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Time Series in Real Life
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Formal Definitions

@ Time series T
o T =t,t,...,ty where t; € R
e N is a length of the sequence
o Query Q
e @ is a time series to be found in T
e nis a length of the query, n < N
@ Subsequence T;,

o 7—im:t/7tl'+17"',ti+m—1
e 1<i<Nandi+m<N

time
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Best-match Search

A
T
! t!
: f Q
: Tim ! >
i i+m-1 time *
e Find T;,,€T

L Vm,l S m S N — n, D(—rin, Q) < D(Tme)

@ D is a similarity measure.
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DTW Similarity Measure
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d(i, j) = |z — y| +mm d(i,j—1)
dii—1,7—-1)

= |z — y| + min(a,b, c)

DTW(A, B) = d(N, N) DTW(A, B) = d(3,3) = 3

time o



Intel Xeon Phi Architecture

61 core, 244 threads, ~1.2 TFLOPS, 512-bit SIMD
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Intel Xeon Phi Programming Model

@ Intel Xeon Phi supports the same parallel programming tools and
models as x86 CPU

@ Execution modes

i offload i Native i Symmetric
code
data code dat
data data
Result Result Result Result
Execution on the Independent execution Execution on the
CPU, offloading on the coprocessor. coprocessor as MPI
process.

computationally
intensive part of work

to the coprocessor.
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UCR-DTW Serial Algorithm

1 no

[LB_Kim(Tin, Q) < bsf]
yes

pruned

LB_Keogh(T; ,, Q) < bsf|"™>
yes

[LB_KeoghEC(Ti ., Q) < bsfl™
yes

dist = DTW(T;,, Q) }ﬁ[ bsf = min(bsf, dist) }ﬁ[resuit = argmin DTW(x, Q)

X € [result, Tj p]

Proposed in

Rakthanmanon T., et al. Searching and Mining Trillions of Time Series

Subsequences under Dynamic Time Warping // ACM SIGKDD, 2012.
P. 262-270.



UCR-DTW Serial Algorithm

Features
@ Dynamic Time Warping as similarity measure
@ Exact search

@ Z-normalization
I Xi—p:
X; =50 € N,
1 — mean, ¢ — standard deviation

Possible to search in large time series

High level of data parallelism
One of the fastest

9/26



DTW Restrictions

Sakoe-Chiba band

Itakura parallelogram
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DTW Bounds

® LBkim = +/(to — q0)% + (ta—1 — qn-1)?
Complexity: O(1).

° LBKeogh
Sequences U and L are constructed for query @

ui = max(qi—Rr, qi+Rr), li = min(qi_r, qi+r),

n (C,' — U,')2 if Ci > u;
LBKeogh(Qa C) = Z (C,' — /,')2 if ci < /,'
=110 otherwise

Complexity: O(n).
° LBKeoghEC
Sequences U and L are constructed for subsequence C
uj = max(¢i_R, Ci+r), li = min(ci_g, Ci1R),
o [ (Gi—uw)?  ifgi>u
LBkeogh(Q, C) = | >4 (i —1)? if gi <1
=110 otherwise

Complexity: O(n).
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Parallelization Roadmap

| Parallel Algorithm for CPU
o Parallelize UCR-DTW using OpenMP
e Run parallel application on Xeon Phi only using native mode
[l Parallel Algorithm for CPU and Coprocessor
e Parallel algorithm, combining CPU and Xeon Phi

» coprocessor computes DTW
> CPU prunes dissimilar subsequences and sends rest subsequences to the
Xeon Phi

e Run parallel application on CPU and on coprocessor using offload mode
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Splitting Time Series Among Threads

t n-1 ty
P >

n-1 l I l_ ,—J

0 2 H-1

@ T is partitioned into H equal-length segments
N

H=1ps

P
where
P is the number of OpenMP-threads,
S is a max length of segment (parameter of the algorithm, e.g. S = 10°),
ngS<N
@ k-th segment, 0 < k < H — 1, is a subsequence Ty

1 k=0
ST kLM —n+2 else

| k=0
I=¢ [H]+n—14+(Nmod H) ,k=H-1
|yl +n—1 , else

where n is length of the query 1o



Parallel Algorithm for CPU

[UCR-DTW| [UCR-DTW| UCR-DTW%

\/
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Dynamic vs Static Distribution

