Time Series Subsequence Similarity Search under Dynamic Time Warping Distance on the Intel Many-core Accelerators*

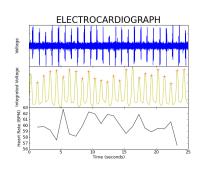
Aleksandr Movchan, Mikhail Zymbler

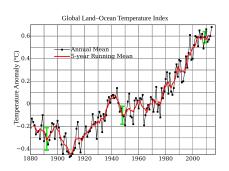
South Ural State University (Chelyabinsk, Russian Federation)

SISAP 2015, 8th International Conference on Similarity Search and Applications Glasgow, Scotland, UK, October 12-14, 2015

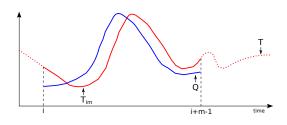
^{*} This work was financially supported by the Ministry of education and science of Russia ("Research and development on priority directions of scientific-technological complex of Russia for 2014-2020" Federal Program, contract No. 14.574.21.0035).

Time Series in Real Life



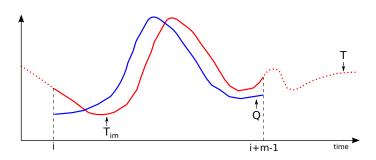


Formal Definitions



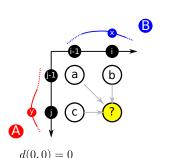
- Time series T
 - $T = t_1, t_2, \ldots, t_N$ where $t_i \in \mathbb{R}$
 - ullet N is a length of the sequence
- Query Q
 - Q is a time series to be found in T
 - n is a length of the query, $n \ll N$
- Subsequence T_{i m}
 - $T_{i m} = t_i, t_{i+1}, \ldots, t_{i+m-1}$
 - $1 \le i \le N$ and $i + m \le N$

Best-match Search



- Find $T_{in} \in T$
 - $\forall m, 1 \leq m \leq N n, D(T_{in}, Q) < D(T_{mn}, Q)$
- D is a similarity measure.

DTW Similarity Measure

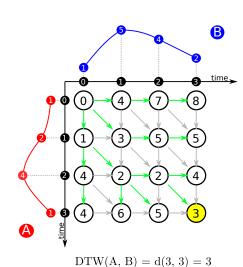


$$d(0,0) = 0$$

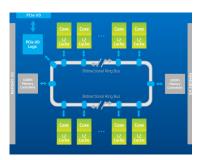
$$d(i,j) = |x - y| + min \begin{cases} d(i-1,j) \\ d(i,j-1) \\ d(i-1,j-1) \end{cases}$$

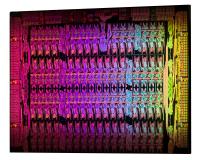
$$= |x - y| + min(a,b,c)$$

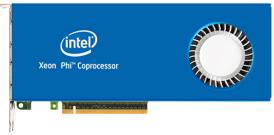
$$\mathrm{DTW}(A,\,B)=\mathrm{d}(N,\,N)$$



Intel Xeon Phi Architecture

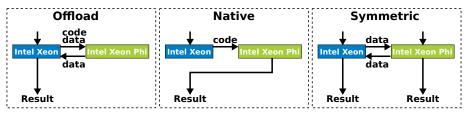






Intel Xeon Phi Programming Model

- Intel Xeon Phi supports the same parallel programming tools and models as x86 CPU
- Execution modes

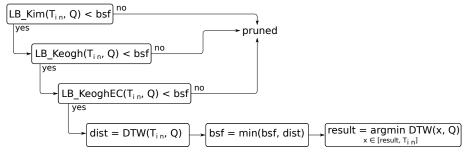


Execution on the CPU, offloading computationally intensive part of work to the coprocessor.

Independent execution on the coprocessor.

Execution on the coprocessor as MPI process.

UCR-DTW Serial Algorithm



Proposed in

Rakthanmanon T., et al. Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping // ACM SIGKDD, 2012. P. 262–270.

