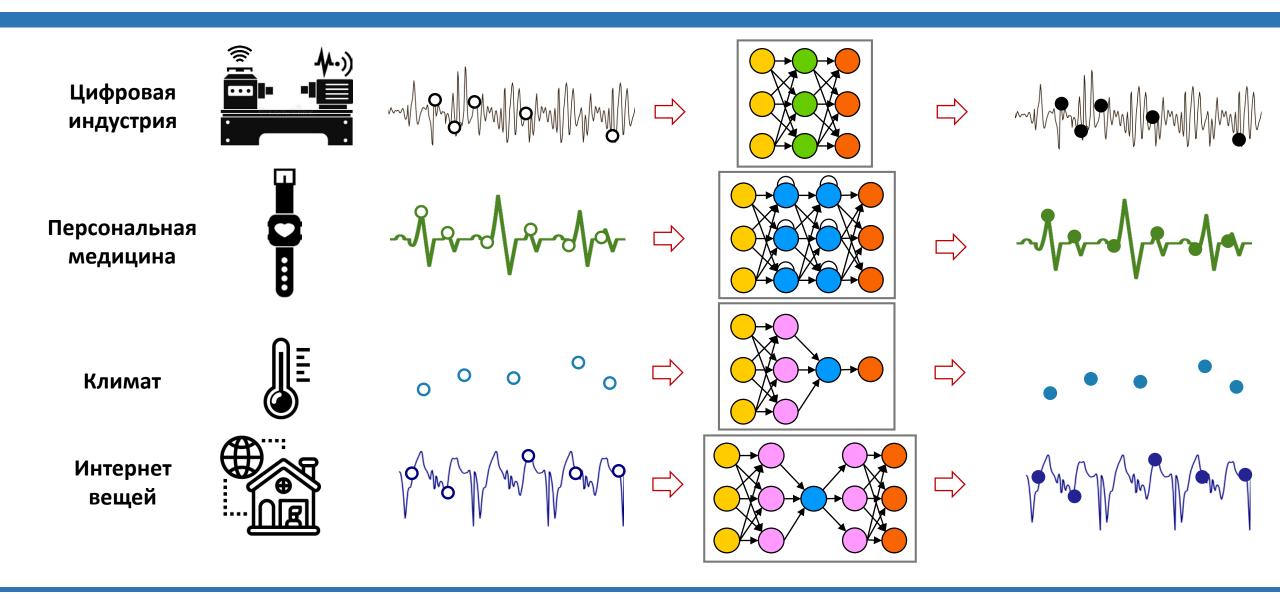
Международная научная конференция
Параллельные вычислительные технологии 2023
Санкт-Петербург, 28-30 марта 2023

Параллельное вычисление функции потерь на графическом процессоре для нейросетевых моделей восстановления временных рядов

