XXIV International Conference

Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL'2022),

5–7 October 2022, ITMO University, St. Petersburg, Russia

Time series analytics: acceleration with parallel algorithms

<u>Mikhail Zymbler</u>¹, Yana Kraeva¹, Andrey Goglachev¹, Alexey Yurtin¹, Andrey Poluyanov²

¹South Ural State University, Chelyabinsk, Russia

²Sobolev Institute of Mathematics SB RAS, Omsk, Russia

This work was financially supported by the Russian Foundation for Basic Research (grant No. 17-07-00463) and by the Ministry of Science and Higher Education of the Russian Federation (government orders FENU-2020-0022 and FWNF-2022-0016).

Outline

Introduction

– What are and what can we mine from time series?

- How can parallel algorithms accelerate time series analytics?
 - Pattern discovery
 - Anomaly detection
 - Imputation of missing values
- Further research: how can parallel algorithms provide online time series analytics?

People measure everything over time, ...

... so, time series are ubiquitous

Smart manufacturing, Predictive maintenance

Internet of Things

Weather forecasting, Climate modelling

What can we mine from time series?

Patterns

Imputation of missing values

Pattern discovery: power demand

Pattern discovery: medicine

A patient's motor activity according to the chest accelerometer measurements

Patient Smith slept for 7.2 hours. This ten-second snippet (MMM) accounts for 78% of his respiration, and this (MMM) ten-second snippet accounts for 17% of his respiration. His maximum temperature was 98.7°...

A patient's respiratory activity in studies of apnea syndrome

Anomaly detection: power demand

Annual energy consumption of a building 128,1024 ,168,102 m=728,1024 Time Series 2000 1500 1000 0 5k 10k 15k 20k 25k 30k 35k m = 512m = 10241600 1600 top-1 1400 1400 1200 1200 1000 1000 800 800 11.4k 11.5k 11.6k 11.7k 11.8k 11.9k 12k 12.1k 11.4k 11.6k . 11.8k 12.2k 12k 12.4k 2000 1800 1800 1600 top-2 1600 1400 1400 1200 1200 1000 1000 800 800 8200 8300 8400 8500 8700 8800 8900 7600 7800 8000 8200 8400 8600 8600 1800 1600 1600 top-3 1400 1400 1200 1200 1000 1000 800 800 . 12.1k 12.7k . 12.8k . 13k . 13.2k . 13.4k 13.6k 13.8k . 14k 12k 12.2k 12.3k 12.4k 12.5k 12.6k

Anomaly detection: medicine

Imputation of missing values

MAREL Carnot system autonomously measures +15 chemical and biological parameters each 20 min. in the English Channel

Madrid Road Traffic Management System provides each 15 min. the data from +3500 automatic traffic recorders deployed through the city road network

DEBS challenge: Real-time event-based sports analytics Positioning sensors of tracking frequency 200 Hz (15K events per second) are located near to players' boots and goalkeeper hands

Outline

- Introduction
- Parallel pattern discovery
- Parallel anomaly detection
- Parallel imputation of missing values
- Online time series analytics with parallel algorithms

How to formalize patterns? Snippets*

 A time series is represented as a set of non-overlapped segments

^{*} Imani S. *et al.* Introducing time series snippets: a new primitive for summarizing long time series. Data Min. Knowl. Discov. 2020. Vol. 34, no. 6. P. 1713-1743. DOI: <u>10.1007/s10618-020-00702-y</u>

How to formalize patterns? Snippets

- 1. A time series is represented as a set of non-overlapped segments
- 2. For each segment, find its **nearest neighbors**

How to formalize patterns? Snippets

- 1. A time series is represented as a set of non-overlapped segments
- 2. For each segment, find its **nearest neighbors**
- 3. For each segment, compute its coverage and take top-*K* segments

How to measure similarity? MPdist*

- Two *m*-length time series are more similar w.r.t. MPdist, the more ℓ -length ($3 \le \ell \le m$) subsequences close to each other w.r.t. normalized Euclidean distance, are in them
- MPdist is
 - a distance measure (not a metric), i.e., it holds the identity and symmetry axioms but not the triangle inequality
 - phase-invariant

* Gharghabi S. et al. An ultra-fast time series distance measure to allow data mining in more complex real-world deployments. Data Min. Knowl. Discov. 2020. Vol. 34. P. 1104–1135. DOI: 10.1007/s10618-020-00695-8

