Time Series Subsequence Similarity Search
under Dynamic Time Warping Distance
on the Intel Many-core Accelerators®

Aleksandr Movchan, Mikhail Zymbler

South Ural State University (Chelyabinsk, Russian Federation)

SISAP 2015, 8th International Conference
on Similarity Search and Applications
Glasgow, Scotland, UK, October 12-14, 2015

* This work was financially supported by the Ministry of education and science of Russia
(“Research and development on priority directions of scientific-technological complex of
Russia for 2014-2020" Federal Program, contract No. 14.574.21.0035).



Time Series in Real Life

\oltage

(gpw) Integrated Voltage

ELECTROCARDIOGRAPH Global Land-Ocean Temperature Index
0.6 M
—_ A I'Mean
g 0.4 y Running Mean
o B T L T R + 1 _:~
[T + £
+ 20.2 .
s 1 81Y,
v VW
g
£ x
.
S
7 n—_
A
s o WA
Time (seconds) [ i H
1880 1900 1920 1940 1960 1980 2000

INR-{USD,GBP,EUR JPY}
Sep1998 Sep2000 Sep2002 Sep2004 Sep2006 Sep2008 Sep2010 Sep 2012
20

30
40
\.‘
—usp
50
z ——GBP
60 EUR
—— 100 JPY
70
80
%0
100



Formal Definitions

@ Time series T
o T =t,t,...,ty where t; € R
e N is a length of the sequence
o Query Q
e @ is a time series to be found in T
e nis a length of the query, n < N
@ Subsequence T;,

o 7—im:t/7tl'+17"',ti+m—1
e 1<i<Nandi+m<N

time

26



Best-match Search

A
T
! t!
: f Q
: Tim ! >
i i+m-1 time *
e Find T;,,€T

L Vm,l S m S N — n, D(—rin, Q) < D(Tme)

@ D is a similarity measure.

26



DTW Similarity Measure

/\@
® ® 0 ®0®
4@0 JoRoROR0
JORORORO

® 66606

z 1,7)
d(i, j) = |z — y| +mm d(i,j—1)
dii—1,7—-1)

= |z — y| + min(a,b, c)

DTW(A, B) = d(N, N) DTW(A, B) = d(3,3) = 3

time o



Intel Xeon Phi Architecture

61 core, 244 threads, ~1.2 TFLOPS, 512-bit SIMD

/26



Intel Xeon Phi Programming Model

@ Intel Xeon Phi supports the same parallel programming tools and
models as x86 CPU

@ Execution modes

i offload i Native i Symmetric
code
data code dat
data data
Result Result Result Result
Execution on the Independent execution Execution on the
CPU, offloading on the coprocessor. coprocessor as MPI
process.

computationally
intensive part of work

to the coprocessor.
7/26



UCR-DTW Serial Algorithm

1 no

[LB_Kim(Tin, Q) < bsf]
yes

pruned

LB_Keogh(T; ,, Q) < bsf|"™>
yes

[LB_KeoghEC(Ti ., Q) < bsfl™
yes

dist = DTW(T;,, Q) }ﬁ[ bsf = min(bsf, dist) }ﬁ[resuit = argmin DTW(x, Q)

X € [result, Tj p]

Proposed in

Rakthanmanon T., et al. Searching and Mining Trillions of Time Series

Subsequences under Dynamic Time Warping // ACM SIGKDD, 2012.
P. 262-270.



UCR-DTW Serial Algorithm

Features
@ Dynamic Time Warping as similarity measure
@ Exact search

@ Z-normalization
I Xi—p:
X; =50 € N,
1 — mean, ¢ — standard deviation

Possible to search in large time series

High level of data parallelism
One of the fastest

9/26



DTW Restrictions

Sakoe-Chiba band

Itakura parallelogram

/26



DTW Bounds

® LBkim = +/(to — q0)% + (ta—1 — qn-1)?
Complexity: O(1).

° LBKeogh
Sequences U and L are constructed for query @

ui = max(qi—Rr, qi+Rr), li = min(qi_r, qi+r),

n (C,' — U,')2 if Ci > u;
LBKeogh(Qa C) = Z (C,' — /,')2 if ci < /,'
=110 otherwise

Complexity: O(n).
° LBKeoghEC
Sequences U and L are constructed for subsequence C
uj = max(¢i_R, Ci+r), li = min(ci_g, Ci1R),
o [ (Gi—uw)?  ifgi>u
LBkeogh(Q, C) = | >4 (i —1)? if gi <1
=110 otherwise

Complexity: O(n).