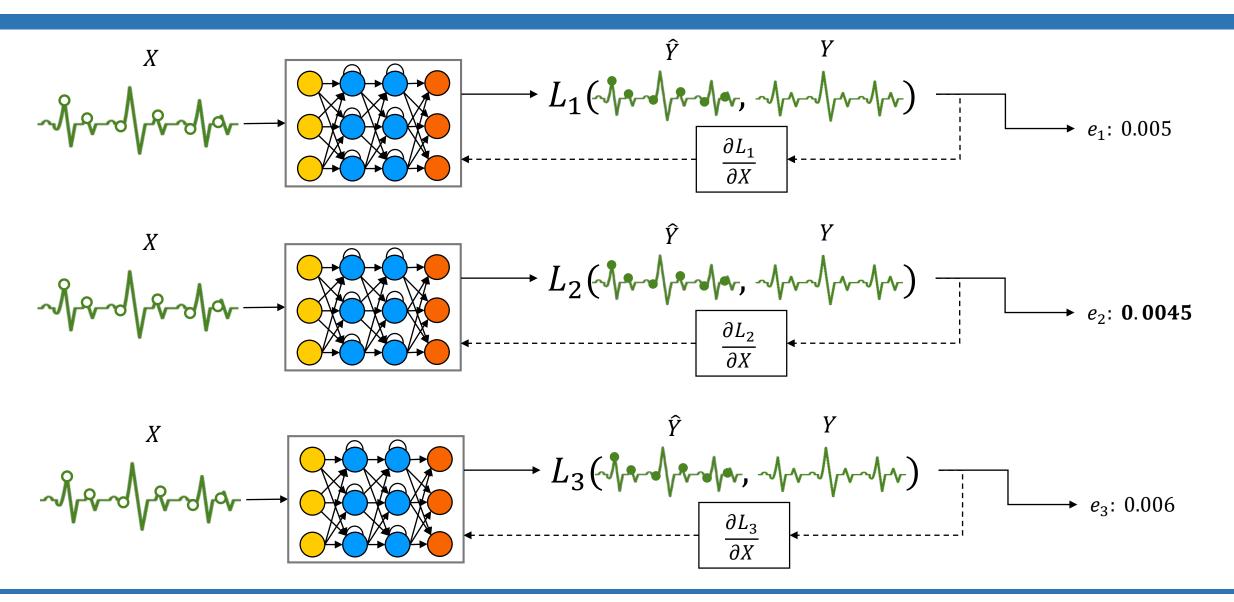
А.А. Юртин, М.Л. Цымблер

Южно-Уральский государственный университет, Челябинск

Восстановление временных рядов нейронными сетями



Обучение нейронной сети

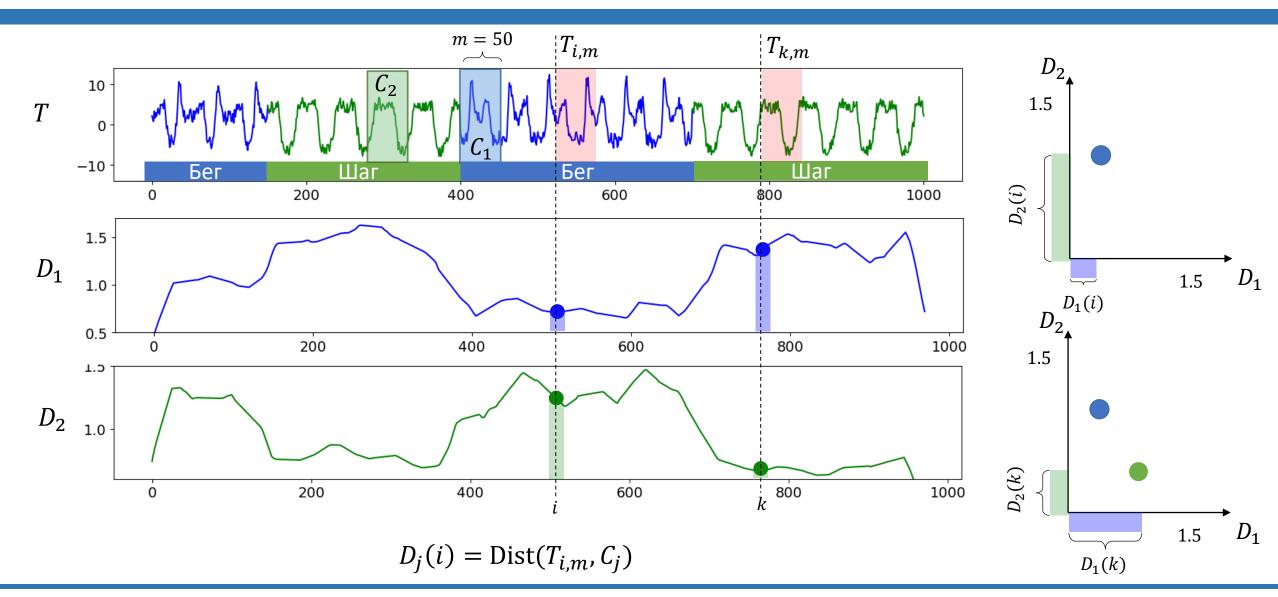


Обзор функций потерь

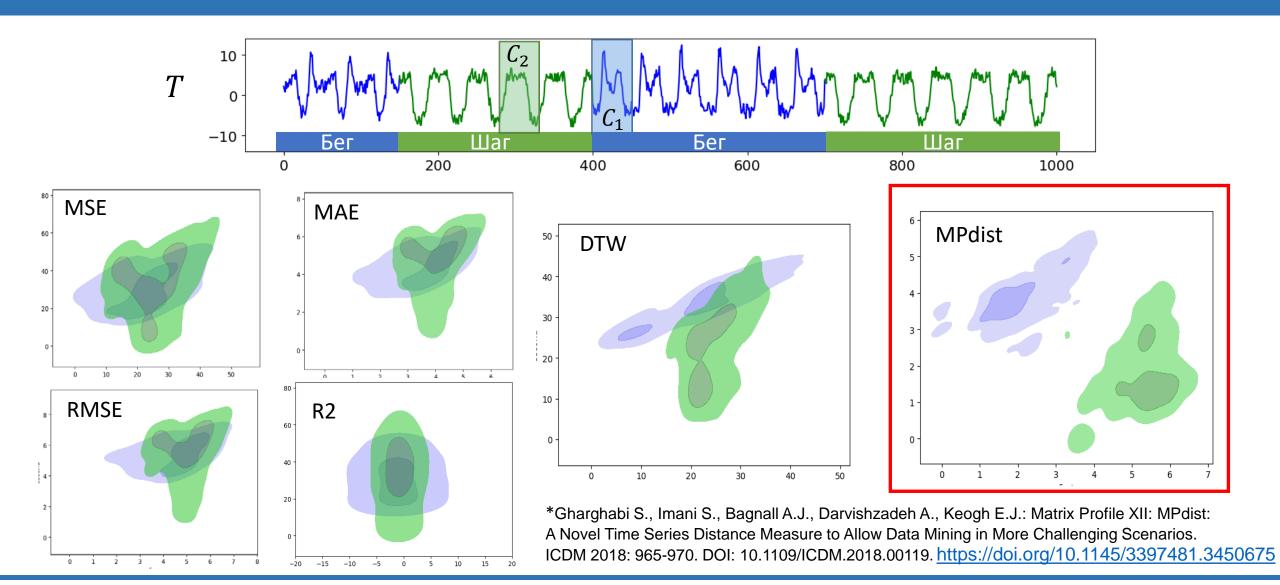
Функция	Формула	Сложность	Цель оптимизации
Mean square error	$MSE = \frac{1}{n} \sum_{i=0}^{n} (\widehat{y}_i - y_i)^2$	O(n)	Уменьшение среднего значения квадрата ошибки между прогнозируемыми и истинными точками
Mean absolute error	$MAE = \frac{1}{n} \sum_{i=0}^{n} \widehat{y}_i - y_i $	<i>O(n)</i>	Уменьшение модуля ошибки между прогнозируемыми и истинными точками
Coefficient of determination	$R^{2} = 1 - \frac{\sum_{i=0}^{n} (\widehat{y}_{i} - y_{i})^{2}}{\sum_{i=0}^{n} (\overline{y}_{i} - y_{i})^{2}}$	0(n)	Уменьшение отношения среднего отклонения прогнозируемых точек к среднему значению истинных точек
Root Mean Square error	$RMSE = \sum_{i=0}^{n} \sqrt{\frac{1}{n} (\hat{y}_i - y_i)^2}$	O(n)	Уменьшение значения корня среднего значения квадрата ошибки между прогнозируемыми и истинными точками
Dynamic time warping*	$DTW(\widehat{Y}, Y) = d(m, m)$ $d(i, j) = (\widehat{y}_i - y_i)^2 + \min \begin{cases} d(i-1, j) \\ d(i, j-1) \\ d(i-1, j-1) \end{cases}$	$O(n^2)$	Уменьшение пути временной трансформации подпоследовательности прогнозируемых точек в подпоследовательность истинных точек

^{*}Maghomi M., et al. DeepNAG: Deep Non-Adversarial Gesture Generation. 26th ICIUI. 2020. P. 213—223. https://doi.org/10.1145/3397481.3450675

Не все функции потерь одинаковы...



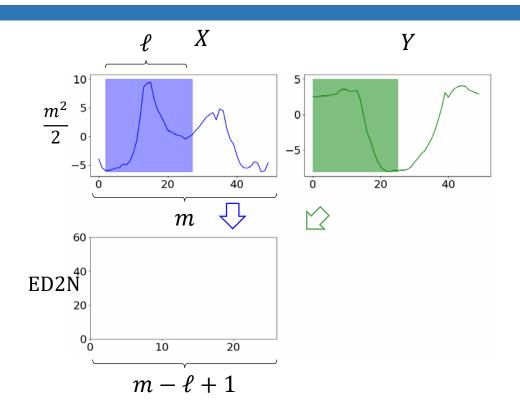
Не все функции потерь одинаковы...



Новая функция потерь: MPℓoss

Функция	Формула	Сложность	Цель оптимизации
Mean square error	$MSE = \frac{1}{n} \sum_{i=0}^{n} (\widehat{y_i} - y_i)^2$	0(n)	Уменьшение среднего значения квадрата ошибки между прогнозируемыми и истинными точками
Mean absolute error	$MAE = \frac{1}{n} \sum_{i=0}^{n} \widehat{y}_i - y_i $	0(n)	Уменьшение модуля ошибки между прогнозируемыми и истинными точками
Coefficient of determination	$R^{2} = 1 - \frac{\sum_{i=0}^{n} (\widehat{y}_{i} - y_{i})^{2}}{\sum_{i=0}^{n} (\overline{y}_{i} - y_{i})^{2}}$	0(n)	Уменьшение отношения среднего отклонения прогнозируемых точек к среднему значению истинных точек
Root Mean Square error	$RMSE = \sum_{i=0}^{n} \sqrt{\frac{1}{n} (\widehat{y}_i - y_i)^2}$	O(n)	Уменьшение значения корня среднего значения квадрата ошибки между прогнозируемыми и истинными точками
Dynamic time warping	$DTW(\widehat{Y}, Y) = d(m, m)$ $d(i, j) = (\widehat{y}_i - y_i)^2 + \min \begin{cases} d(i - 1, j) \\ d(i, j - 1) \\ d(i - 1, j - 1) \end{cases}$	$O(n^2)$	Уменьшение пути временной трансформации подпоследовательности прогнозируемых точек в подпоследовательность истинных точек
Matrix profile loss	$\mathbf{MP}\ell\mathbf{oss}(\widehat{Y},Y) = ?$	$O(n^3)$	Уменьшение отличия между подпоследовательностью прогнозируемых точек от подпоследовательность истинных точек по мере MPdist