Static Dynamic
Thread 1 Thread 1
Execution time Execution time
Thread 2 Thread 2
S VAY WS T\ e
Execution time Execution time
Thread 3 Thread 3
Executlon time Execution time

|

Total execution time Total execution time
. |
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Performance of the Parallel Algorithm for CPU

LB_Kim o(1) Data set: RANDOM WALK, 108 datapoints
LB_Keogh O(n)

LB_KeoghEC | O(n) 1200 — : : : :
DTW O(nz) ' I' Parallel,sggi: i

1000
Time of loading data

from disk into memory
of Intel Xeon Phi:
~ 300 s
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Parallel Algorithm for CPU and Coprocessor

Intel Xeon Phi

) [ucn-DTW*]é [ucr-DTW*]

J

¥

3
21

[ucr-DTW
Xeon Xeon
CPU CPU CPU Phi Phi
core core core core core
3 ] 3 |
resy resy s T€Spyi N2 T€Spyi N1
| | e res, \@l’a/
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Experiments: Hardware

Specifications Processor Coprocessor
Model Intel Xeon X5680 | Intel Xeon Phi SE10X
Cores 6 61
Frequency, GHz 3.33 1.1

Threads per core 2 4

Peak performance, TFLOPS 0.371 1.076
Memory, Gb 24 8

Cache, Mb 12 30.5

16 /26



Experiments: Data Sets

Time series Category | Length
PURE RANDOM | synthetic 10°
RANDOM WALK | synthetic 108
ECG* real 2107

* Rakthanmanon T., et al. Searching and Mining Trillions of Time Series Subsequences

under Dynamic Time Warping // ACM SIGKDD, 2012. P. 262-270.
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Performance — PURE RANDOM
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Performance — RANDOM WALK
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Performance — ECG
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Impact of Queue Size on the Speedup

Queuve size = Cx hx W
where

C — the number of available cores of the coprocessor,
h — hyperthreading factor of the coprocessor,

W — the number of candidates to be processed by a coprocessor’s thread.
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Impact

of Queue Size on the Speedup
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Utilization of Coprocessor

Utilization, %
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Comparison with Analogues

Execution time (log scale)

Intel Xeon X5680 + Intel Xeon Phi SE10X (Random Walk), 1.44 TFLOPS s
Intel Xeon X5680 + Intel Xeon Phi SE10X (ECG), 1.44 TFLOPS k===

Intel Xeon X5680 + Intel Xeon Phi SE10X (Sart et al. data set), 1.44 TFLOPS B&EXXX3
NVIDIA Tesla C1060, 77.8 GFLOPS

Xilinx Virtex-5 LX-330, 65 GFLOPS ——

20000 160000

Query length
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Comparison with Analogues

Intel Xeon X5680 + Intel Xeon Phi SE10X (Random Walk), 1.44 TFLOPS s
Intel Xeon X5680 + Intel Xeon Phi SE10X (ECG), 1.44 TFLOPS k===

Intel Xeon X5680 + Intel Xeon Phi SE10X (Sart et al. data set), 1.44 TFLOPS B&EXXX3
NVIDIA Tesla K40 (hypothetical results), 1.43 TFLOPS s
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Conclusion

@ A parallel algorithm for best-match time series subsequence search
under DTW distance on the Intel Many Integrated Core has been
presented.

@ The algorithm combines capabilities of CPU and the Intel Xeon Phi
e the coprocessor is exploited only for DTW computations;
e CPU performs lower bounding, prepares subsequences for the
Coprocessor;
e CPU supports a queue of candidate subsequences and the coprocessor
computes DTW for each candidate.

