Scientific seminar on information technologies

Parallel Algorithm for Discovery Typical Subsequences of a Time Series on Graphical Processor

Andrey Goglachev, Mikhail Zymbler

Chelyabinsk–2021

Informal Problem Statement

- We are given:
 - an n-length time series T
 - a subsequence length m
- We must find:
 - a set of subsequences that reflects the respective process/activity

- Application: annotating and visualization of long time series
 - monitoring of human functional diagnostics indicators;
 - monitoring the technical conditions of complex machines and mechanisms;
 - etc.

Examples

Summarizing the patient's motor activity according to the indications of the hip accelerometer

30.11.2021

Examples

Summarizing the patient's motor activity according to the indications of the chest accelerometer

Summarizing the patient's respiratory activity in studies of apnea syndrome

30.11.2021

Examples

Summary of hourly energy consumption in Italy for 3 years. Typical subsequences are weekly intervals in warm and cold seasons

Formalization: The Snippet Concept*

- 1. Let us represent a time series as a set of n/m-length non-overlapped segments
 - if *n* is not a multiple of *m*, then pad the time series right by zeroes

* Imani S., Madrid F., Ding W., Crouter S.E., Keogh E.J. Introducing time series snippets: a new primitive for summarizing long time series. Data Min. Knowl. Discov. 34(6): 1713-1743 (2020). doi: <u>10.1007/s10618-020-00702-y</u>

30.11.2021

Formalization: The Snippet Concept

- 1. Let us represent a time series as a set of n/m-length non-overlapped segments
- For each segment, let us find the most similar subsequences (nearest neighbors)

Formalization: The Snippet Concept

- 1. Let us represent a time series as a set of n/m-length non-overlapped segments
- 2. For each segment, let us find the most similar subsequences (nearest neighbors)
- 3. Let us identify the segment (snippet) by its nearest neighbors
- 4. Let us take the top-*K* snippets in descending order of the number of their nearest neighbors (coverage)

MPdist^{*}: A Subsequence Similarity Measure

Two *m*-length time series are the more similar by the MPdist measure,

the more ℓ -length ($3 \le \ell \le m$) normalized subsequences close to each other by the Euclidean metric, are in them

Metric			
Measure	1. Identity of indiscernibles: $d(x, y) = 0 \iff x = y$		
	2. Symmetry: $d(x, y) = d(y, x)$		
	3. Triangle inequality: $d(x,z) \le d(x,y) + d(y,z)$		

* Gharghabi S., Imani S., Bagnall A.J., Darvishzadeh A., Keogh E.J.: Matrix Profile XII: MPdist: A Novel Time Series Distance Measure to Allow Data Mining in More Challenging Scenarios. ICDM 2018: 965-970. DOI: <u>10.1109/ICDM.2018.00119</u>

30.11.2021

Normalization

 Provides a correct comparison of subsequences with different amplitudes

MPdist vs. Euclid

The MPdist Measure

The MPdist Measure

30.11.2021

The MPdist Measure

30.11.2021

MPdist Profile of a Segment

MPdist Profile of a Segment

30.11.2021

Parallel algorithm to discover typical subsequences of a time series on GPU

MPdist Profile of a Segment

$$P_{AB}(i) = \min_{1 \le j \le m-\ell+1} E(i,j),$$
$$1 \le i \le m-\ell+1$$

$$P_{BA}(j) = \min_{1 \le i \le m - \ell + 1} E(i, j),$$
$$1 \le j \le m - \ell + 1$$

30.11.2021

Parallel algorithm to discover typical subsequences of a time series on GPU

MPdist-profile of a Segment

$\boldsymbol{MPdist}_{\boldsymbol{vect}}(\boldsymbol{Q},\boldsymbol{T},\boldsymbol{\ell}) = [v_1, v_2, \dots, v_{n-m+1}], \boldsymbol{v_i} = \mathrm{MPdist}(\boldsymbol{Q}, T_{i,m}, \boldsymbol{\ell})$