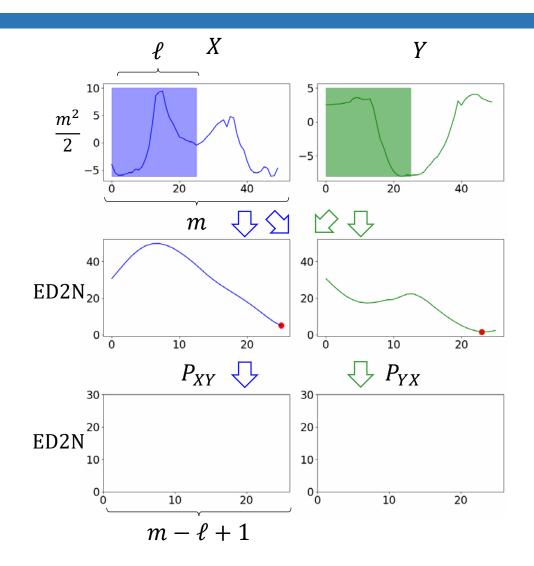
MP eoss: формальные обозначения



$$ED2N(X,Y) = \sum_{i=1}^{\ell} (\widehat{x}_i - \widehat{y}_i)^2$$

$$\widehat{x}_i = \frac{x_i - \mu_x}{\sigma_x}$$
 $\mu_x = \frac{1}{\ell} \sum_{i=1}^{\ell} x_i \ \sigma_x = \frac{1}{\ell} \sum_{i=1}^{\ell} x_i^2 - \mu_x^2$

MP eoss: формальные обозначения



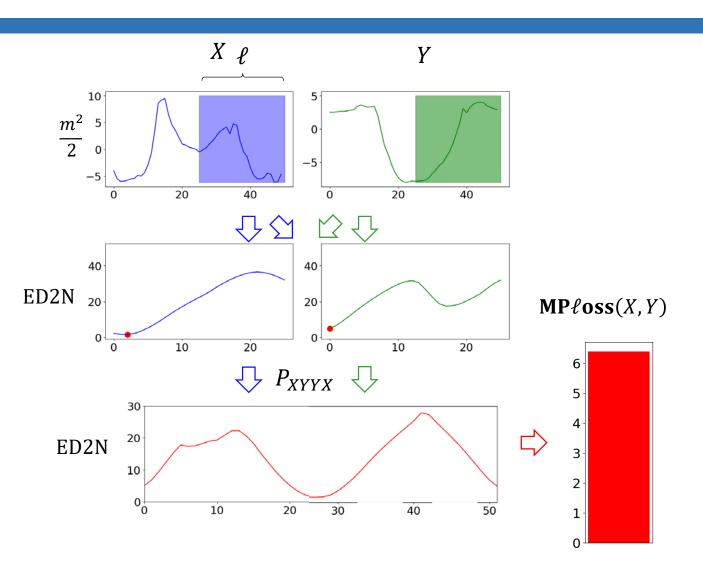
$$ED2N(X,Y) = \sum_{i=1}^{\ell} (\widehat{x}_i - \widehat{y}_i)^2$$

$$\widehat{x}_i = \frac{x_i - \mu_x}{\sigma_x}$$
 $\mu_x = \frac{1}{\ell} \sum_{i=1}^{\ell} x_i \ \sigma_x = \frac{1}{\ell} \sum_{i=1}^{\ell} x_i^2 - \mu_x^2$

$$\{P_{XY}(i) = \text{ED2N}(X_{i,\ell}, Y_{j,\ell})\}_{i=1}^{m-\ell+1},$$

$$B_{j,\ell} = \arg \min_{1 \leq q \leq m-\ell+1} \text{ED2N}(X_{i,\ell}, Y_{j,\ell})$$

MP eoss: формальные обозначения



$$ED2N(X,Y) = \sum_{i=1}^{\ell} (\widehat{x}_i - \widehat{y}_i)^2$$

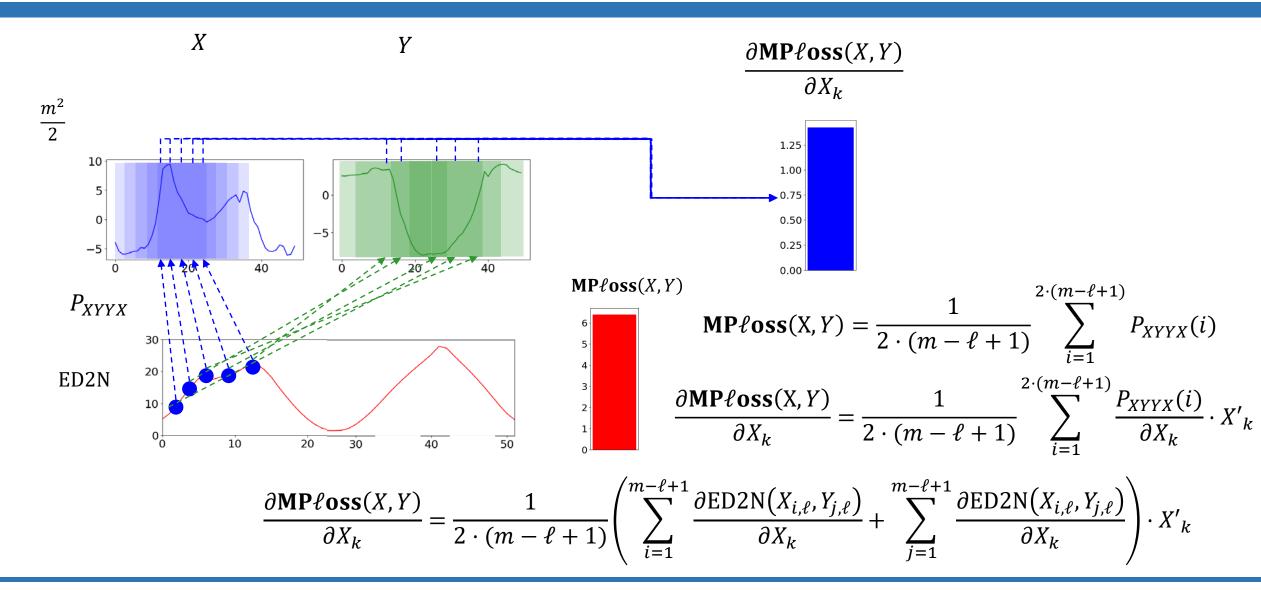
$$\widehat{x}_i = \frac{x_i - \mu_x}{\sigma_x}$$
 $\mu_x = \frac{1}{\ell} \sum_{i=1}^{\ell} x_i \ \sigma_x = \frac{1}{\ell} \sum_{i=1}^{\ell} x_i^2 - \mu_x^2$

$$\left\{P_{XY}(i) = \mathrm{ED2N}\left(X_{i,\ell}, Y_{j,\ell}\right)\right\}_{i=1}^{m-\ell+1},$$

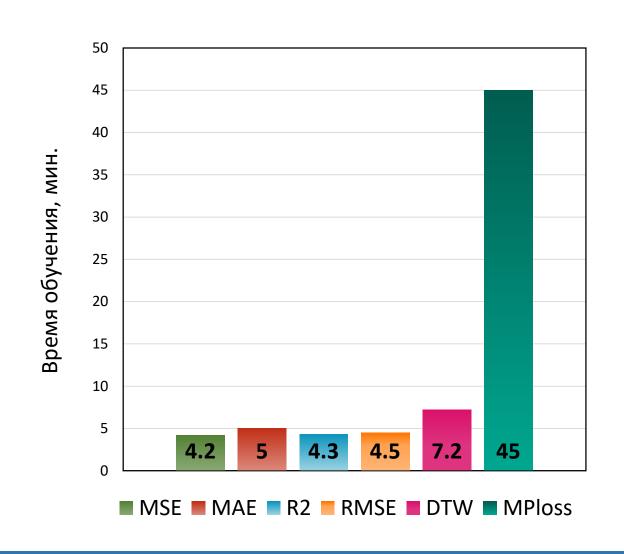
$$B_{j,\ell} = \arg \min_{1 \le q \le m - \ell + 1} ED2N(X_{i,\ell}, Y_{j,\ell})$$
$$P_{XYYX} = P_{XY} \bullet P_{YX}$$