UCR-DTW Serial Algorithm

Features

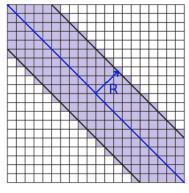
- Dynamic Time Warping as similarity measure
- Exact search
- Z-normalization

$$x_i' = \frac{x_i - \mu}{\sigma}, i \in N,$$

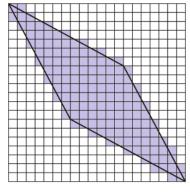
 μ – mean, σ – standard deviation

- Possible to search in large time series
- High level of data parallelism
- One of the fastest

DTW Restrictions



Sakoe-Chiba band



Itakura parallelogram

DTW Bounds

- $LB_{Kim} = \sqrt{(t_0 q_0)^2 + (t_{n-1} q_{n-1})^2}$ Complexity: O(1).
- LB_{Keogh} Sequences U and L are constructed for query Q $u_i = max(q_{i-R}, q_{i+R}), \ l_i = min(q_{i-R}, q_{i+R}),$ $LB_{Keogh}(Q, C) = \sqrt{\sum_{i=1}^{n} \begin{cases} (c_i - u_i)^2 & \text{if } c_i > u_i \\ (c_i - l_i)^2 & \text{if } c_i < l_i \\ 0 & \text{otherwise} \end{cases}}$

Complexity: O(n).

• $LB_{KeoghEC}$ Sequences U and L are constructed for subsequence C $u_i = max(c_{i-R}, c_{i+R}), l_i = min(c_{i-R}, c_{i+R}),$

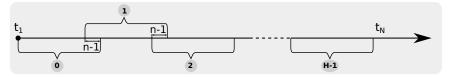
$$LB_{Keogh}(Q,C) = \sqrt{\sum_{i=1}^{n} \begin{cases} (q_i - u_i)^2 & \text{if } q_i > u_i \\ (q_i - l_i)^2 & \text{if } q_i < l_i \\ 0 & \text{otherwise} \end{cases}}$$

Complexity: O(n).

Parallelization Roadmap

- I Parallel Algorithm for CPU
 - Parallelize UCR-DTW using OpenMP
 - Run parallel application on Xeon Phi only using native mode
- II Parallel Algorithm for CPU and Coprocessor
 - Parallel algorithm, combining CPU and Xeon Phi
 - coprocessor computes DTW
 - CPU prunes dissimilar subsequences and sends rest subsequences to the Xeon Phi
 - Run parallel application on CPU and on coprocessor using offload mode

Splitting Time Series Among Threads



• T is partitioned into H equal-length segments

$$H = \lceil \frac{N}{P \cdot S} \rceil \cdot P$$

where

P is the number of OpenMP-threads,

S is a max length of segment (parameter of the algorithm, e.g. $S=10^6$), $n\ll S < N$

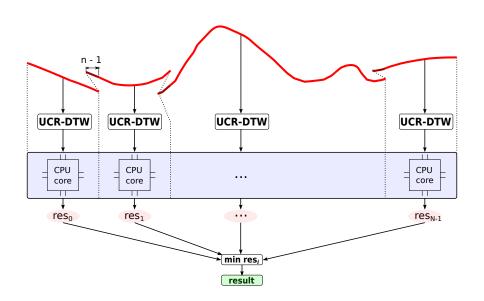
• k-th segment, $0 \le k \le H - 1$, is a subsequence T_{sl}

$$s = \left\{ \begin{array}{ll} 1 & , k = 0 \\ k \cdot \lfloor \frac{N}{H} \rfloor - n + 2 & , \textit{else} \end{array} \right.$$

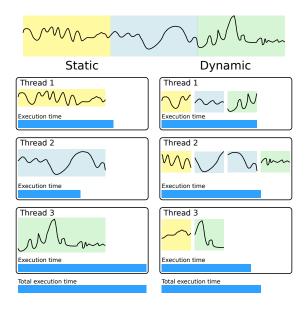
$$I = \left\{ \begin{array}{ll} \lfloor \frac{N}{H} \rfloor & , k = 0 \\ \lfloor \frac{N}{H} \rfloor + n - 1 + (N \bmod H) & , k = H - 1 \\ \lfloor \frac{N}{H} \rfloor + n - 1 & , \textit{else} \end{array} \right.$$