Discovery of the Top-1 Snippet

Discovery of the Top-2 Snippet

Parallel algorithm to discover typical subsequences of a time series on GPU

Discovery of the Top-2 Snippet

30.11.2021

Parallel algorithm to discover typical subsequences of a time series on GPU

Discovery of the Top-3 Snippet

Parallel algorithm to discover typical subsequences of a time series on GPU

Discovery of the Top-3 Snippet

30.11.2021

Parallel algorithm to discover typical subsequences of a time series on GPU

Resulting Snippets

Hardware Architecture

30.11.2021

Parallelizing: Data Structures

30.11.2021

Parallel algorithm to discover typical subsequences of a time series on GPU

Calculation of *ED*_{matr}

$$\begin{aligned} \overline{QT}_{i,j} &= \overline{QT}_{i-1,j-1} + df_i \cdot dg_j + df_j \cdot dg_i, \\ df_0 &= 0; df_i = \frac{t_{i+m-1} - t_{i-1}}{2}, \\ dg_0 &= 0; dg_i = (t_{i+m-1} - \mu_i) + (t_{i-1} - \mu_{i-1}), \\ \mu_i &= \frac{1}{m} \sum_{j=i}^{i+m} t_j, \\ T_{i,m} - \mu_i &= (t_i - \mu_i, \dots, t_{i+m-1} - \mu_i), \\ P_{i,j} &= \overline{QT}_{i,j} \cdot \frac{1}{\|T_{i,m} - \mu_i\|} \cdot \frac{1}{\|T_{j,m} - \mu_j\|'} \\ \text{ED}_{\text{norm}} (T_{i,m}, T_{j,m}) &= \sqrt{2m(1 - P_{i,j})} \end{aligned}$$

* Zimmerman Z., Kamgar K., Senobari N.S. et al. Matrix Profile XIV: Scaling Time Series Motif Discovery with GPUs to Break a Quintillion Pairwise Comparisons a Day and Beyond. ACM SoCC'2019. DOI: <u>10.1145/3357223.3-362721</u>.

30.11.2021

Calculation of $all P_{AB}$

Calculation of $all P_{BA}$

30.11.2021

Calculation of P_{ABBA}

30.11.2021

Experiments: Hardware

- CPU:
 - Intel Xeon Gold 6254@4 GHz
 - Cores: 18 (but only one was employed)
 - RAM: 64 Gb
 - Peak performance: 1.2 TFLOPS
- GPU:
 - NVIDIA Tesla V100 SXM2
 - Cores: 5120 @1.312 GHz (84 streaming multiprocessors)
 - RAM: 32 Gb
 - Peak performance: 15.7 TFLOPS

Experiments: Data

Time series	Length	Segment length	Description
	n	m	
GreatBarbet ⁽¹⁾	2 801	150	Physiological indicators of bird vital
WildVTrainedBird ⁽¹⁾	20 002	900	activity
PAMAP ⁽²⁾	20 002	600	Wearable accelerometer readings
WalkRun ⁽²⁾	100 000	240	during various types of human physical
			activity
TiltABP ⁽¹⁾	40 000	630	Human blood pressure readings during
			rapid tilts

⁽¹⁾ Imani S., Madrid F., Ding W., Crouter S.E., Keogh E.J. Introducing time series snippets: a new primitive for summarizing long time series. Data Min. Knowl. Discov. 34(6): 1713-1743 (2020). doi: <u>10.1007/s10618-020-00702-y</u>
⁽²⁾ Reiss A., Stricker D. Introducing a new benchmarked dataset for activity monitoring. ISWC 2012. 108–109. doi: <u>10.1109/ISWC.2012.13</u>

30.11.2021

Experiments: Performance

Experiments: Performance

Experiments: Performance

30.11.2021

Experiments: Visualization

* Reiss A., Stricker D. Introducing a New Benchmarked Dataset for Activity Monitoring, ISWC'2012. DOI: 10.1109/iswc.2012.13

30.11.2021

Parallel algorithm to discover typical subsequences of a time series on GPU

Case Studies: Small-sized Crushing Machine

Time	Event
00:00:00	Machine is off
00:32.60	Turning the machine on, machine is idle
00:48.34	Loading with bricks
01:02.09	Loading with bricks
01:28.05	Loading with dunite
01:41.86	Loading with dunite
01:54.68	Loading with bricks
02:10.49	Loading with dunite
02:25.32	Loading with bricks
02:44.20	Loading with dunite
02:55.49	Finishing crushing, machine is idle
03:07.06	Turning the machine off

30.11.2021

Case Studies: Small-sized Crushing Machine

30.11.2021

Parallel algorithm to discover typical subsequences of a time series on GPU

Experiments: ED_{norm}^2 vs. ED_{norm}

Time series: Random Walk *

^{*} Pearson K. The problem of the random walk. Nature. 72(1865), 294 (1905). DOI: <u>10.1038/072342A0</u>

30.11.2021

Conclusions

- PSF (Parallel Snippet Finder) is a novel parallel algorithm to discover snippets of a time series on GPU
- PSF showed high performance in the experiments
- Further study: PSF for HPC-cluster

Thank you for paying attention! Any questions?
– Andrey Goglachev, <u>goglachevai@susu.ru</u>