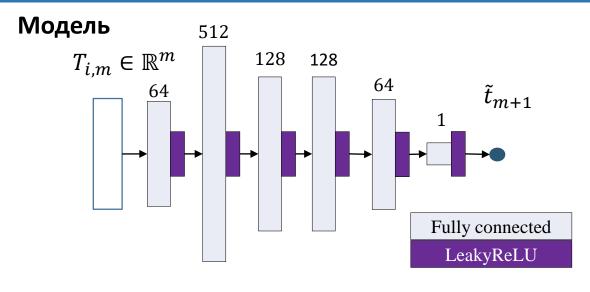
$$\mathbf{MP}\ell\mathbf{oss}(X,Y) = \frac{1}{2 \cdot (m-\ell+1)} \sum_{i=1}^{2 \cdot (m-\ell+1)} P_{XYYX}(i)$$

MPloss: Формальное определение



Mploss: проблема последовательной реализации

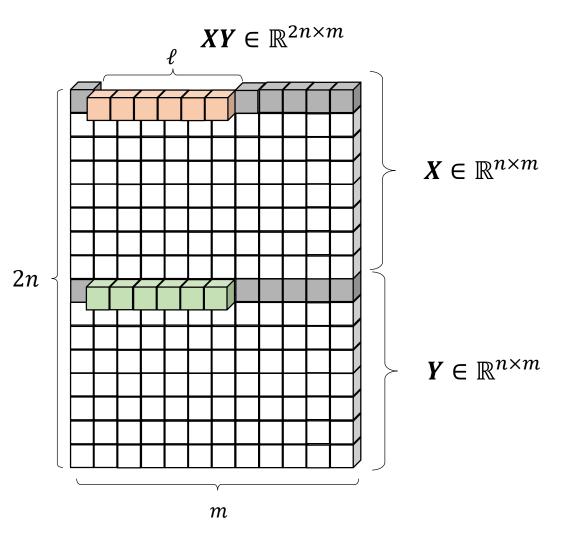




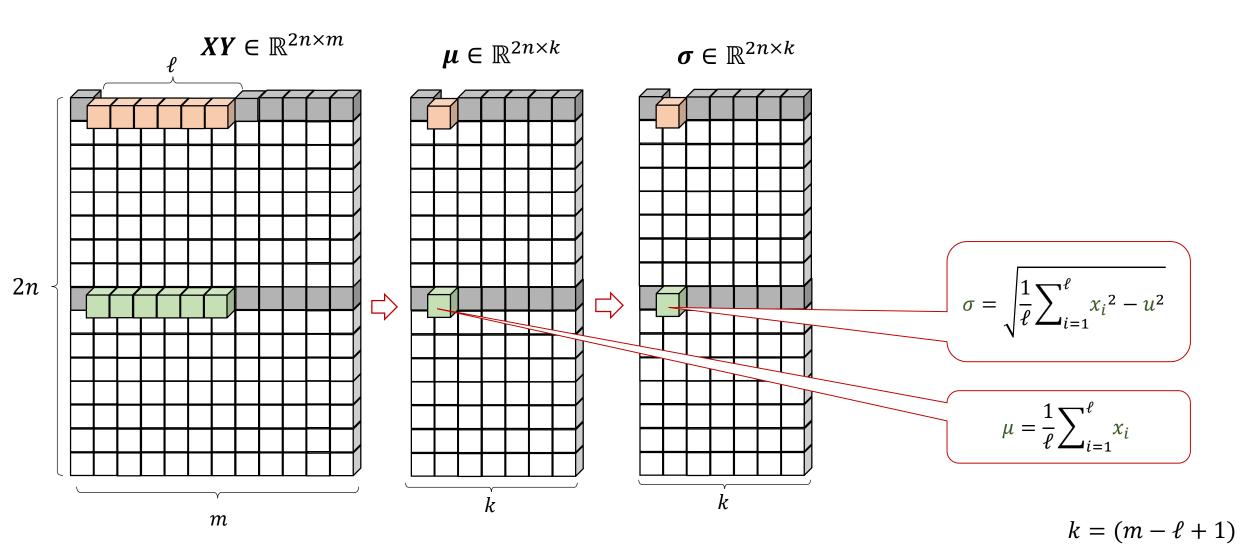
Параметры обучения

Параметр	Значение
Длина подпоследовательности, m	64
количество эпох	100
Размер партии (batch size)	64
Длина ряда	10 000