9/26



Parallelization Roadmap

| Parallel Algorithm for CPU
o Parallelize UCR-DTW using OpenMP
e Run parallel application on Xeon Phi only using native mode
[l Parallel Algorithm for CPU and Coprocessor
e Parallel algorithm, combining CPU and Xeon Phi

» coprocessor computes DTW
> CPU prunes dissimilar subsequences and sends rest subsequences to the
Xeon Phi

e Run parallel application on CPU and on coprocessor using offload mode

10/26



Splitting Time Series Among Threads

t n-1 ty
P >

n-1 l I l_ ,—J

0 2 H-1

@ T is partitioned into H equal-length segments
N

H=1ps

P
where
P is the number of OpenMP-threads,
S is a max length of segment (parameter of the algorithm, e.g. S = 10°),
ngS<N
@ k-th segment, 0 < k < H — 1, is a subsequence Ty

1 k=0
ST kLM —n+2 else

| k=0
I=¢ [H]+n—14+(Nmod H) ,k=H-1
|yl +n—1 , else

where n is length of the query 1o



Parallel Algorithm for CPU

[UCR-DTW| [UCR-DTW| UCR-DTW%

\/

12/26



Dynamic vs Static Distribution

Static Dynamic
Thread 1 Thread 1
Execution time Execution time
Thread 2 Thread 2
S VAY WS T\ e
Execution time Execution time
Thread 3 Thread 3
Executlon time Execution time

|

Total execution time Total execution time
. |

13/26



Performance of the Parallel Algorithm for CPU

LB_Kim o(1) Data set: RANDOM WALK, 108 datapoints
LB_Keogh O(n)

LB_KeoghEC | O(n) 1200 — : : : :
DTW O(nz) ' I' Parallel,sggi: i

1000
Time of loading data

from disk into memory
of Intel Xeon Phi:
~ 300 s

800 -

600

Execution time, sec

400

0 Il 1 1 Il

500 2000 4000 6000 10000
Query length



Parallel Algorithm for CPU and Coprocessor

Intel Xeon Phi

) [ucn-DTW*]é [ucr-DTW*]

J

¥

3
21

[ucr-DTW
Xeon Xeon
CPU CPU CPU Phi Phi
core core core core core
3 ] 3 |
resy resy s T€Spyi N2 T€Spyi N1
| | e res, \@l’a/

15/26



Experiments: Hardware

Specifications Processor Coprocessor
Model Intel Xeon X5680 | Intel Xeon Phi SE10X
Cores 6 61
Frequency, GHz 3.33 1.1

Threads per core 2 4

Peak performance, TFLOPS 0.371 1.076
Memory, Gb 24 8

Cache, Mb 12 30.5

16 /26



Experiments: Data Sets

Time series Category | Length
PURE RANDOM | synthetic 10°
RANDOM WALK | synthetic 108
ECG* real 2107

* Rakthanmanon T., et al. Searching and Mining Trillions of Time Series Subsequences

under Dynamic Time Warping // ACM SIGKDD, 2012. P. 262-270.

17 /26



Performance — PURE RANDOM

1000 Z

BOO [t oreeeenes s e
BO0 [---5mmmmmmmmmmmmmm e b

400 [-oioeeeeeee e TS

Execution time, sec

200 i T L

0 | I |

Parallel, CPU ==Om=
Native, Xeon Phi ===

Parallel, CPU+Xeon Phi =il
!

1000 1500 2000
Query length

3000

18/26



Performance — RANDOM WALK

Execution time, sec

1200

1000

800

600

400

200

T T T T

! ! Serial m—\—

Parallel, CPU s

Native, Xeon Phi  se{ e
B Parallel, CPU+Xeon Phi  sefijm= |

i
500 2000 4000 6000 10000
Query length

19/26



Performance — ECG

T T v
6000 |-t Lo .
OO0 oo R S -
1) :
& :
Y4000 [ e -
[0] .
£ 5
S 3000 e .
= :
(8]
(0] . . :
> : . .
W 2000 s LI A S
Serial —A—
1000 [ 7 Parallel, CPU =—O=— |
Native, Xeon Phi =={ =
Parallel, CPU+Xeon Phi =—fl=—
0 | |
1000 1500 2000 3000
Query length

20/26



Impact of Queue Size on the Speedup

Queuve size = Cx hx W
where

C — the number of available cores of the coprocessor,
h — hyperthreading factor of the coprocessor,

W — the number of candidates to be processed by a coprocessor’s thread.

