Accelerating Time Series Subsequence Matching on the Intel Xeon Phi Many-core Coprocessor

Ruslan Miniakhmetov <u>Alexander Movchan</u> Mikhail Zymbler

South Ural State University, Chelyabinsk, Russian Federation

MIPRO 2015

This work was financially supported by the Ministry of education and science of Russia ("Research and development on priority directions of scientific-technological complex of Russia for 2014-2020" Federal Program, contract No. 14.574.21.0035).

Background: Time Series

- ► A time series T is an ordered sequence t₁, t₂, ..., t_N of real data points, measured chronologically, where N is a length of the sequence.
- ► A subsequence T_{ij} of time series T is its continuous subset starting at i position and ending at j position.
- A query Q is a certain subsequence to be found in T .

Background: Applications

Subsequence matching problem aims to finding subsequence T_{ij} such that distance $D(T_{ij}, Q)$ is minimal.

Best-match search: find $T_{ij} \in T$, where $\forall T_{mn}$

▶
$$|T_{mn}| = |T_{ij}| = |Q|$$

 $\blacktriangleright D(T_{ij}, Q) < D(T_{mn}, Q)$

Background: Dynamic Time Warping

DTW(X,Y) = d(N,N),

$$d(i,j) = |x_i - y_j| + \min \begin{cases} d(i-1,j) \\ d(i,j-1) \\ d(i-1,j-1), \end{cases}$$

 $d(0,0) = 0; d(i,0) = d(0,j) = \infty; i = 1, 2, \dots, N; j = 1, 2, \dots, N.$

Intel Xeon Phi Many-core Coprocessor

61 core, 244 threads, \approx 1.2 TFLOPS, 512-bit SIMD

- Native Execution
 - independent execution on the coprocessor
- Offload Mode
 - execution on the host, offloading computationally intensive part of work to the coprocessor
- Symmetric Mode
 - execution on the coprocessor as MPI process

UCR-DTW Serial Algorithm

Rakthanmanon T., et al. Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping // The 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Beijing, China, 12-16 August, 2012. ACM, 2012. P. 262–270.

Parallel Algorithm for CPU

Performance of Parallel Algorithm for CPU

LB_Kim	O(1)
LB_Keogh	O(n)
LB_KeoghEC	O(n)
DTW	$O(n^2)$

Time of loading data from disk into memory of Intel Xeon Phi: $\approx 300 \ c$

Data Set: random walk, 10^8 datapoints

Naïve Parallel Algorithm for CPU and Intel Xeon Phi

Performance of Naïve Parallel Algorithm for CPU and Intel Xeon Phi

Advanced Parallel Algorithm for CPU and Intel Xeon Phi

Experiments

Hardware (Tornado SUSU supercomputer's node)

- CPU
 - Intel Xeon X5680
 - 6 cores on 3.33 GHz
 - 0.371 TFLOPS
- Coprocessor
 - Intel Xeon Phi SE10X
 - 61 cores on 1.1 GHz
 - 1.076 TFLOPS
- Data Sets
 - Synthetic
 - random walk, 10⁸ datapoints
 - Real
 - \blacksquare ECG, 2×10^7 datapoints (approximately 22 hours of ECG sampled at 250 Hz)

Performance on Synthetic Data Set

Data Set: random walk, 10^8 datapoints

Performance on Real Data Set

Data Set: ECG, 2×10^7 datapoints

Comparison with Algorithms for GPU and FPGA

Sart et al. Accelerating dynamic time warping subsequence search with GPUs and FPGAs // ICDM, 2010. Query length: 1024

Conclusion

- A parallel algorithm of subsequence matching for the Intel Xeon Phi coprocessors was developed.
- Experiments on synthetic and real data sets have shown that our algorithm are effective on the long queries.
- Future work:
 - extend our algorithm for the case of a cluster system based on nodes equipped with the Intel Xeon Phi coprocessors;
 - extend our algorithm for the case of a node equipped with a few Intel Xeon Phi coprocessors.

MedMining Project

Data mining of physiological studies of professional athletes

Classification of contour shapes

Parallel Algorithm for CPU

Naïve Parallel Algorithm for CPU and Intel Xeon Phi

Advanced Parallel Algorithm for CPU and Intel Xeon Phi

UCR-DTW*

Queue Size: random walk

Queue Size: ECG