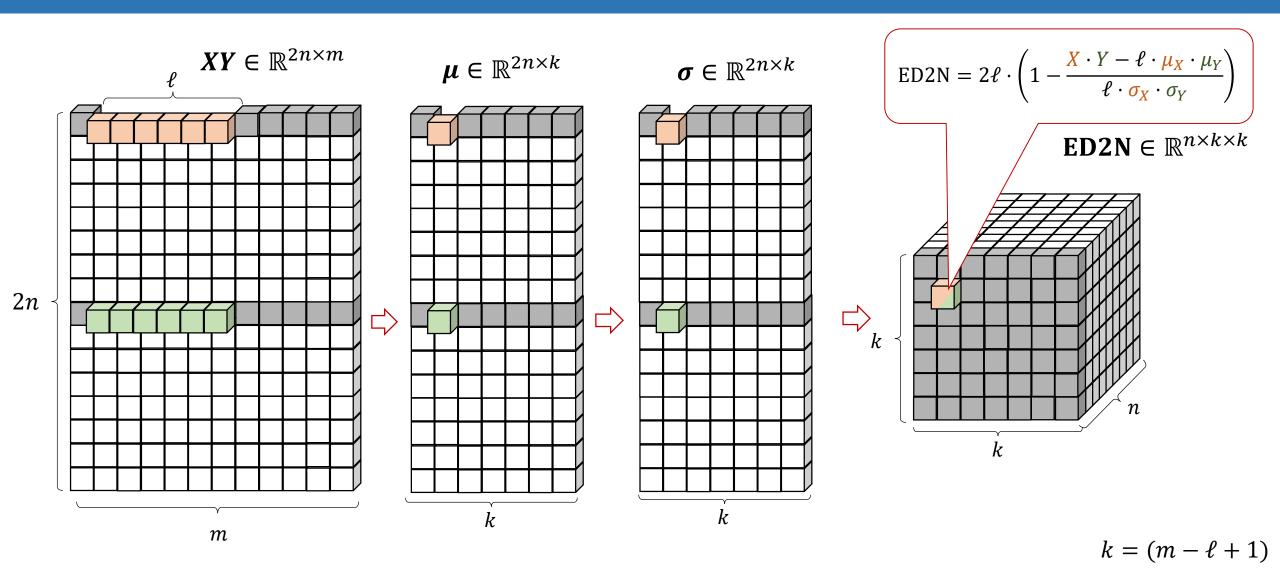
MPoss: параллельное вычисление



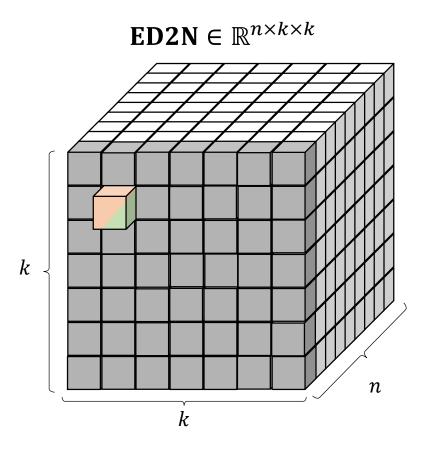
MPℓoss: параллельная нормализация



MPeoss: вычисление ED2N

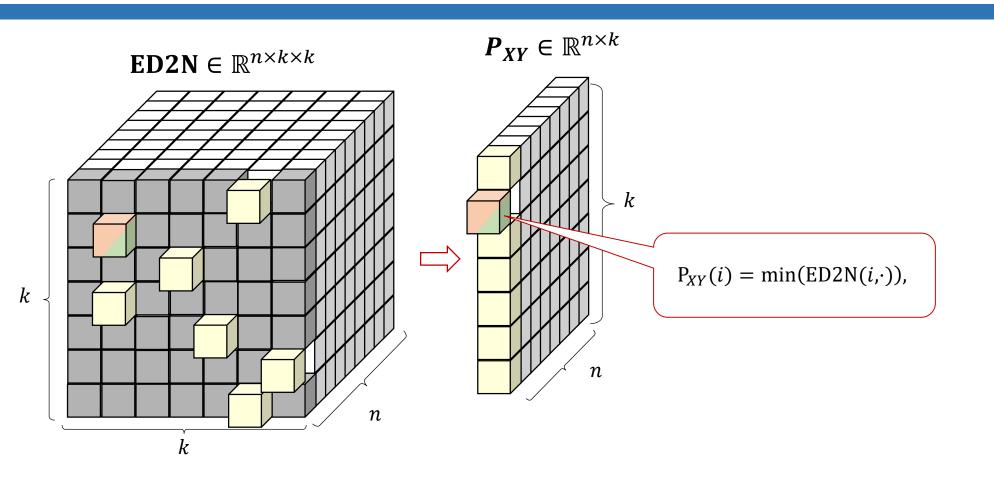


MPloss: вычисление матричных профилей



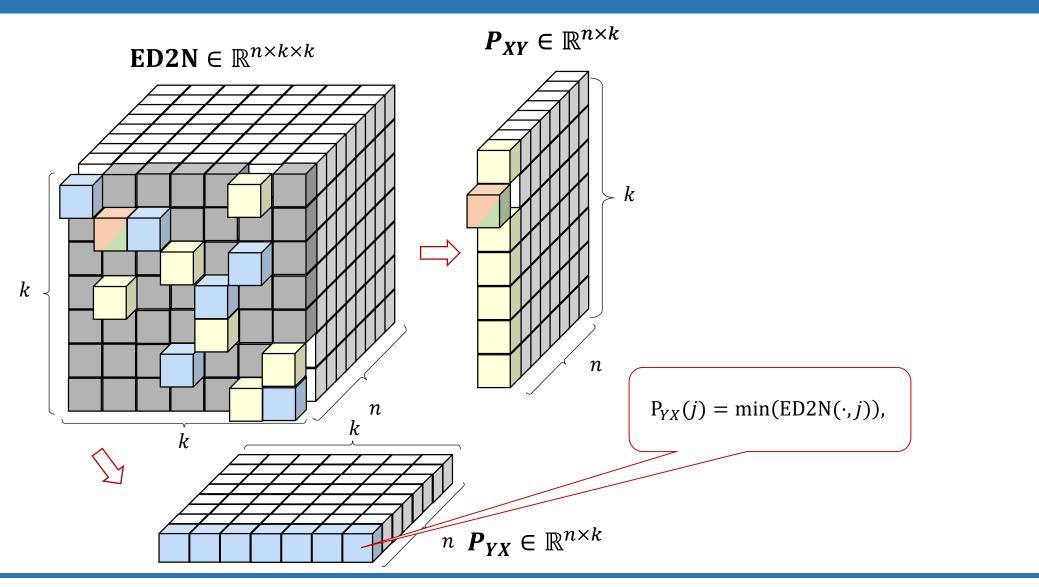
$$k = (m - \ell + 1)$$

MPloss вычисление матричных профилей



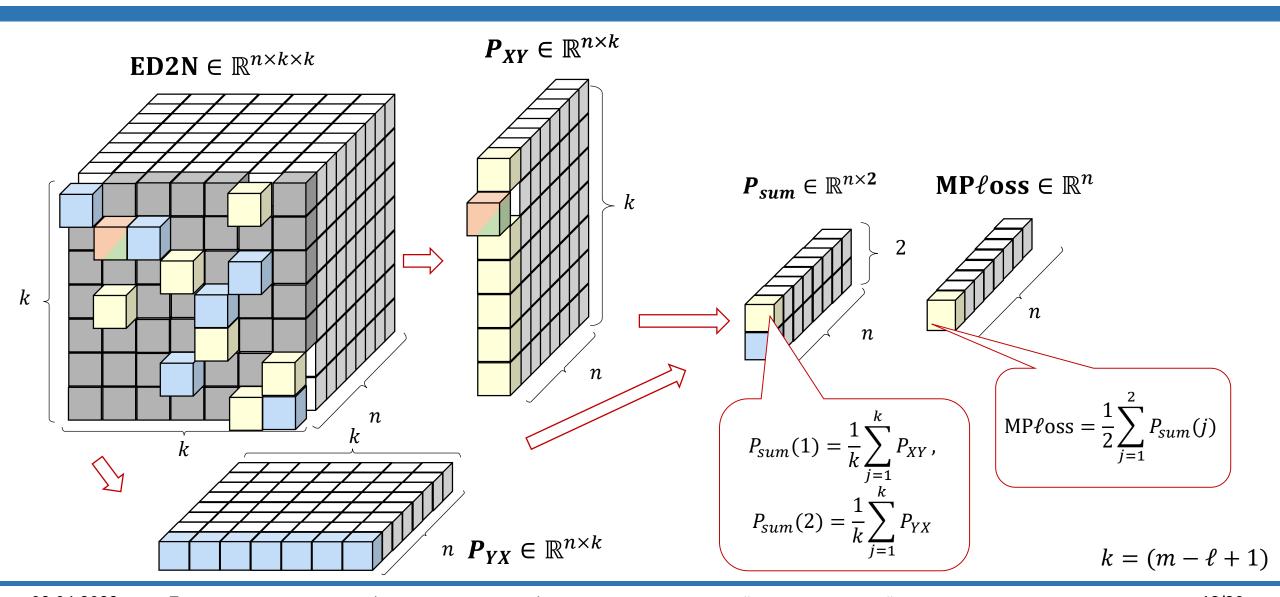
$$k = (m - \ell + 1)$$

MPℓoss: вычисление матричных профилей

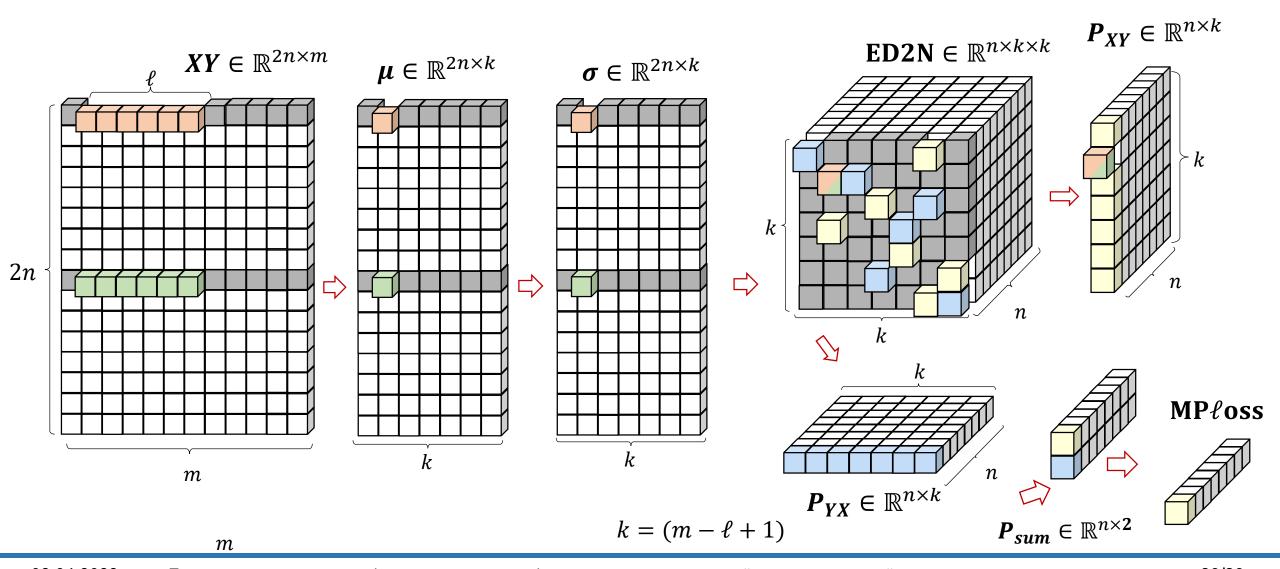


 $k = (m - \ell + 1)$