MPdist: Matrix profile AB

MPdist: Matrix profile BA

MPdist: Matrix profile ABBA

MPdist: Eventual calculation

MPdist profile of a segment

Snippet discovery: top-1 snippet

Snippet discovery: top-2 snippet

Snippet discovery: top-2 snippet

Snippet discovery: top-3 snippet

Snippet discovery: top-3 snippet

Snippet discovery: Resulting snippets

PSF: Parallel Snippet-Finder for GPU*

Step	Snippet-Finder , complexity $O(n^2 \cdot \frac{n-m}{m})$	PSF (Parallel Snippet-Finder)	
1. Calculation of matrix profile P_{AB}	$\left\{P_{AB}(i) = \mathrm{ED}_{\mathrm{norm}}\left(A_{i,\ell}, B_{j,\ell}\right)\right\}_{i=1}^{m-\ell+1},$	Calculate the <i>ED_{matr}</i> matrix of normalized Euclidean distances	
	$B_{j,\ell} = \arg \min_{1 \le q \le m-\ell+1} \text{ED}_{\text{norm}}(A_{i,\ell}, B_{q,\ell})$	$allP_{AB}(i,j) = \min_{j \le c \le j+m-\ell+1} ED_{matr}(i,c)$	
2. Calculation	$\{P_{BA}(i) = ED_{norm}(B_{i,\ell}, A_{j,\ell})\}_{i=1}^{m-\ell+1},$	$allP_{BA}(j) = \min_{1 \le i \le m-\ell+1} ED_{matr}(i,j)$	
profile P_{BA}	$A_{j,\ell} = \arg \min_{1 \le q \le m-\ell+1} \text{ED}_{\text{norm}}(B_{i,\ell}, A_{q,\ell})$		
3. Calculation	$P_{ABBA} = P_{AB} \odot P_{BA}$	$P_{ABBA} = all P_{AB}(i, m - \ell) \odot all P_{BA}(i)$	
profile P_{ABBA}			
4. Calculation of MPdist profile	$MPdist_{\ell}(A,B) = \begin{cases} SortedP_{ABBA}(k), & P_{ABBA} > k\\ SortedP_{ABBA}(2(m-\ell+1)), & P_{ABBA} \le k \end{cases}$		

*Zymbler M., Goglachev A. Fast Summarization of Long Time Series with Graphics Processor. Mathematics. 2022. Vol. 10, No. 10. Article 1781. DOI: <u>10.3390/math10101781</u>

$$P_{AB}(i) = \min_{1 \le j \le m-\ell+1} E(i,j),$$

$$1 \le i \le m - \ell + 1$$

 $P_{BA}(j) = \min_{1 \le i \le m-\ell+1} E(i,j),$

 $1 \le j \le m-\ell+1$

Parallel snippet discovery: *ED*_{matr}

* Zimmerman Z. *et al.* Matrix Profile XIV: Scaling Time Series Motif Discovery with GPUs to Break a Quintillion Pairwise Comparisons a Day and Beyond. SoCC 2019. P. 74–86. DOI: <u>10.1145/3357223.3362721</u>

Parallel snippet discovery: $allP_{AB}$ and $allP_{BA}$

Parallel snippet discovery: **P**_{ABBA}

Parallel snippet discovery: Experiments

• Hardware

- NVIDIA Tesla V100 SXM2 (5120 cores @1.3 GHz)
- Data

Time series	Length	Snippet length	Domain
	n	m	
WildVTrainedBird ¹	20 002	900	Physiological indicators of bird vital
			activity
PAMAP ²	20 002	600	Wearable accelerometer readings
WalkRun ²	100 000	240	during various types of human
			physical activity
TiltABP ¹	40 000	630	Human blood pressure during rapid
			tilts

¹Imani S., et al. Introducing time series snippets: a new primitive for summarizing long time series. Data Min. Knowl. Discov. 2020. Vol. 34, no. 6. P. 1713-1743. DOI: <u>10.1007/s10618-020-00702-y</u>

² Reiss A., Stricker D. Introducing a new benchmarked dataset for activity monitoring. ISWC 2012. P. 108–109. DOI: <u>10.1109/ISWC.2012.13</u>

Parallel snippet discovery: Performance

Parallel snippet discovery: Case* studies

Activity	Precision	Recall	F1-score
Rope jumping	1	0.87	0.93
Walking	0.98	0.97	0.97
Running	0.77	1	0.87