@ Experiments have shown that the algorithm does not concede to
analogous algorithms for GPU and FPGA on performance.
o Future work: extend the algorithm for the following cases:

e implement modified DTW, based on the wavelet transform;

e several the Intel Xeon Phi coprocessors;

e cluster computing system with nodes equipped with a the Intel Xeon
Phi coprocessor(s).
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How to Compute DTW

Euclid DTW

time time
DTW(X,Y) = d(N, N),
d(l - 17./ - 1)7

d(0,0) = 0:d(i,0) = d(0,j) = 00;i =1,2,...,N;j =1,2,...,N.

gLy ey
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How to Compute DTW

/\ﬂ\" ;@@

{ oo

d = cost + min(a, b, ¢)
cost =[x -y|
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How to Compute DTW
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How to Compute DTW
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How to Compute DTW

NoNo
¢ ©©

d = cost + min(a, b, ¢)
cost =[x -y|
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Serial Algorithm

(Lower Bound Cascade Pruning /

LB_Kim(Tin, Q)

[Ib_kim = bsf]

non-pruned

LB_Keogh(Tin, Q).

[Ib_keogh = bsf]

LB_KeoghEC(Tin, Q)

[Ib_keogh_ec = bsf]

©
pruned

Y
[pruned]

Y

(bst = min(ost, dist) }<—(dist = DTW(Tin, Q)
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Simple Algorithm

-

k:=0

) Read data Swap Buf_1
Open file O and Buf_2

Read data
in Buf_2

Process Process
Segments Segments

Process
Segments

)

Gesult = min_dist(result, rest, ..., reSCPU_THREADS))

Output
result

[Buf_2 is empty]
) else

Close file

Process Segments

(segment = segmentS[k])

(UCR -DTW( segment)

else

[k>H]

26
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Naive Algorithm

CPU

Intel Xeon Phi

Swap Buf_1
and Buf_2

Read data

Receive

else [EOF]

Send
a portion of Buf_1

Read data
[in Buf 2 ] [UCR—DTW] [UCR—DTW] [UCR—DTW]

Receive phi_result

[result = min_dist(result, res1, ..., reSCPU_THREADS)]

[Buf_2is

else /N\empY]
Close file Ouput} g
result

Q portion of Buf 1

| |

UCR-DTW] [UCR-DTW
! |

phi_result = min_dist
(res1, ..., respHI_THREADS)

Send phi_result
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Advanced Algorithm

CPU Intel Xeon Phi
Swap Buf_1 Read data
) -
( and Buf 2 in Buf 1 Open file
Read data
in Buf_2
Process Process Process candidates candidates
Segments Segments Segments
by UCR-DTW* by UCR-DTW* by UCR-DTW* (Send candidates} L l
else
Receive DTW | .- | DTW
phi_result
[no candidates and
all threads are finished]

hi_result = min_dist
(res1, ..., respHI_THREADS)

Send phi_result
P ®

result

i

(result = min_dist(result, resq, ..., reSCPU_THREADS))

Process Segments by UCR-DTW* /

’—?—’(segment = segments[k])—’(k =k+ 1HUCR-DTW"(segment)) > < >[k>H]’ ®
else
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Before vectorization of DTW

double DTW(a: array [l..m], b: array [l..m], r: int) {

cost := array [l..m]
cost prev := array [l..m]
for i := 1 tom

cost[1] = infinity

cost prev([i] = infinity

cost_prev[l] = dist{(all], b[1l])

for j := max(2, i-r) to min(m, i+r)
cost_prev([j] := cost prev[j-1] + dist(a[l], b[]])

for i := 2 tom

for j := max(l, i-r) to min(m, i+r)
c :=d(alil, B[3])
cost[j] := c + min(cost([j-1], cost prev[j-1], cost prev[j])

swap (cost, cost_prev)

return cost_prev[m]
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After vectorization of DTW

double DTW(a: array [l..m], b: array [l..m], r: int) {

cost := array [l..m]
cost prev := array [l..m]
for i := 1 tom
cost([i] = infinity
cost prev[i] = infinity
cost_prev[l] = dist(all], b[1])
for j := max(2, i-r) to min(m, i+r)
cost prev[j] := cost prev[j-1] + dist(all]l, b[jl])
for 1 := 2 tom
for j := max(l, i-r) to min(m, i+r)
cost[j] = min(cost_prev[j-1], cost_prev[j])
for j := max(l, i-r) to min(m, i+r)
c :=dist(a[i], b[3j])
cost[j] := ¢ + min(cost[j-1], cost[]j])

swap (cost, cost_prev)

return cost prev[m]
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Impact of vectorization of DTW
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Classification of Contours

T
T7

= R
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