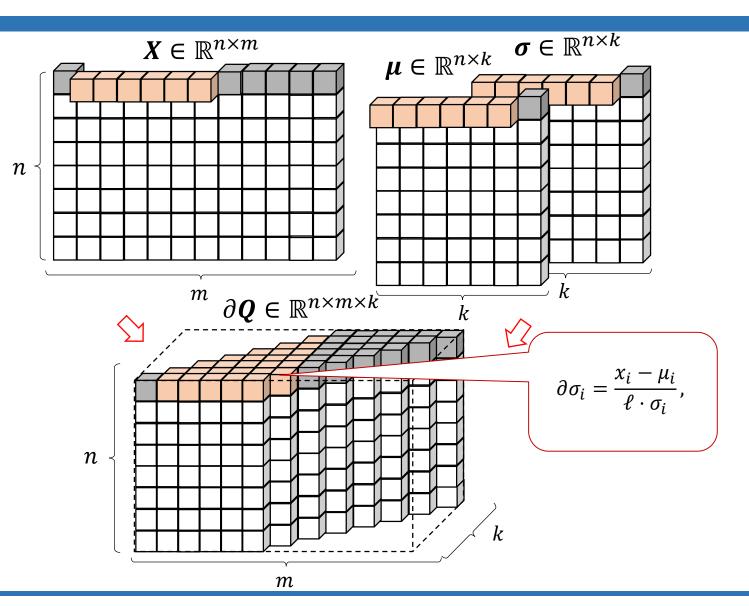
MPloss: вычисление ошибки



MPloss: параллельное вычисление ошибки

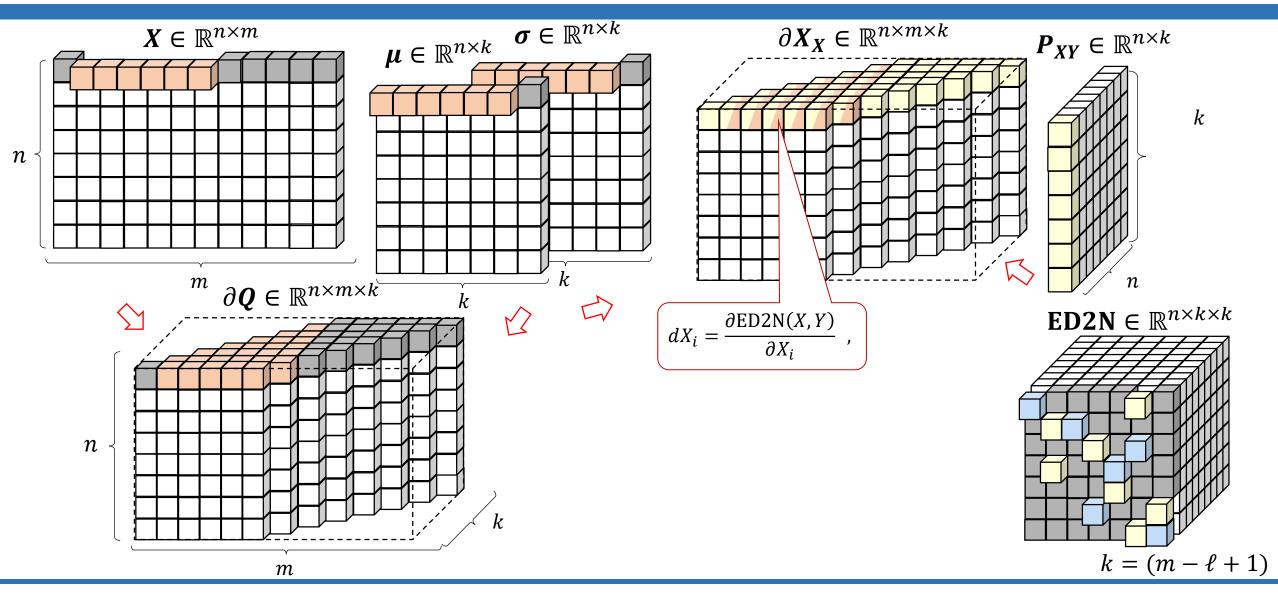


Описание параллельной реализации

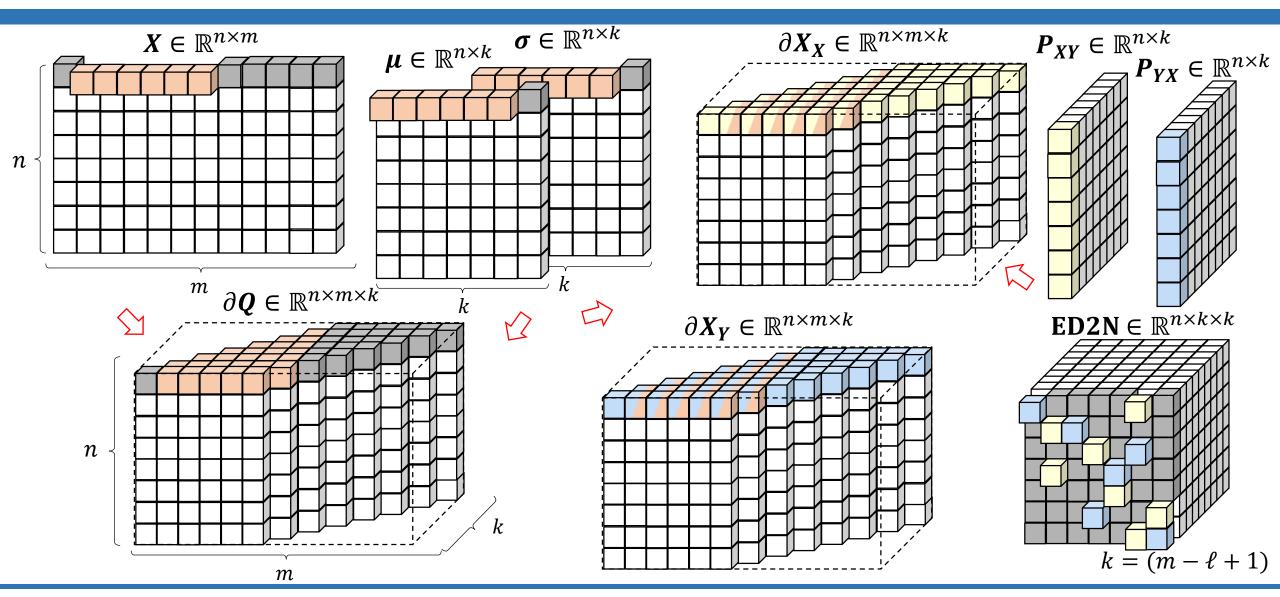


$$k = (m - \ell + 1)$$

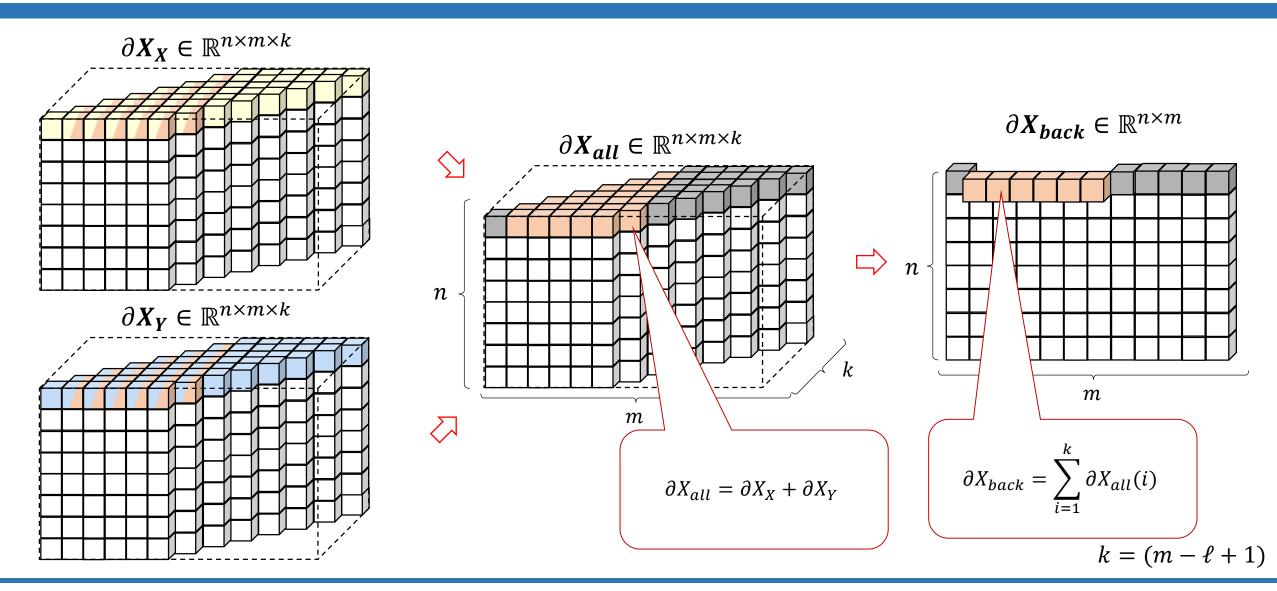
Описание параллельной реализации



Описание параллельной реализации

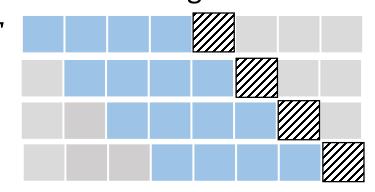


MP eoss: параллельное вычисление градиента ошибки



Вычислительные эксперименты: Наборы, модели и сценарий

MLP: Missing Last Point



