Южно-Уральский государственный университет Факультет Вычислительной математики и информатики Кафедра системного программирования Выпускная квалификационная работа

Интеграция алгоритма кластеризации Fuzzy *c*-Means в СУБД PostgreSQL

Р.М. Миниахметов

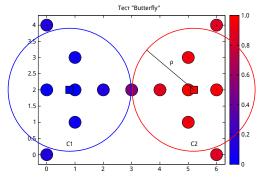
Рецензент:

кандидат физ.-мат. наук Т.Ю. Лымарь Научный руководитель:

кандидат физ.-мат. наук, доцент М.Л. Цымблер

Актуальность исследования

- Сверхбольшие объемы данных
- Программное обеспечение с открытым исходным кодом
- Интеллектуальный анализ данных (Data Mining) и реляционные СУБД
- Нечеткая кластеризация в медицинских исследованиях
 - Количество различных параметров более 10
 - Частота дискретизации 10 мс
 - Объем необработанных данных по пациенту за день исследований 20 МБайт


Цель и задачи

Цель работы — интегрировать алгоритм нечеткой кластеризации данных в СУБД PostgreSQL.

Задачи:

- Проектирование алгоритма нечеткой кластеризации данных на языке реляционных баз данных SQL
- Реализация алгоритма, адаптированного для СУБД PostgreSQL
- Проведение тестирования разработанного алгоритма
- Проведение вычислительных экспериментов по исследованию производительности разработанного алгоритма

Нечеткая кластеризация

- k количество кластеров:
- N количество векторов;
- m степень нечеткости целевой функции;
- ullet $x_i \in X-i$ -й вектор данных входного множества X, |X|=N;
- ullet $c_j \in C$ центр кластера j, вектор размерности d (центроид);
- C множество центроидов, |C| = k;
- u_{ij} функция принадлежности;
- ullet $ho(x_i,c_j)$ функция расстояния.

$$J_{FCM}(X, k, m) = \sum_{i=1}^{N} \sum_{j=1}^{k} u_{ij}^{m} \rho^{2}(x_{i}, c_{j}), \quad 1 < m < \infty$$

Алгоритм Fuzzy c-Means

Вход: X — входное множество, k — количество кластеров,

m — степень нечеткости, arepsilon — точность кластеризации

Выход: U — матрица степеней принадлежности

// Инициализация

$$s := 0, U^{(0)} := random(0..1)$$

повторять

// Вычисление новых координат центроидов

$$\mathit{C}^{(s)} := (c_j)$$
, где $c_{jl} = rac{\sum\limits_{i=1}^n u_{ij}^m \cdot x_{il}}{\sum\limits_{i=1}^n u_{ij}^m}$

// Обновление матрицы степеней принадлежности

$$U^{(s+1)}:=(u_{ij})$$
, где $u_{ij}=\sum\limits_{t=1}^{k}\left(rac{
ho(x_{i},c_{j})}{
ho(x_{i},c_{t})}
ight)^{rac{2}{1-m}}$

пока
$$\max_{ij}\{|u_{ij}^{(s)}-u_{ij}^{(s-1)}|\}>arepsilon$$

Реляционная структура

Входное множество данных

N	Матрица Х			
	$X_1 \cdots X_d$			
1 : n	1.0 · · · 2.1 : · . : 3.4 · · · 2.9	\Longrightarrow		

	Габлица SH (горизонтальная)				
	i	x_1	• • •	X_d	
	1	1.0	• • •	2.1	
	:	:	٠.	:	
	n	3.4	• • •	2.9	
J		- '			

Ta6 mana CH

аблица SV (вертикальная)				
i l val				
1	1	1.0		
:	:	:		
· n	d	2.9		

Nº	Таблица	Семантика	Атрибуты	Записи
1	SH	Выборка векторов данных	$ \underline{i}, x1, x2, \dots, xd $	n
2	SV	Выборка векторов данных	$\underline{i}, \underline{l}, val$	n∙d

Координаты центроидов

Матрица С

Таблица С

	$X_1 \cdots X_d$	
1	2.2 · · · 8.1	
:		=
k	3.4 · · · 6.9	

j	l	val
1	1	2.2
:	:	:
k	d	6.9

Nº	Таблица	Семантика	Атрибуты	Записи
3	С	Координаты центроидов	<u>j, l,</u> val	k∙d

Реляционная структура

Степени принадлежности

N	Матрица U				
	1 · · · k				
1 : n	0.2 ··· 0.1 : ·. : 0.8 ··· 0.1				

Таблица U (для шага s)			
i	j	val	
1	1	0.2	
:	:	:	
n	k	0.1	

Таблица UT (для шага s+1)				
i	j	val		
1	1	0.2		
:	:	:		
• • •				
n	k	0.1		

Nº	Таблица	Семантика	Атрибуты	Записи
4	U	Степени принадлежности вектора x_i кластеру j на шаге s	$\underline{i,j}$, val	n∙k
5	UT	Степени принадлежности вектора x_i кластеру j на шаге $s\!+\!1$	$\underline{i,j}$, val	n·k