where *n* is length of the query

Parallel Algorithm for CPU



Dynamic vs Static Distribution

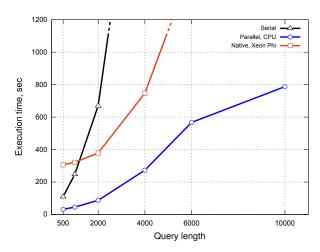


Performance of the Parallel Algorithm for CPU

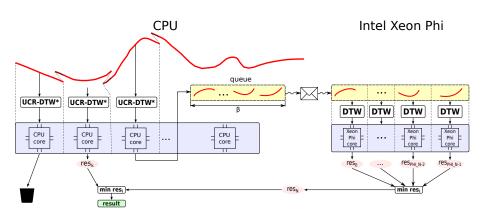
LB_Kim	O(1)
$LB_{-}Keogh$	O(n)
$LB_{-}KeoghEC$	<i>O</i> (<i>n</i>)
DTW	$O(n^2)$

Time of loading data from disk into memory of Intel Xeon Phi: $\approx 300 \ s$

Data set: RANDOM WALK, 108 datapoints



Parallel Algorithm for CPU and Coprocessor



Experiments: Hardware

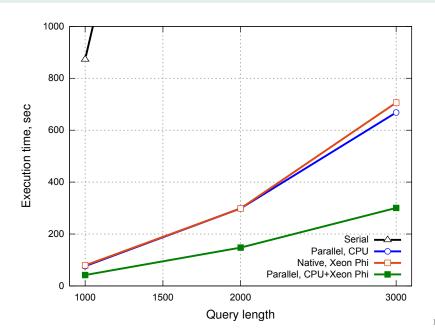
Specifications	Processor	Coprocessor
Model	Intel Xeon X5680	Intel Xeon Phi SE10X
Cores	6	61
Frequency, GHz	3.33	1.1
Threads per core	2	4
Peak performance, TFLOPS	0.371	1.076
Memory, Gb	24	8
Cache, Mb	12	30.5

Experiments: Data Sets

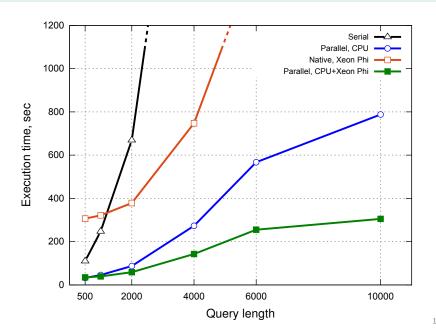
Time series	Category	Length
PURE RANDOM	synthetic	10 ⁶
RANDOM WALK	synthetic	10 ⁸
ECG*	real	$2 \cdot 10^7$

 $^{^{*}}$ Rakthanmanon T., et al. Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping // ACM SIGKDD, 2012. P. 262–270.

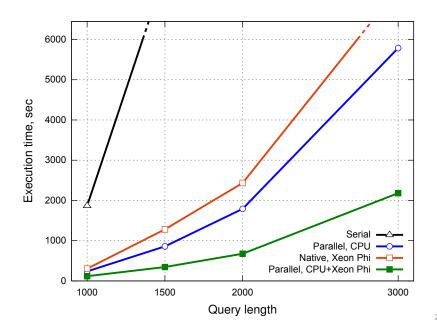
Performance - PURE RANDOM



Performance – RANDOM WALK



Performance - ECG



Impact of Queue Size on the Speedup

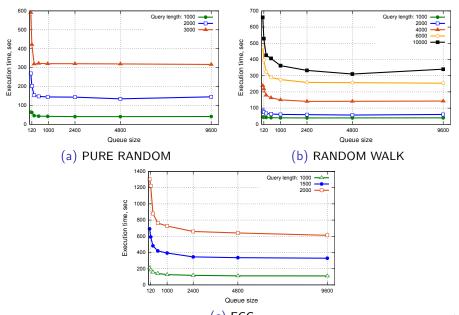
Queue size = $C \times h \times W$ where

C — the number of available cores of the coprocessor,

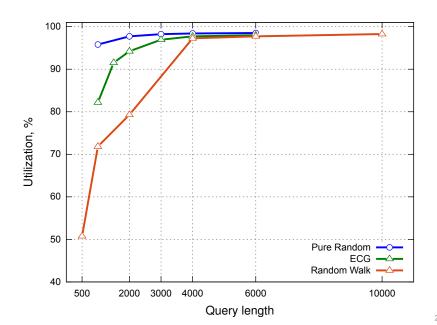
h — hyperthreading factor of the coprocessor,

W — the number of candidates to be processed by a coprocessor's thread.