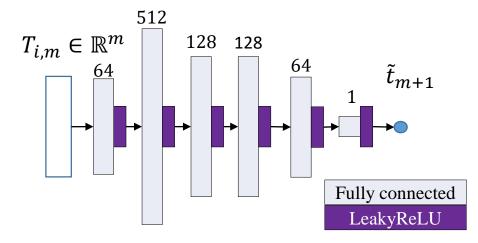
Наборы

Набор	Длина	Семантика
PAMAP 10 000		Показания носимого акселерометра во время физической активности человека
MADRID	25 000	Дорожное движение в Мадриде
BAFU	50 000	Сброс воды в реках Швейцарии
ElectricCity 5 000		Потребление электроэнергии домохозяйством

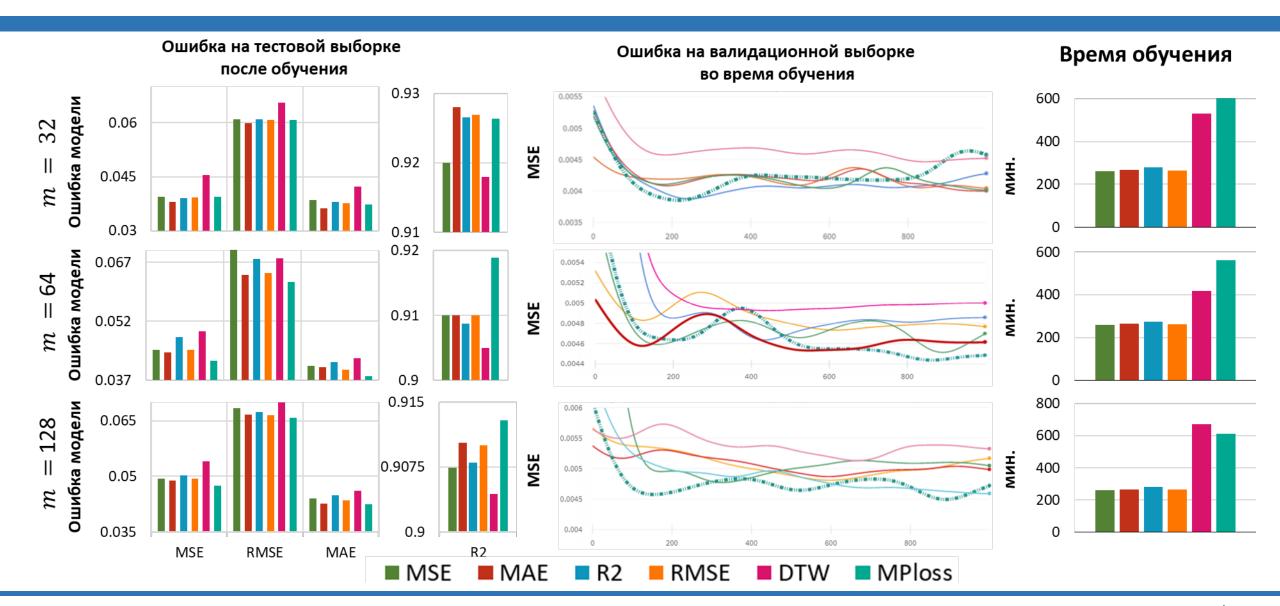
Параметры обучения

Параметр	Значения
Длина подпоследовательности, т	32, 64, 128
Скорость обучения	0.0001, 0.0005, 0.001, 0.0015, 0.002
Оптимизатор	Adam
Максимальное количество эпох	1000
Размер партии (batch size)	64

