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Informal Problem Statement

* We are given:
— an n-length time series T

— a subsequence length m meﬁ I h|.\.,hﬁ|.l.wmwmw

e We must find:

— a set of subsequences that reflects n
the respective process/activity

* Application: annotating and visualization of long time series
— monitoring of human functional diagnostics indicators;

— monitoring the technical conditions of complex machines and
mechanisms;

— etc.
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Examples

| Day_17_MaleAH14 — O X
Share View . o
» Day_17_MaleAH14 v Search Day... @

Session2.txt Session3.txt Session6.txt Session7(inc).txt

31 items ==

Summarizing the patient's motor activity
according to the indications of the hip accelerometer
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Examples

NormalWalking----NordicWalking-----Running----- Skipping-----NordicWalking

10 minutes

DR I |

Summarizing the patient's motor activity
according to the indications of the chest accelerometer

Patient Smith slept for 7.2 hours. This ten-second
snippet ( ) accounts for 78% of his respiration,

and this ( ' ) ten-second snippet accounts for 17%
of his respiration. His maximum temperature was 98 . 7°...

Summarizing the patient's respiratory activity
in studies of apnea syndrome
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Examples

s nippet-1 s nippet-2

,MWM IWWM
0 200 0 200

Jan/1/1995 May/31/1998

Summary of hourly energy consumption in Italy for 3 years.
Typical subsequences are weekly intervals in warm and cold seasons
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Formalization: The Snippet Concept*

51 52 53 S4 Ss Se 57 S8 S9 510
T i e v Al e i
i i | m = 500! i . : i i
: i —— ! i : : i i |
0 1000 2000 3000 4000 5000
S5t = Tm(i-+1m 1 ST < n/m

1. Let usrepresent atime series as a set of n/m-length
non-overlapped segments

— if nis not a multiple of m, then pad the time series right by zeroes

* Imani S., Madrid F., Ding W., Crouter S.E., Keogh E.J. Introducing time series snippets: a new primitive for summarizing
long time series. Data Min. Knowl. Discov. 34(6): 1713-1743 (2020). doi: 10.1007/s10618-020-00702-y
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Formalization: The Snippet Concept

Q 1000 2000 3000 4000 5000

1. Let usrepresent a time series as a set of n/m-length

non-overlapped segments
2. For each segment, let us find the most similar subsequences

(nearest neighbors)
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Formalization: The Snippet Concept

K=3

frac = 17% CZ = 34%

0 1000 2000

C;

3000 4000 5000

C, m = 500

1. Letusrepresent atime series as a set of n/m-length
non-overlapped segments

2. For each segment, let us find the most similar subsequences
(nearest neighbors)

3. Let usidentify the segment (snippet) by its nearest neighbors

Let us take the top-K snippets in descending order of the
number of their nearest neighbors (coverage)
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MPdist™: A Subsequence Similarity Measure

Two m-length time series are the more similar
by the MPdist measure,

the more ¢-length (3 < £ < m) normalized subsequences
close to each other by the Euclidean metric, are in them

4 . I
Metric

[Measure 1. ldentity of indiscernibles: d(x,y) =0 & x = }’}

2. Symmetry: d(x,y) = d(y, x)
3. Triangle inequality: d(x,z) < d(x,y) + d(y, z)

N\

* Gharghabi S., Imani S., Bagnall A.J., Darvishzadeh A., Keogh E.J.: Matrix Profile XII: MPdist: A Novel Time Series Distance
Measure to Allow Data Mining in More Challenging Scenarios. ICDM 2018: 965-970. DOI: 10.1109/ICDM.2018.00119
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Normalization

T
e Provides a correct comparison of subsequences with

different amplitudes
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MPdist vs. Euclid
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The MPdist Measure

Al = |Bl =m
2 A 21 B
-2 | | 1 1 1 L 1 1 I 2" 1 L L 1 I L L 1 J
0 1000 2000 3000 4000 0 1000 2000 3000 4000

Significant subsequence : 3 </ < m (typically, [0.3m] < ¢ < [0.8m])

