
2) Kraeva Y., Zymbler M. Anomaly detection in long time series on high-performance cluster with GPUs. Num. Meth. & Progr. 2023. 24(3), 291-304.
3) Zymbler M., Goglachev A. Fast summarization of long time series with graphics processor. Mathematics. 2022. 10(10). 1781.
4) Zymbler M., Goglachev A. PaSTiLa: Scalable parallel algorithm for unsupervised labeling of long time series. LJM. 2024. 45(3), 1333-1347.
5) Kraeva Ya. Detection of time series anomalies based on data mining and neural network technologies. Bulletin of SUSU, CMSE. 2023. 12(3). 50-71. DOI: 10.14529/cmse230304.
6) Zymbler M., Yurtin A. Imputation of missing values of a time series based on joint application of analytical algorithms and neural networks. Num. Meth. & Progr. 2023. 24 (3), 243-259.

htps://doi.org/10.14529/cmse230304
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DiSSiD differs normal data from the opposite ones
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𝑥1

𝑥2

− typical activities (big-sized sets 

of snippets and their nearest neighbors)

− rare activity (small-sized sets 

of snippets and their nearest neighbors)

− noises within activities

− abnormal activity (discords)
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DiSSiD: Discord, Snippet, and Siamese Net-based Detector of anomalies
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Modification of ResNet

Athlete

is falling

Q: Does it look like he’s running?

Q: Does it look like he’s walking?

Sub-net 1

Sub-net 2

Siamese 

sub-nets

shared

weights 

& biases

Embeddings

ℎ1

ℎ2

Differencing

MPdist(ℎ1, ℎ2)

Sub-net 1

Sub-net 2

Siamese 

sub-nets

shared

weights 

& biases

Embeddings

ℎ1

ℎ2

Differencing

MPdist(ℎ1, ℎ2)

A: Likely, No

A: Likely, No

A: He’s doing abnormal activity
Q: What’s he doing?
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Deep learning model for online prediction
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Anomaly detection model:

DiSSiD5)

Prediction model: 

SANNI6)

Anomaly discovery algorithms:

PALMAD1)                         PADDi2)

Pattern discovery algorithms:

PSF3)                         PaSTiLa4)

SANNI learns to predict future subsequences based on past ones, 

classified by typical behavior using previously discovered snippets

1) Zymbler M., Kraeva Y. High-performance time series anomaly discovery on graphics processors. Mathematics. 2023. 11(14), 3193. 
2) Kraeva Y., Zymbler M. Anomaly detection in long time series on high-performance cluster with GPUs. Num. Meth. & Progr. 2023. 24(3), 291-304.
3) Zymbler M., Goglachev A. Fast summarization of long time series with graphics processor. Mathematics. 2022. 10(10). 1781. .
4) Zymbler M., Goglachev A. PaSTiLa: Scalable parallel algorithm for unsupervised labeling of long time series. LJM. 2024. 45(3), 1333-1347.
5) Kraeva Ya. Detection of time series anomalies based on data mining and neural network technologies. Bulletin of SUSU, CMSE. 2023. 12(3). 50-71.
6) Zymbler M., Yurtin A. Imputation of missing values of a time series based on joint application of analytical algorithms and neural networks. Num. Meth. & Progr. 2023. 24 (3), 243-259. DOI: 10.26089/NumMet.v24r318.

htps://doi.org/10.26089/NumMet.v24r318
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SANNI: Snippet & ANN-based online prediction
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Q: What’s his activity now? A: He’s running

Q: If he’s running, 

what will he do next? 

A: He’ll quickly lower his hand
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Case study:   INREL
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1) Sheppy M. et al. National Renewable Energy Laboratory (NREL) Research and Support Facility (RSF) Measured Data 2011. DOI: 10.25984/1845288

Whole Building

Data Center

GOLDEN, COLORADO, USA

1)

https://doi.org/10.25984/1845288
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NREL case: Behavioral pattern discovery
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GOLDEN, COLORADO, USA
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INREL case: Anomaly detection
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GOLDEN, COLORADO, USA
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Total Data Center (kW)

INREL case: Load prediction
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GOLDEN, COLORADO, USA
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We’re ready to apply our ideas to your tasks if given a chance

• Parallel unsupervised algorithms,
which outperform S.O.T.A. rivals

– Discord discovery: PALMAD, PADDi
(on GPU and multi-GPU clusters, respectively)

– Snippet discovery: PSF, PaSTiLa
(on GPU and multi-GPU clusters, respectively)

• Deep learning models,
which outperform S.O.T.A. rivals

– Anomaly detection: DiSSiD

– Prediction: SANNI
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