* Reiss A., Stricker D. Introducing a new benchmarked dataset for activity monitoring. ISWC 2012. P. 108–109. DOI: <u>10.1109/ISWC.2012.13</u>

Parallel snippet discovery: Case* studies

Activity	Precision	Recall	F1-score
Descending stairs	0.80	0.79	0.80
Ascending stairs	0.87	0.87	0.87
Ironing	0.97	0.77	0.86
Walking	0.86	1	0.92

* Reiss A., Stricker D. Introducing a new benchmarked dataset for activity monitoring. ISWC 2012. P. 108–109. DOI: <u>10.1109/ISWC.2012.13</u>

Outline

- Introduction
- Parallel pattern discovery
- Parallel anomaly detection
- Parallel imputation of missing values
- Online time series analytics with parallel algorithms

How to formalize anomalies? Discords*

- Discord is a subsequence whose nearest neighbor is at least at a given threshold far away
- We are given: T, discord length m, threshold r

* Yankov D., et al. Disk aware discord discovery: finding unusual time series in terabyte sized datasets. Knowl. Inf. Syst. 17(2): 241–262. 2008.

Discord discovery

1. Selection

Through one full scan of the time series, create a **set of candidates** to discords

2. Refinement

Through one full scan of the time series, **prune false positives** from the set above

Discord discovery: Selection

Discord discovery: Selection

Discord discovery: Selection

Discord discovery: Refinement

Discord discovery: Refinement

Parallel discord discovery: Preprocessing

Parallel discord discovery: Segmentation

Parameter	Semantic
$T^{(i)}$	Segment to select (prune) candidates
seglen = segN + m - 1	Segment length
$segN = k \cdot warpsize$	# candidates in a segment
warpsize = 32	# threads in a group within a thread block
Chunk ^(j)	Interval to test its subsequences against a seg. candidates
pad	# dummy elements

Parallel discord discovery: Selection (blocks)

Parallel discord discovery: Refinement

Parallel discord discovery: Experiments

Hardware

- NVIDIA Tesla V100 SXM2 (5120 cores @1.3 GHz)

• Data

Time series	Length,	Discord,	Domain
	п	т	
Space shuttle	5 000	150	Measurements of a sensor on the NASA
			spacecraft ¹
ECG	45 000	200	ECG of an adult patient ²
ECG2	21 600	400	
Power demand	33 220	750	Annual energy consumption of an office ³
Respiration	24 125	250	Human breathing by chest expansion ⁴
RandomWalk1M	107	512	Synthetic time series
RandomWalk2M	$2\cdot 10^7$	512	

¹ Ferrell B., et al. NASA shuttle valve data 2005. URL: <u>http://www.cs.fit.edu/~pkc/nasa/data/</u>

² Goldberger A., *et al.* PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23): 215–220. DOI: <u>10.1161/01.CIR.101.23.e215</u>

³ van Wijk J.J., *et al.* Cluster and calendar based visualization of time series data. INFOVIS'99: 4–9. DOI: <u>10.1109/INFVIS.1999.801851</u> ⁴ Keogh E., *et al.* HOT SAX: Finding the most unusual time series subsequence: Algorithms and applications. ICDM 2004: 440–449. URL: http://www.cs.ucr.edu/~eamonn/discords/

Parallel discord discovery: Experiments

Zhu B., *et al.* A GPU Acceleration framework for motif and discord based pattern mining. IEEE Transactions on Parallel and Distributed Systems 32(8): 1987–2004. 2021. <u>https://doi.org/10.1109/TPDS.2021.3055765</u>

Parallel discord discovery: Case studies

Anomalies of a t° sensor (freq. is 4 times per hour) for 0.5-7 days in the SUSU Campus Smart heating system

Outline

- Introduction
- Parallel pattern discovery
- Parallel anomaly detection
- Parallel imputation of missing values
- Online time series analytics with parallel algorithms

Imputation through reference time series

Heuristics

the time series undergo imputation and the reference time series behave similarly in the same subsequences

Imputation: Find k patterns

Imputation: Reconstruction of missing value

Parallel imputation: Reference time series

Parallel imputation: Pattern search

Parallel imputation: Scoring

Parallel imputation: Reconstruction

DTW (Dynamic Time Warping) distance measure*

* Berndt D.J., Clifford J. Using Dynamic Time Warping to Find Patterns in Time Series. KDD & AAAI Workshop 1994. TR-WS-94-03. P. 359-370.