Calculation of matrix profiles

20 20
1 jWstr/\\/\/\/W’ﬂ_‘ 10 AAF\V\—/\—/\AM,\N\A’EI_‘
0 L 1 | | 1 | | | 1 ﬂ | | | | 1 | | | 1 ]
0 1000 2000 3000 4000 0 1000 2000 3000 4000
] m—+£+1 ) m—£+1
{PAB (i) = EDnorm(Ai,{’» Bj,i’)}i=1 ’ {PBA(l) = EDnorm(Bi,f' Af.f)}i=1 ’
Bj = arg 1ng1111r_1{’+1 EDnorm (Ai'{)' Bq'{)) Aje = arg 1sq£nni¢9€+1 EDnorm (B, Aq.e)
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The MPdist Measure

|A| = |B| =m
2 A 27 B
IAVAVAVAVAVEZA VAN o A VAV AV A g
-2 I I 1 1 I I 1 1 L L i . L i i \ . , {
0 1000 2000 3000 4000 0 1000 2000 3000 4000
3</<m
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10 ‘ 10 AA,/\\V\_/'\/\/\_N\-/\N\/\il_\
o~ , i I | L i I I ] g Ot i I [ L i i [ 1 |
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Concatenation of matrix profiles
Papga = Pyp O Ppy
20 _
o PapBa |Pagpal = 2(m — £+ 1)
0 i i i i i i i i 1
0 2000 4000 6000 8000
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The MPdist Measure

|A| = |B| =m 3</<m
2 A 27 B
u{ \W ) \W//\/\/»\//
2 L 1 1 1 1 I 1 1 L L i . i i & ; : i &
0 1000 2000 3000 4000 3 1000 2000 3000 4000
20 P 20 p
" - d 10 .\_ii,[‘\‘/\/\/\/\/\/\f\/\./\/\il_‘
U | l | | u 1 | | l 1 | | | 1 ]
0 1000 2000 3000 4000 0 1000 2000 3000 4000
?E Pappa |Pappal = 2(m — £+ 1)
0 | ! | ! | ! | | L
0 2000 4000 6000 8000
. SortedPyppa(k), |Paggal > k
MPdist(4,B, f) = ,
SOT'tedPABBA(Z(m — ¥+ 1)), |PABBA| < k
rne k = [0.05 - 2m]| = [0.1m].
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MPdist Profile of a Segment

Segment S Time series T
S| =m IT| =n>m
0 250 500 0 1000 2000 3000 4000 5000
dl,l dl,n—{?+1
ED 4ty (S, T, ?) = ) di,j = EDnorm(Si,fr Tj,{’)
dm—{’+1,1 dm—{’+1,n—{’+1
£
—— EDmatr{1]
——— EDmatr[2]
—— EDmatr[3]
— ébmatr[zso]
0 1000 2000 3000 4000 5000
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MPdist Profile of a Segment

EDmatr

EDmatr[1]
EDmatr[2]
EDmatr[3]

EDmatr[250]
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] 50 100 150 200 250
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MPdist Profile of a Segment

Pyr(i) = min E(i,j), P ) = min  E(i,7]),
a5 (1) 1<jsm—£+1 (&7 pal) = moin, EQ))
1<i<m-£+1 1<jsm-{4+1
PAB PBA
EI) SIU 1[I]O 15{] 260 2.'130 (IJ SIU lill{) 15{] 260 2.'130
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MPdist-profile of a Segment

E Dmatr
' v : : —— EDmatr{1]
—— EDmatr[2]
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5000
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MPdist e (Q, T, ¢) = [vy, V3, o, Vn_my1), Vi = MPdist(Q, Tj . )
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Discovery of the Top-1 Snippet

M

Mounck Cl — D31 M
ProfileArea
ProfileArea

60813

60371 0 1000 2000 3000 4000 5000

74451 ProfileArea({D3}) = 74451

o~y

75141 —— DIBL M
ProfileArea

56766

57729

587 1 3 [I] IUIOO 20IE]0 3UIOD 40|00 SOIOO

53769 ProfileArea({Dg}) = 53769

62 127 o PDEF';T;AN:ea
61286

Ol | I N|J]oOOjJUV | P [W[IN]|EF

=
o

Cy.index = 8

0 1000 2000 3000 4000 5000

ProfileArea({D1y}) = 61286
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Discovery of the Top-2 Snippet

I - — DI[8]

T %‘ — DI[1]
0 1000 2000 3000 4000 5000

— — — D[8]

— — DI[2]
0 1000 2000 3000 4000 5000

(_r"———“: — D[8]

—— D[5]

L=V

0 1000 2000 3000 4000 5000
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Discovery of the Top-2 Snippet

C, o
— M
i ProfileArea profileArea
1 38394 , , . . : :
0 1000 2000 3000 4000 5000
2 35769 ProfileArea({Dg, D;}) = 38394
3 45629
[, S— — D8]
4 45908 —— DI2]
— M
5 48857 ProfileArea
6 49264 . . . . : .
0 1000 2000 3000 4000 5000
! 48975 ProfileArea({Dg, D;,}) = 35769
9 36684
— D[8]
10 36482 — 3[51
R 4_&5(_-“ ProfileArea
C,.index = 2
[I] 10I00 ZOIDO 3UI00 4OIUD SUIOO

