Всероссийская научная конференция с международным участием Параллельные вычислительные технологии (ПаВТ'2023) Санкт-Петербург, 28–30 марта 2023 г.

Автоматизированный поиск аномалий временных рядов на графическом процессоре

<u>Я.А. Краева</u>, М.Л. Цымблер

Южно-Уральский государственный университет (Челябинск)

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 23-21-00465).

ситет (Челябинск)

Поиск аномалий во временных рядах из цифровой индустрии

Автоматизированный поиск аномалий временных рядов на графическом процессоре

17.03.2023

Постановка задачи

- **Диссонанс**¹⁾ подпоследовательность ряда, расстояние от которой до ближайшего соседа не ниже порога *r*
- **Дано:** временной ряд *T*, длина диссонанса *m*, порог *r*
- Найти: $D = \{d_1, d_2, ...\}, d_i \in D \Leftrightarrow \forall s \in T \min_{s \cap d_i = \emptyset} \text{dist}(d_i, s) \ge r$

Количество подпоследовательностей: N = n - m + 1

¹⁾ Yankov D., Keogh E.J., Rebbapragada U. Disk aware discord discovery: finding unusual time series in terabyte sized datasets. Knowl. Inf. Syst. 17(2): 241-262. 2008.

Автоматизированный поиск аномалий временных рядов на графическом процессоре

Основные работы по теме исследования

Алгоритм	Платформа	Критика			
Последовательный алгоритм					
Nakamura T. <i>, et al.</i> MERLIN : parameter-free discovery of arbitrary length anomalies in massive time series archives. IEEE ICDM 2020. pp. 1190-1195.	CPU	Квадратичная сложность от длины ряда			
Параллельные алгоритмы					
DRAG: Yankov D. <i>, et al</i> . Disk aware discord discovery: finding unusual time series in terabyte sized datasets. Knowl. Inf. Syst. 17(2): 241-262. 2008.	CPU	Симуляция MapReduce			
PDD: Huang T. <i>, et al</i> . Parallel discord discovery. PAKDD 2016. LNCS 9652. Springer, 2016. pp. 233-244.	Spark	Низкая производительность ввиду большого количества обменов между узлами			
PhiDD: Zymbler M., <i>et al.</i> A Parallel Approach to Discords Discovery in Massive Time Series Data. Computers, Materials & Continua 66(2): 1867-1876. 2021.	Кластер Intel Xeon Phi	Квадратичная пространственная сложность от длины ряда			
KBF_GPU: Thuy T.T.H., <i>et al</i> . A new discord definition and an efficient time series discord detection method using GPUs. ICSED 2021. pp. 63-70.	GPU	Полный перебор подпоследовательностей ряда			
Zhu B., <i>et al.</i> A GPU Acceleration framework for motif and discord based pattern mining. IEEE Trans. on Parallel and Distr. Systems 32(8): 1987-2004. 2021.	GPU	Поиск одного (самого важного) диссонанса ряда			
PD3 : Zymbler M., Kraeva Ya. Parallel algorithm for time series discord discovery on a graphics processor. Pattern Recognition and Image Analysis 33(2). 2023.	GPU	Ручной подбор длины диссонанса и порога			

Автоматизированный поиск аномалий временных рядов на графическом процессоре

PD3 (Parallel <u>D</u>RAG-based <u>D</u>iscord <u>D</u>iscovery): Ручной подбор *r*

Автоматизированный поиск аномалий временных рядов на графическом процессоре

PD3 (Parallel <u>D</u>RAG-based <u>D</u>iscord <u>D</u>iscovery): Ручной подбор *m*

Автоматизированный поиск аномалий временных рядов на графическом процессоре

17.03.2023

І Іостановка задачи автоматизированного поиска диссонансов¹⁾

- **Дано:** временной ряд *T*, диапазон длин диссонансов *minL*, ..., *maxL*
- maxL $\bigcup_{m = minL} D_m, D_m = \{d_1^m, d_2^m, ...\}, d_i^m -$ диссонансы • Найти: $\mathcal{D} =$

¹⁾ Nakamura T., et al. MERLIN: parameter-free discovery of arbitrary length anomalies in massive time series archives. IEEE ICDM 2020. pp. 1190-1195.

Автоматизированный поиск аномалий временных рядов на графическом процессоре

І Іостановка задачи автоматизированного поиска диссонансов¹⁾

• **Дано:** временной ряд *T*, диапазон длин диссонансов *minL*, ..., *maxL*

¹⁾ Nakamura T., et al. MERLIN: parameter-free discovery of arbitrary length anomalies in massive time series archives. IEEE ICDM 2020. pp. 1190-1195.

Автоматизированный поиск аномалий временных рядов на графическом процессоре

^{17.03.2023}

PALMAD: Parallel Arbitrary Length MERLIN-based Anomaly Discovery

- Применение ED²_{norm} в качестве функции расстояния¹⁾ 1. $\mathrm{ED}_{\mathrm{norm}}^{2}(T_{i,m}, T_{j,m}) = 2m \left(1 - \frac{T_{i,m} \cdot T_{j,m} - m\mu_{i}\mu_{j}}{m\sigma_{i}\sigma_{i}}\right)$
- Сокращение избыточных вычислений μ и σ при вычислении ${
 m ED}_{
 m norm}^2$ 2. **Лемма.** Пусть даны ряд T, |T| = n и подпоследовательности $T_{i,m}$ и $T_{i,m+1}$. Тогда

$$\mu_{T_{i,m+1}} = \frac{1}{m+1} (m\mu_{T_{i,m}} + t_{i+m}), \quad \sigma_{T_{i,m+1}}^2 = \frac{m}{m+1} (\sigma_{T_{i,m}}^2)$$

- 3. Автоматизированный подбор порога r
- Тепловая карта диссонансов 4.