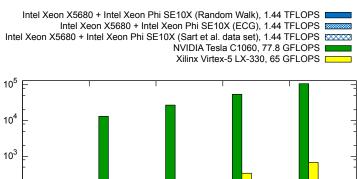
Impact of Queue Size on the Speedup

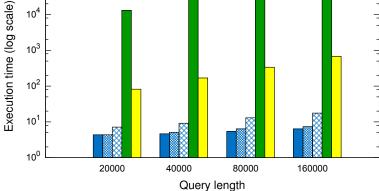


Utilization of Coprocessor

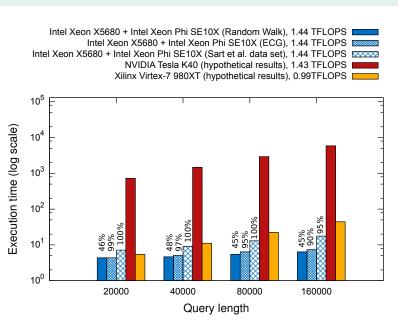


Comparison with Analogues



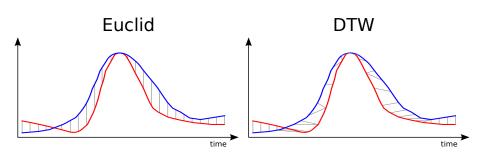


Comparison with Analogues



Conclusion

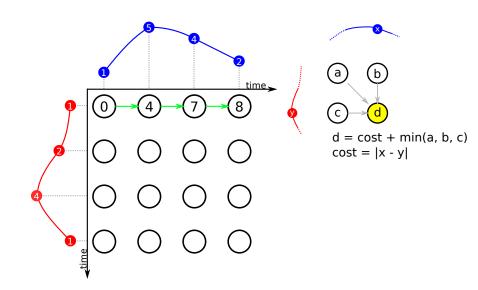
- A parallel algorithm for best-match time series subsequence search under DTW distance on the Intel Many Integrated Core has been presented.
- The algorithm combines capabilities of CPU and the Intel Xeon Phi
 - the coprocessor is exploited only for DTW computations;
 - CPU performs lower bounding, prepares subsequences for the coprocessor;
 - CPU supports a queue of candidate subsequences and the coprocessor computes DTW for each candidate.
- Experiments have shown that the algorithm does not concede to analogous algorithms for GPU and FPGA on performance.
- Future work: extend the algorithm for the following cases:
 - implement modified DTW, based on the wavelet transform;
 - several the Intel Xeon Phi coprocessors;
 - cluster computing system with nodes equipped with a the Intel Xeon Phi coprocessor(s).

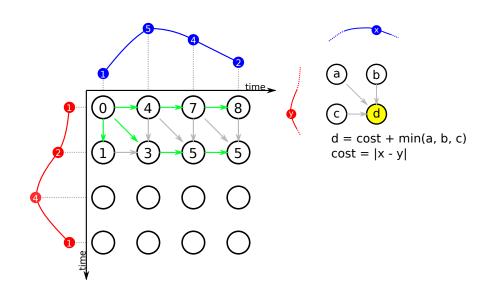


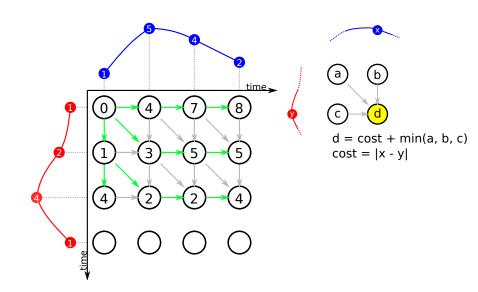
$$DTW(X, Y) = d(N, N),$$

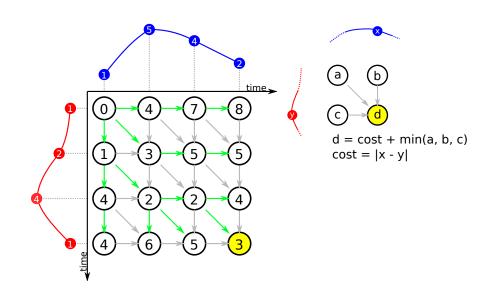
$$d(i,j) = |x_i - y_j| + min \begin{cases} d(i-1,j) \\ d(i,j-1) \\ d(i-1,j-1), \end{cases}$$