ProfileArea({Dg, Ds}) = 48867
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Discovery of the Top-3 Snippet
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Discovery of the Top-3 Snippet

S
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ProfileArea({Dg, D;, D1o}) = 33044
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Resulting Snippets

IE) 1000 ZDIOEI 30:00 4000 EUIDEI
m = 500
 —— T —— D[8]
S e —— D[2]
— DI[3]
IE) IDIUD ZDIOEI 30:00 4DIGD EUIDEI
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Hardware Architecture

Registers Registers Registers

Shared Memory Shared Memory Shared Memory

CPU
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Parallelizing: Data Structures

n
AL
s m ™~
AL
a ¢ Y ¢
T | Y [ 7 |
S |
v
EDmatr EDr:;;j |“\\\ } m—4L£+1
mini
allPBA | — /‘I | l Ffr I
/ / min
allPAB rff :< ______ - } m—-—{f{+1
PapBa |
N _
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Calculation of ED,,, 44,

m
£ £
T | | XY | V77 |
S I |
ED,0er EDno;;: m—4L+1
QT;; = QTi_1 ;-1 + df; - dg; + df; - dg;,
dfo = 0; dfi _ ti+m—21_ti—1’
dgo = 0;dg; = (tl+m 1= M) + (tig — Hiz1),
l+m
j=t Y
Ti,m — U = (t ,uu e bigm—1 .ui):
— 1 1
P.. =0T . - . ;
0 = Qs o =l Tl
EDnorm( im» ',m) = \/2m(1 - Pi,j)

* Zimmerman Z., Kamgar K., Senobari N.S. et al. Matrix Profile XIV: Scaling Time Series Motif Discovery with GPUs to Break
a Quintillion Pairwise Comparisons a Day and Beyond. ACM SoCC’2019. DOI: 10.1145/3357223.3-362721.
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Calculation of allP 45
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Calculation of allPg 4
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Calculation of P 4554
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Experiments: Hardware

S
e CPU:

— Intel Xeon Gold 6254@4 GHz

— Cores: 18 (but only one was employed)
— RAM: 64 Gb

— Peak performance: 1.2 TFLOPS

e GPU:
— NVIDIA Tesla V100 SXM?2
— Cores: 5120 @1.312 GHz (84 streaming multiprocessors)
— RAM: 32 Gb
— Peak performance: 15.7 TFLOPS
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Experiments: Data

Time series Length Segment length Description
n m

GreatBarbet(® 2 801 150 Physiological indicators of bird vital

WildVTrainedBird® 20 002 900 activity

PAMAPQ2) 20 002 600 Wearable accelerometer readings

WalkRun(2) 100 000 240 during various types of human physical
activity

TiltABP() 40 000 630 Human blood pressure readings during
rapid tilts

() Imani S., Madrid F., Ding W., Crouter S.E., Keogh E.J. Introducing time series snippets: a new primitive for summarizing
long time series. Data Min. Knowl. Discov. 34(6): 1713-1743 (2020). doi: 10.1007/s10618-020-00702-y

(2) Reiss A., Stricker D. Introducing a new benchmarked dataset for activity monitoring. ISWC 2012. 108—-109. doi:
10.1109/ISWC.2012.13
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Experiments: Performance

2978.69

1 SnippetFinder

1110 MNaivePSF

ZZA PSF
103
(]}
= 469.90
(@]
2 282.55
o
vy 125.23
< 102 82.03
£ 72.20 60 75
-
o]0]
= 27.34
c
5 13.86 14.10
o

1[]1_
6.33
4.25
2.47 5 10
1.63
GreatBarbet PAMAP WildVTrainedBird TiltABP WalkRun
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Experiments: Performance

_ _ Short-length (n < 10%) time series: 2078 69
— Snl_ppetFlnder the overhead of transferring data
[T NaivePSF to GPU and initializing computing
103 | 24 PSF kernels is greater than the time
X spent on the actual calculations
© \ j 469.90
;’o 282.55
ko)
Py 125.23
o 102 82.03
£ 72.20 60.75
]
a0
= 27.34
C
c
> 13.86 14.10
2
101 4
6.33
4.25
2.47 510
1.63
GreatBarbet PAMAP WildVTrainedBird TiltABP WalkRun
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Experiments: Performance

. i 2978.69
E— Sm_ppetFmde PSF is faster than
[T NaivePSF the serial algorithm: by 10+ times,
103 | /24 PSF the naive parallel algorithm: by 2-4 times
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30.11.2021 Parallel algorithm to discover typical subsequences of a time series on GPU 35/40