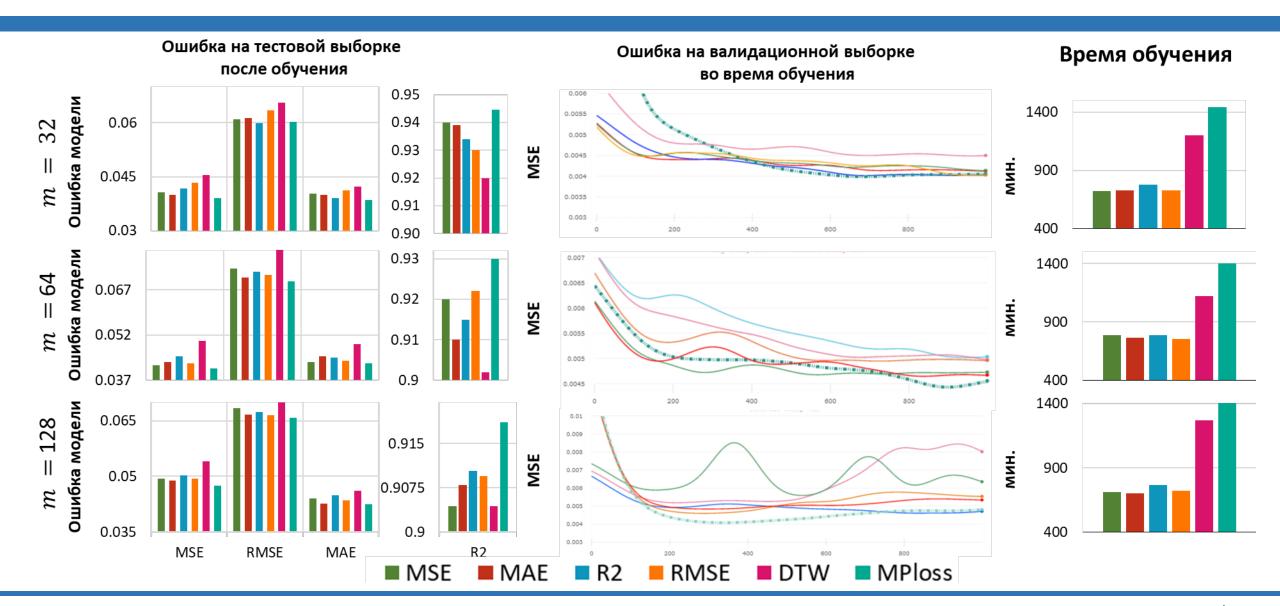
SFFN: Simple Feed-forward Network



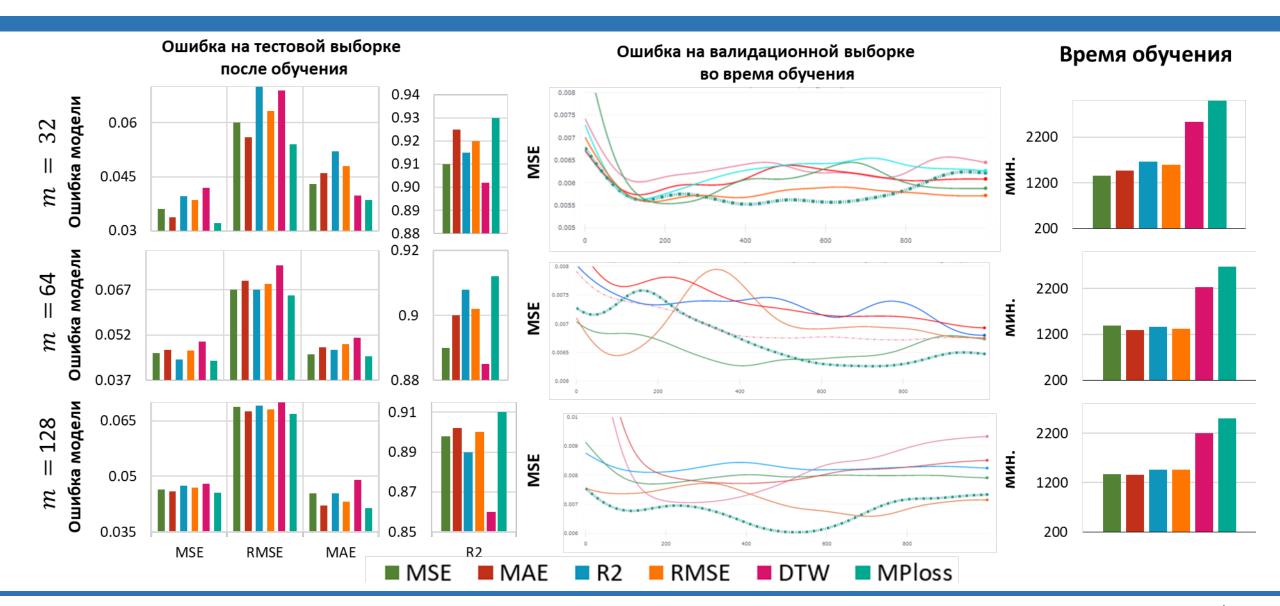
Вычислительные эксперименты: РАМАР



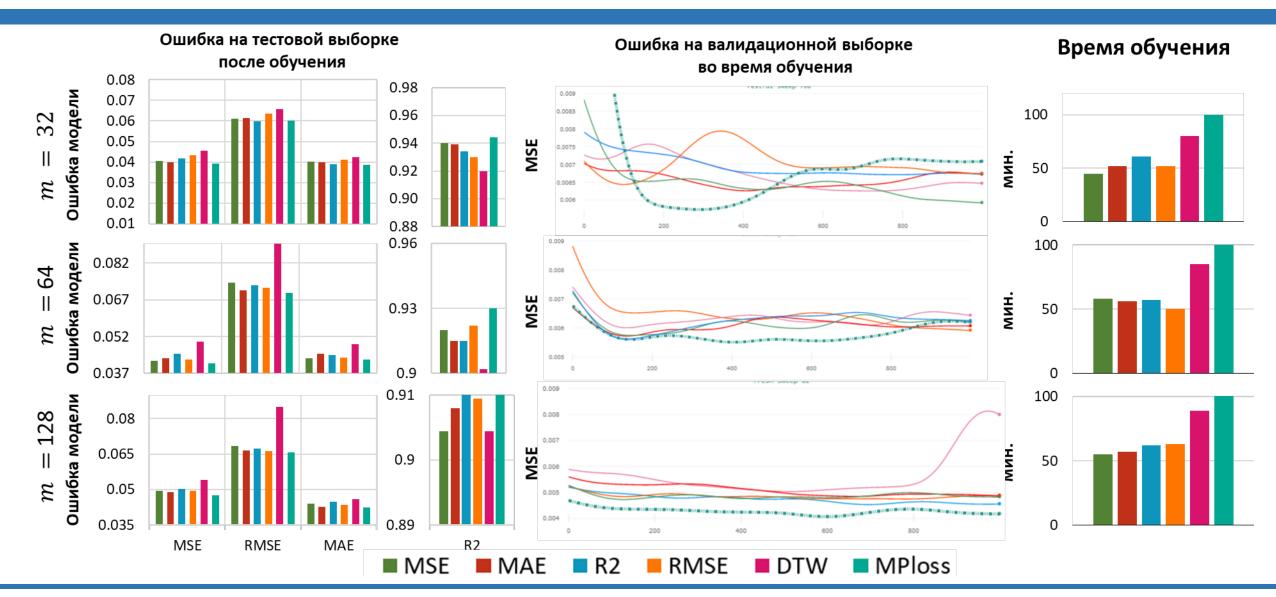
Вычислительные эксперименты: MADRID



Вычислительные эксперименты: BAFU



Вычислительные эксперименты: ElectricCity



Заключение

- Предложены новая функция потерь MPℓoss и метод ее параллельного вычисления, позволяющие увеличить точность нейросетевых моделей восстановления данных временных рядов при адекватном уменьшении производительности обучения моделей
- Будущие исследования: применение MPℓoss в других архитектурах нейронных сетей

• Спасибо за внимание! Вопросы? Алексей Юртин, <u>yurtinalexei@yandex.ru</u>