$$d(0,0) = 0; d(i,0) = d(0,j) = \infty; i = 1,2,...,N; j = 1,2,...,N.$$

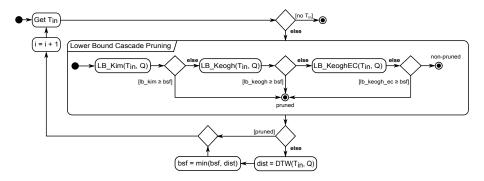




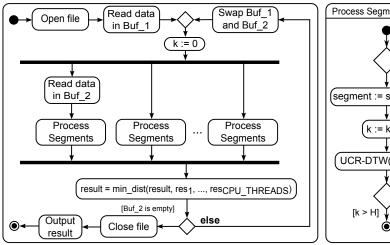


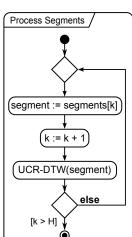


Serial Algorithm

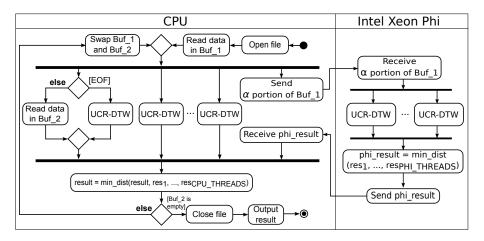


Simple Algorithm

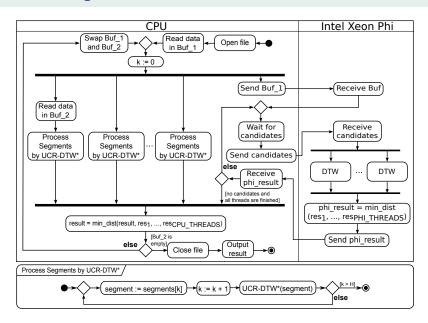




Naïve Algorithm



Advanced Algorithm



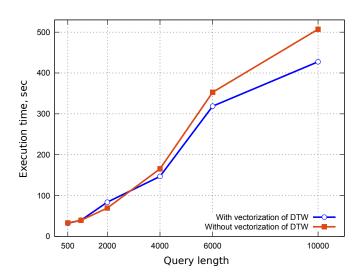
Before vectorization of DTW

```
double DTW(a: array [1..m], b: array [1..m], r: int) {
   cost := array [1..m]
   cost prev := array [1..m]
   for i := 1 to m
     cost[i] = infinity
      cost prev[i] = infinity
   cost prev[1] = dist(a[1], b[1])
   for j := max(2, i-r) to min(m, i+r)
      cost prev[j] := cost prev[j-1] + dist(a[1], b[j])
   for i := 2 to m
      for j := max(1, i-r) to min(m, i+r)
        c := d(a[i], b[i])
         cost[j] := c + min(cost[j-1], cost prev[j-1], cost prev[j])
      swap (cost, cost prev)
   return cost prev[m]
```

After vectorization of DTW

```
double DTW(a: array [1..m], b: array [1..m], r: int) {
   cost := array [1..m]
   cost prev := array [1..m]
  for i := 1 to m
     cost[i] = infinity
      cost prev[i] = infinity
   cost prev[1] = dist(a[1], b[1])
   for j := max(2, i-r) to min(m, i+r)
      cost prev[j] := cost prev[j-1] + dist(a[1], b[j])
   for i := 2 to m
      for j := max(1, i-r) to min(m, i+r)
        cost[j] = min(cost prev[j-1], cost prev[j])
      for j := max(1, i-r) to min(m, i+r)
        c := dist(a[i], b[j])
        cost[j] := c + min(cost[j-1], cost[j])
      swap (cost, cost prev)
   return cost prev[m]
```

Impact of vectorization of DTW



Classification of Contours