DTW: complexity vs. accuracy

DTW acceleration: Sakoe–Chiba band*

* Sakoe H., Chiba S. Dynamic Programming Algorithm Optimization for Spoken Word Recognition. IEEE Trans. on Acoustics, Speech, and Signal Processing. 1978. Vol. 26. P. 43-49.

DTW acceleration: Lower bounding*

- Lower bound function (LB)
 - LB: $\mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}_+$, complexity is lower than $O(m^2)$ $\forall R[i:m], Q: LB(R[i:m], Q) \leq DTW(R[i:m], Q)$
- Lower bounding pruning
 - Best-so-far minimum of DTW: *bsf*
 - if LB(R[i:m], Q) > bsf, then DTW(R[i:m], Q) > bsf, so R[i:m] is clearly dissimilar to Q without DTW calculation
 - It works only if R[i:m] and Q are z-normalized
 - LBs can be applied in a cascade

* Rakthanmanon T., et al. Addressing Big Data Time Series: Mining Trillions of Time Series Subsequences Under Dynamic Time Warping. ACM Trans. Knowl. Discov. Data. 2013. Vol. 7, no. 3. 10:1–10:31.

Lower bounding: Cascade of LBs

Parallel imputation: Pattern search

Parallel imputation: Lower bounds

Parallel imputation: Initializing bsf

Parallel imputation: Lower bounding

Parallel imputation: Candidate matrix

Parallel imputation: DTW calculation

Parallel imputation: Improving bsf

Parallel imputation: Scoring

Parallel imputation: Experiments

- Hardware: Intel Xeon E5-2687W v2 (8 cores @3.40 GHz)
- Data

Dataset	# t.s., d + 1	Length, $n \cdot 10^3$	Domain
BAFU	10	50	Water discharge in Swiss rivers
Chlorine	50	1	Simulation of the chlorine concentration in a drinking water system
Climate	10	5	Weather in locations of North America
MADRID	10	25	Road traffic (AVR statistics) in Madrid
MAREL	10	50	Characteristics of sea water in the English Channel

- **Rivals**: ORBITS¹, OGD-Impute², SPIRIT³, SAGE⁴, TKCM⁵
- **Setup** under ORBITS¹ framework:
 - Scenario: imputation of last 10% points
 - Rivals: best recommended parameters
 - ParaDI: m = 50, k = 3, r = 0.25m

¹ Khayati M., et al. ORBITS: Online Recovery of Missing Values in Multiple Time Series Streams. Proc. VLDB Endow. 2020. Vol. 14, no. 3. P. 294-306.

- ² Anava O., et al. Online Time Series Prediction with Missing Data. Proc. ICML 2015. P. 2191-2199.
- ³ Papadimitriou S., et al. Streaming Pattern Discovery in Multiple Time-Series. VLDB 2005. P. 697-708.

⁴ Balzano L., *et al.* Streaming PCA and Subspace Tracking: The Missing Data Case. Proc. of IEEE. 2018. Vol. 106, no. 8. P. 1293-1310.

⁵ Wellenzohn K., et al. Continuous Imputation of Missing Values in Streams of Pattern-Determining Time Series. EDBT 2017. P. 330-341.

Experiments: accuracy

Time series analytics: acceleration with parallel algorithms

5 October 2022 **81/90**

Outline

- Introduction
- Parallel pattern discovery
- Parallel anomaly detection
- Parallel imputation of missing values
- Online time series analytics with parallel algorithms
 - Online anomaly discovery
 - Online imputation of missing values

Mining time series: parallel algs vs. ANNs

Mining time series: parallel algs plus ANNs

Online time series anomaly detection

Online time series anomaly detection

Online imputation of missing values

Online imputation: Recognizer

Online imputation: Reconstructor

Time series analytics: acceleration with parallel algorithms

5 October 2022

89/90

Conclusions

- Parallel algorithms can significantly accelerate time series mining
- Parallel algorithms together with ANNs can provide online time series mining

Thank you for paying attention! Questions?

Mikhail Zymbler, South Ural State University, Chelyabinsk, Russia <u>mzym@susu.ru</u> <u>https://mzym.susu.ru</u>