¹⁾ Mueen A. et al. Fast approximate correlation for massive time-series data. SIGMOD 2010. pp. 171-182. ACM (2010). https://doi.org/10.1145/1807167.1807188

Автоматизированный поиск аномалий временных рядов на графическом процессоре

$+\frac{1}{m+1}(\mu_{T_{i,m}}-t_{i+m})^2).$

Схема PALMAD

Автоматизированный поиск аномалий временных рядов на графическом процессоре

17.03.2023

Сокращение избыточных вычислений $\overline{\mu}$ и $\overline{\sigma}$

Автоматизированный поиск аномалий временных рядов на графическом процессоре

17.03.2023

PD3: Parallel DRAG-based Discord Discovery ED²_{norm}

- PD3 включает 2 фазы: отбор кандидатов в диссонансы и очистка кандидатов 1.
- Использование концепции параллелизма по данным 2.
- Эффективное вычисление скалярных произведений $T_{i,m} \cdot T_{j,m}$ 3.

Автоматизированный поиск аномалий временных рядов на графическом процессоре

$$\left(T_{i,m}, T_{j,m}\right) = 2m\left(1 - \frac{T_{i,m} \cdot T_{j,m} - m\mu_i\mu_j}{m\sigma_i\sigma_j}\right)$$

$$QTrow^{(i)}(tid) = \sum_{k=1}^{m} T_{tid}^{(i)}(k) \cdot Chunk_{1}^{(j)}(k)$$

$$QTcol^{(i)}(tid) = \sum_{k=1}^{m} T_{1}^{(i)}(k) \cdot Chunk_{tid}^{(j)}(k)$$

$$B_{\text{bH-COWHOCTB}}$$

$$O(1) \text{ BMECTO } O(m)!$$

$$QTrow^{(i)}(tid) = QTrow^{(i)}(tid - 1) - - - T_{tid-1}^{(i)}(1) \cdot Chunk_{tid-1}^{(j)}(1) + T_{tid}^{(i)}(m) \cdot Chunk_{tid}^{(j)}(m)$$

17.03.2023 12/20

Эксперименты

- Конкуренты (поиск top-1 диссонанса на GPU)
 - **KBF_GPU**: Thuy T.T.H. et al. A new discord definition and an efficient time series discord detection method using GPUs. ICSED 2021. pp. 63–70. https://doi.org/10.1145/3507473.3507483.
 - **Zhu et al.** A GPU Acceleration framework for motif and discord based pattern mining. IEEE Transactions on Parallel and Distributed — Systems 32(8): 1987–2004. 2021. https://doi.org/10.1109/TPDS.2021.3055765.
- **Данные**^{1,2)}

Временной ряд	Длина ряда, n	Длина диссонанса, minL = maxL
Space shuttle	5 000	150
ECG	45 000	200
ECG2	21 600	400
Koski-ECG	100 000	458
Power demand	33 220	750
Respiration	24 125	250
RandomWalk1M	$1 \cdot 10^{7}$	512
RandomWalk2M	$2 \cdot 10^{7}$	512

• Аппаратные платформы

Характеристика	GPU-МГУ	GPU-ЮУрГУ	
Производитель, семейство	NVIDIA Tesla		
Модель	P100	V100	
# CUDA-ядер	3 584	5 120	
Тактовая частота, GHz	1.19	1.3	
Оперативная память, Gb	16	32	
Пик. пр-ть (double), TFLOPS	4	7	

¹⁾ Keogh E., Lin J., Fu A. HOT SAX: Finding the most unusual time series subsequence: Algorithms and applications. Proc. 5th IEEE Int. Conf. Data Mining 2004: 440– 449. URL: http://www.cs.ucr.edu/~eamonn/discords/.

²⁾ Pearson K. The problem of the random walk. Nature 72(394). <u>https://doi.org/10.1038/072342a0</u>.

Автоматизированный поиск аномалий временных рядов на графическом процессоре

Производительность: сравнение с KBF_GPU¹⁾

¹⁾ Thuy T.T.H. et al. A new discord definition and an efficient time series discord detection method using GPUs. ICSED 2021. pp. 63–70. <u>https://doi.org/10.1145/3507473.3507483</u>.

Автоматизированный поиск аномалий временных рядов на графическом процессоре

так и по среднему времени на поиск одного диссонанса

17.03.2023

Производительность: сравнение с Zhu et al.¹⁾

¹⁾ Zhu B. et al. A GPU Acceleration framework for motif and discord based pattern mining. IEEE Transactions on Parallel and Distributed Systems 32(8): 1987-2004. 2021. <u>https://doi.org/10.1109/TPDS.2021.3055765</u>.

Автоматизированный поиск аномалий временных рядов на графическом процессоре

17.03.2023

Тепловая карта диссонансов

Автоматизированный поиск аномалий временных рядов на графическом процессоре

17.03.2023

Ранжирование диссонансов

Автоматизированный поиск аномалий временных рядов на графическом процессоре

17.03.2023

Автоматизированный поиск аномалий временных рядов на графическом процессоре

17.03.2023

Выявление аномалий в машиностроении

Автоматизированный поиск аномалий временных рядов на графическом процессоре

19/20 17.03.2023

Заключение

- Предложен новый параллельный алгоритм поиска аномалий временного ряда PALMAD для GPU
- Будущие исследования:
 - Разработка версии PALMAD для кластера с GPU-узлами
 - Применение PALMAD в нейросетевой модели для поиска аномалий временного ряда в режиме реального времени

Спасибо за внимание! Вопросы? Яна Александровна Краева kraevaya@susu.ru

17.03.2023 20/20