Вспомогательные таблицы

Nº	Таблица	Семантика	Атрибуты	Записи
6	SD	Расстояния между x_i и c_j	$\underline{i,j}$, dist	n∙k
7	P	Значение функции $\delta = \max_{ij}\{ u_{ij}^{(s+1)} - u_{ij}^{(s)} \}$ на текущей итерации	d, k, n, s, delta	S

Вход: SH — выборка векторов, k — количество кластеров,

m — степень нечеткости, eps — точность кластеризации

Выход: U — таблица степеней принадлежности

- - Инициализация

Создание и инициализация таблиц U,P,SV

повторять

- - Вычисления

Вычислить координаты центроидов (таблица C)

Вычислить расстояния (таблица SD)

Вычислить степени принадлежности $\mathit{UT} = (\mathit{ut}_{ij})$ (таблица UT)

- - Обновление

Обновить таблицы P и U

- - Проверка завершения

пока P.delta > eps

Интерфейс функции pgFCM

- -- Нечеткая кластеризация таблицы SH.
- - Вход: d количество координат, k количество кластеров,
- -- m степень нечеткости, eps точность кластеризации.
- - Выход: -.
- - Результаты кластеризации хранятся в таблицах U и C.

CREATE OR REPLACE FUNCTION pgfcm(d INTEGER, k INTEGER, m NUMERIC, eps NUMERIC)
RETURNS VOID
LANGUAGE plpgsql

```
C1: INSERT INTO C
      SELECT R.j, SV.1,
             sum(R.s * SV.val) / sum(R.s) AS val
      FROM (SELECT i, j, U.val^m AS s
            FROM U) AS R, SV
      WHERE R.i = SV.i
      GROUP BY j, 1;
C2: INSERT INTO SD
      SELECT i, j,
             sgrt(sum((SV.val - C.val)^2))) AS dist
      FROM SV, C
      WHERE SV.1 = C.1
      GROUP BY i, j;
```

Тест на наборе данных "Butterfly"

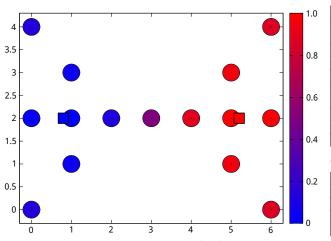


 Таблица U

 i
 j
 val

 1
 1
 0.86

 1
 2
 0.13

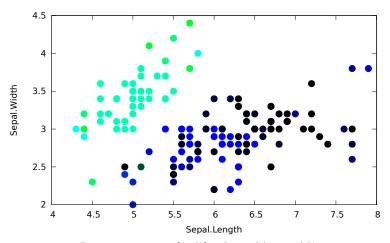
 2
 1
 0.97

 2
 2
 0.02

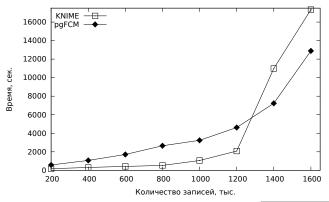
 ...
 ...
 ...

 8
 1
 0.49

 8
 2
 0.50


 ...
 ...
 ...

 15
 1
 0.13


Таблица С						
j	l	val				
1	1	0.79				
1	2	2.0				
2	1	5.2				
2	2	1.99				

15 2 0.86

Параметры алгоритма: d = 2, k = 2, m = 2.0, eps = 0.01.

Параметры алгоритма: d= 5, k= 3, m= 2.0, eps= 0.01.

Параметры алгоритма: d=5, k=3, m=2.0, eps=0.01, $n=\overline{200\,000,\,1\,600\,000}$.

Апробации и публикации

Апробация

Международная конференция SYRCoDIS'2011 "The Seventh Spring Researchers Colloquium on Databases and Information Systems" (June 2-3, 2011, Moscow, Russia).

Публикация

Miniakhmetov R. Integrating Fuzzy c-Means Clustering with PostgreSQL // Proceedings of the Seventh Spring Researchers' Colloquium on Databases and Information Systems (SYRCoDIS'2011). Moscow: Moscow State University, 2011. P. 6-10.

Результаты работы

- Выполнено проектирование алгоритма нечеткой кластеризации на языке запросов SQL и схемы соответствующей реляционной базы данных.
- Выполнена реализация разработанного алгоритма для реляционной СУБД с открытым исходным кодом PostgreSQL.
- Выполнено тестирование на стандартных наборах данных Butterfly и Iris.
- Проведены эксперименты для исследования эффективности разработанного алгоритма на различных наборах данных.

Дальнейшие исследования

Дальнейшие исследования могут быть направлены на улучшение текущей реализации алгоритма pgFCM, а также на разработку параллельной версии алгоритма.

Эксперименты по исследованию производительности

N, тыс.	pgFCM, сек	KNIME, сек	JDBC1, сек	JDBC2, сек
200	578	174	3	25
400	1067	310	9	49
600	1711	423	13	75
800	2648	529	28	100
1000	3238	1061	95	125
1200	4620	2078	123	152
1400	7229	10989	161	178
1600	12888	17347	216	223

Параметры алгоритма: d = 5, k = 3, m = 2.0, eps = 0.01, $n = \overline{200\,000, 1\,600\,000}$.