21/26



Impact

of Queue Size on the Speedup

700 7

600

500

400

300

Execution time, sec

200

T
Query length: 1000 —e—

100

1
4800
Queue size

0 L I
120 1000 2400

(b) RANDOM WALK

T
Query length: 1000 —A—

600 T T T T
Query length: 1000 —e—
2000 —(—
500 3000 —A—
%
Q
@ 400 B
o3
£ N A i
T 300 | B
2
2
8 200 B
3
w
100 |- B
Pe—s-
i i i i i
120 1000 2400 4800 9600
Queue size
(a) PURE RANDOM
1400 7
1200
8 1000
&
g
E 800
<
2 60
5
2
o
& 400 [
200 {y
oll i i
120 1000 2400

1
4800
Queue size

(c) ECG

22/26



Utilization of Coprocessor

Utilization, %

100

90

80

70

60

B0 | e
Pure Random ==O==
ECG ==\
: : : : : Random Walk ==/\=—
40 | | | | | |
500 2000 3000 4000 6000 10000
Query length

23/26



Comparison with Analogues

Execution time (log scale)

Intel Xeon X5680 + Intel Xeon Phi SE10X (Random Walk), 1.44 TFLOPS s
Intel Xeon X5680 + Intel Xeon Phi SE10X (ECG), 1.44 TFLOPS k===

Intel Xeon X5680 + Intel Xeon Phi SE10X (Sart et al. data set), 1.44 TFLOPS B&EXXX3
NVIDIA Tesla C1060, 77.8 GFLOPS

Xilinx Virtex-5 LX-330, 65 GFLOPS ——

20000 160000

Query length

24 /26



Comparison with Analogues

Intel Xeon X5680 + Intel Xeon Phi SE10X (Random Walk), 1.44 TFLOPS s
Intel Xeon X5680 + Intel Xeon Phi SE10X (ECG), 1.44 TFLOPS k===

Intel Xeon X5680 + Intel Xeon Phi SE10X (Sart et al. data set), 1.44 TFLOPS B&EXXX3
NVIDIA Tesla K40 (hypothetical results), 1.43 TFLOPS s

Xilinx Virtex-7 980XT (hypothetical results), 0.99TFLOPS /3

10° =
© 1
= 4
< 107 |- .
o
w
8) 4
= 10°} -
QE) 4
=1 ) R
g 10 E
=3 BN S
> S ° &
g 1 A = Y i
X 10 A oL -
w e B ]
0% K
%% 1ot
o ] 1
o ]
10° L)

40000 80000 160000
Query length

25 /26



Conclusion

@ A parallel algorithm for best-match time series subsequence search
under DTW distance on the Intel Many Integrated Core has been
presented.

@ The algorithm combines capabilities of CPU and the Intel Xeon Phi
e the coprocessor is exploited only for DTW computations;
e CPU performs lower bounding, prepares subsequences for the
Coprocessor;
e CPU supports a queue of candidate subsequences and the coprocessor
computes DTW for each candidate.

@ Experiments have shown that the algorithm does not concede to
analogous algorithms for GPU and FPGA on performance.
o Future work: extend the algorithm for the following cases:

e implement modified DTW, based on the wavelet transform;

e several the Intel Xeon Phi coprocessors;

e cluster computing system with nodes equipped with a the Intel Xeon
Phi coprocessor(s).

26 /26



How to Compute DTW

Euclid DTW

time time
DTW(X,Y) = d(N, N),
d(l - 17./ - 1)7

d(0,0) = 0:d(i,0) = d(0,j) = 00;i =1,2,...,N;j =1,2,...,N.

gLy ey

26 /26



How to Compute DTW

/\ﬂ\" ;@@

{ oo

d = cost + min(a, b, ¢)
cost =[x -y|

ONORONO
ONORONO
ONORONC
OOOO




How to Compute DTW

/g\m\" ;@@

RERCEC

d = cost + min(a, b, ¢)
cost =[x -y|

ONONONO
ONORONO
OO@@

ORONONO,




How to Compute DTW

/g\m\" ;@@

RERCEC

d = cost + min(a, b, ¢)
cost =[x -y|

ONOSONO

O &6
ONOS OO
O@@O




How to Compute DTW

NoNo
¢ ©©

d = cost + min(a, b, ¢)
cost =[x -y|

>

tIrT]_Q)

OB OB OO
OO ONO,
OSSO ONO
© & © &L

time

<€



Serial Algorithm

(Lower Bound Cascade Pruning /

LB_Kim(Tin, Q)

[Ib_kim = bsf]

non-pruned

LB_Keogh(Tin, Q).