Experiments: Visualization

Time series: PAMAP *

ka JNWﬂﬂr

= Skipping
=== Running
= \Walking

i

3000 4000 5000

0 1000 2000

* Reiss A., Stricker D. Introducing a New Benchmarked Dataset for Activity Monitoring, ISWC’2012. DOI: 10.1109/iswc.2012.13
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Case Studies: Small-sized Crushing Machine

Time Event
00:00:00|Machine is off

00:32.60|Turning the machine on,
machine is idle

00:48.34 |Loading with bricks
01:02.09|Loading with bricks
01:28.05|Loading with dunite
01:41.86|Loading with dunite
01:54.68|Loading with bricks
02:10.49|Loading with dunite
02:25.32|Loading with bricks
02:44.20|Loading with dunite

02:55.49|Finishing crushing,
machine is idle

03:07.06|Turning the machine off

AKCENEPOMETP
AT1112 -10A

1841168439

e
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Case Studies: Small-sized Crushing Machine

0.10 1 === Machine is off
m = 4000 (5 SeC) w==  Machine is idle
K - 4 = Brick crushing
0.05 - - === Dunite crushing
0.00
—0.05 4
=0.10 4
o] | | | | | | | | |
0 20000 40000 60000 80000 100000 120000 140000
Top-4 Top-2 Top-1 Top-3
0.03 0.03 0.03
0.03
0.02 002 | 0.02 0.02
0.01 0.01 - 0.01 0.01
0.00 _"-‘F‘FMH* 0.00 1 0.00 1 WW& 0.00 1
—0.01 —0.01 4 -0.01 —0.01
—0.02 | -0.02 4 —0.02 | —0.02 |
-0.03 -
—0.03 L, : : Y 003 L :
24000 28000 112000 116000 32000 35000 12000 16000
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Experiments: EDZ, - V5. ED;orm

Time series: Random Walk *

4000
B EDnorm
Ispp 1 ™ EDnorm”™ 2
3000 -
D 9500 - Avoiding the square root calculations
qé accelerates runtime by 6-10%
+ 000 - without loss of adequacy
g
< 1500 -
>
o
1000 A
500 -
0 B

n=100000, m=1000 n=250000, m=5000 n=500000, m=10000 n=600000, m=12000

* Pearson K. The problem of the random walk. Nature. 72(1865), 294 (1905). DOI: 10.1038/072342A0

30.11.2021 Parallel algorithm to discover typical subsequences of a time series on GPU 39/40


https://doi.org/10.1038/072342a0

Conclusions

-
e PSF (Parallel Snippet Finder) is a novel parallel algorithm to

discover snippets of a time series on GPU
* PSF showed high performance in the experiments
e Further study: PSF for HPC-cluster

* Thank you for paying attention! Any questions?
— Andrey Goglachev, goglachevai@susu.ru

30.11.2021 Parallel algorithm to discover typical subsequences of a time series on GPU 40/40


mailto:goglachevai@susu.ru

	Parallel Algorithm for Discovery Typical Subsequences of a Time Series on Graphical Processor
	Informal Problem Statement
	Examples
	Examples
	Examples
	Formalization: The Snippet Concept*
	Formalization: The Snippet Concept
	Formalization: The Snippet Concept
	MPdist*: A Subsequence Similarity Measure
	Normalization
	MPdist vs. Euclid
	The MPdist Measure
	The MPdist Measure
	The MPdist Measure
	MPdist Profile of a Segment
	MPdist Profile of a Segment
	MPdist Profile of a Segment
	MPdist-profile of a Segment
	Discovery of the Top-1 Snippet
	Discovery of the Top-2 Snippet
	Discovery of the Top-2 Snippet
	Discovery of the Top-3 Snippet
	Discovery of the Top-3 Snippet
	Resulting Snippets
	Hardware Architecture
	Parallelizing: Data Structures
	Calculation of 𝑬 𝑫 𝒎𝒂𝒕𝒓 
	Calculation of 𝒂𝒍𝒍 𝑷 𝑨𝑩 
	Calculation of 𝒂𝒍𝒍 𝑷 𝑩𝑨 
	Calculation of  𝑷 𝑨𝑩𝑩𝑨 
	Experiments: Hardware
	Experiments: Data
	Experiments: Performance
	Experiments: Performance
	Experiments: Performance
	Experiments: Visualization
	Case Studies: Small-sized Crushing Machine
	Case Studies: Small-sized Crushing Machine
	Experiments: E D norm 2  vs. E D norm  
	Conclusions