[Ib_keogh = bsf]

LB_KeoghEC(Tin, Q)

[Ib_keogh_ec = bsf]

©
pruned

Y
[pruned]

Y

(bst = min(ost, dist) }<—(dist = DTW(Tin, Q)

26 /26



Simple Algorithm

-

k:=0

) Read data Swap Buf_1
Open file O and Buf_2

Read data
in Buf_2

Process Process
Segments Segments

Process
Segments

)

Gesult = min_dist(result, rest, ..., reSCPU_THREADS))

Output
result

[Buf_2 is empty]
) else

Close file

Process Segments

(segment = segmentS[k])

(UCR -DTW( segment)

else

[k>H]

26

26



Naive Algorithm

CPU

Intel Xeon Phi

Swap Buf_1
and Buf_2

Read data

Receive

else [EOF]

Send
a portion of Buf_1

Read data
[in Buf 2 ] [UCR—DTW] [UCR—DTW] [UCR—DTW]

Receive phi_result

[result = min_dist(result, res1, ..., reSCPU_THREADS)]

[Buf_2is

else /N\empY]
Close file Ouput} g
result

Q portion of Buf 1

| |

UCR-DTW] [UCR-DTW
! |

phi_result = min_dist
(res1, ..., respHI_THREADS)

Send phi_result

26

26



Advanced Algorithm

CPU Intel Xeon Phi
Swap Buf_1 Read data
) -
( and Buf 2 in Buf 1 Open file
Read data
in Buf_2
Process Process Process candidates candidates
Segments Segments Segments
by UCR-DTW* by UCR-DTW* by UCR-DTW* (Send candidates} L l
else
Receive DTW | .- | DTW
phi_result
[no candidates and
all threads are finished]

hi_result = min_dist
(res1, ..., respHI_THREADS)

Send phi_result
P ®

result

i

(result = min_dist(result, resq, ..., reSCPU_THREADS))

Process Segments by UCR-DTW* /

’—?—’(segment = segments[k])—’(k =k+ 1HUCR-DTW"(segment)) > < >[k>H]’ ®
else

26 /26



Before vectorization of DTW

double DTW(a: array [l..m], b: array [l..m], r: int) {

cost := array [l..m]
cost prev := array [l..m]
for i := 1 tom

cost[1] = infinity

cost prev([i] = infinity

cost_prev[l] = dist{(all], b[1l])

for j := max(2, i-r) to min(m, i+r)
cost_prev([j] := cost prev[j-1] + dist(a[l], b[]])

for i := 2 tom

for j := max(l, i-r) to min(m, i+r)
c :=d(alil, B[3])
cost[j] := c + min(cost([j-1], cost prev[j-1], cost prev[j])

swap (cost, cost_prev)

return cost_prev[m]

26 /26



After vectorization of DTW

double DTW(a: array [l..m], b: array [l..m], r: int) {

cost := array [l..m]
cost prev := array [l..m]
for i := 1 tom
cost([i] = infinity
cost prev[i] = infinity
cost_prev[l] = dist(all], b[1])
for j := max(2, i-r) to min(m, i+r)
cost prev[j] := cost prev[j-1] + dist(all]l, b[jl])
for 1 := 2 tom
for j := max(l, i-r) to min(m, i+r)
cost[j] = min(cost_prev[j-1], cost_prev[j])
for j := max(l, i-r) to min(m, i+r)
c :=dist(a[i], b[3j])
cost[j] := ¢ + min(cost[j-1], cost[]j])

swap (cost, cost_prev)

return cost prev[m]

26 /26



Impact of vectorization of DTW

Execution time, sec

500

400

300

200

100

' With vectorization of DTW ==O=—
Wlithout vectorization of DTW _|._

500

2000 4000 6000
Query length

10000

26 /26



Classification of Contours

T
T7

= R

26 /26



	Introduction
	Formal Definitions
	Time series, subsequence, query
	Best-match subsequence search
	Dynamic Time Warping

	Accelerating best-match search on the Intel MIC coprocessors
	Intel Many Integrated Core architecture and programming model
	Serial Algorithm
	Parallelization roadmap
	Simple parallel algorithm
	Parallel Algorithm for CPU and Coprocessor

	Experimental evaluation
	Hardware and data sets
	Performance

	Conclusion
	Appendix
	Dynamic Time Warping
	UML diagrams and pseudo-code
	Applications of best-match subsequence search


