
Accelerating Dynamic Itemset Counting
on Intel Many-core Systems

Mikhail Zymbler
South Ural State University, Chelyabinsk, Russia

mzym@susu.ru

Abstract—The paper presents a parallel implementation of
a Dynamic Itemset Counting (DIC) algorithm for many-core
systems, where DIC is a variation of the classical Apriori
algorithm. We propose a bit-based internal layout for transactions
and itemsets with the assumption that such a representation of
the transaction database fits in main memory. This technique
reduces the memory space for storing the transaction database
and also simplifies support counting and candidate itemsets
generation via logical bitwise operations. Implementation uses
OpenMP technology and thread-level parallelism. Experimental
evaluation on the platforms of Intel Xeon CPU and Intel Xeon
Phi coprocessor with large synthetic database showed good
performance and scalability of the proposed algorithm.

Index Terms—frequent itemset mining, dynamic itemset count-
ing, bitmap, OpenMP, many-core, Intel Xeon Phi

INTRODUCTION

Association rule mining is one of the important problems in
data mining [1]. The task is to discover the strong associations
among the items from a transaction database such that the
presence of one item in a transaction implies the presence
of another. Association rule mining is decomposed into two
subtasks [1]. The first one is to find all frequent itemsets that
consist of items which often occur together in transactions.
The second one is to generate all the association rules from
the frequent itemsets found.

In this paper, we address the task of frequent itemset
mining which can be formally described as follows. Let
I = (i1, . . . , im) be a set of literals, called items. Let
D = (T1, . . . , Tn) be a database of transactions, where each
transaction Ti ⊆ I consists of a set of items (itemset). An
itemset that contains k items is called a k-itemset. The support
of an itemset I ⊆ I denotes the percentage of transactions in
D that contain the itemset I . If support of an itemset I ⊆ I
satisfies the user-specified minimum support threshold (called
minsup) then I is frequent itemset. Let the set of frequent
k-itemsets be denoted by Lk and L = ∪kmax

k=1 Lk denotes a set
of all frequent itemsets, where kmax is number of items in
the longest frequent itemset. Given the transaction database D
and minimum support threshold minsup the goal of frequent
itemset mining is to find the set of all frequent itemsets L.

This work was financially supported by the Russian Foundation for Basic
Research (grant No. 17-07-00463), by Act 211 Government of the Russian
Federation (contract No. 02.A03.21.0011) and by the Ministry of education
and science of Russian Federation (government order 2.7905.2017).

There is a wide spectrum of algorithms for frequent itemset
mining and none of them outperforms all others for all possible
transaction databases and values of minsup threshold [7].
Apriori [1] is one of the most popular itemset mining algo-
rithms for which many refinements and parallel implementa-
tions for various platforms were proposed. Dynamic Itemset
Counting (DIC) [2] is a variation of Apriori, which tries to
reduce number of passes made over a transaction database
while keeping the number of itemsets counted in a pass
relatively low. Despite the fact that DIC has good potential of
parallelization [2] it still has not been implemented for modern
many-core CPU and accelerators, to the best of our knowledge.

In this paper we propose parallel implementation of the
DIC algorithm for Intel Xeon and Intel Xeon Phi (Knights
Landing) many-core platforms. Intel Xeon Phi device is an
x86 many-core coprocessor of 61 cores, connected by a high-
performance on-die bidirectional interconnect where each core
supports 4× hyperthreading and contains 512-bit wide vector
processor unit. Knights Landing [13] is a second generation
MIC (Many Integrated Core) architecture product from Intel.
As opposed to predecessor it is an independent (bootable)
device, which runs applications only in native mode.

We suggest a bit-based internal layout for transactions and
itemsets assuming that such a representation of a transaction
database fits in main memory. This technique has a few major
merits. It reduces memory space of storing the transaction
database and simplifies support counting and generation of
candidate (potentially frequent) itemsets via logical bitwise
operations. We parallelize the algorithm through OpenMP
technology and thread-level parallelism. We conduct experi-
ments on large synthetic database to evaluate performance and
scalability of our algorithm.

The rest of the paper is organized as follows. Section I
provides a brief description of an original DIC algorithm. The
proposed parallel algorithm is presented in section II. In sec-
tion III related work is discussed. The results of experimental
evaluation of the algorithm are described in section IV. The
conclusion contains summarizing remarks and directions for
future research.

I. SERIAL DIC ALGORITHM

Dynamic Itemset Counting (DIC) [2] is a variation of the
most well-known Apriori algorithm [1]. Apriori is an iterative,
level-wise algorithm, which uses a bottom-up search. At the



first pass over transaction database it processes 1-itemsets and
finds L1 set. A subsequent pass k consists of two steps, namely
candidate generation and pruning. At the candidate generation
step Apriori combines elements of Lk−1 set to form candidate
(potentially frequent) k-itemsets. At the pruning step it gets
rid of infrequent candidates using the a priori principle, which
states that any infrequent (k − 1)-itemset cannot be a subset
of a frequent k-itemset. Apriori counts support of candidates
which have not been pruned and proceeds with such passes
so forth until no candidates remain after pruning.

Algorithm 1. DIC(in D, in minsup, in M , out L)

. Initialize sets of itemsets
2: SOLIDBOX ← ∅; SOLIDCIRCLE ← ∅; DASHEDBOX ← ∅

DASHEDCIRCLE ← I
4: while DASHEDCIRCLE ∪ DASHEDBOX 6= ∅ do

. Scan database and rewind if necessary
6: Read(D,M,Chunk)

if EOF(D) then
8: Rewind(D)

for all T ∈ Chunk do
10: . Count support of itemsets

for all I ∈ DASHEDCIRCLE ∪ DASHEDBOX do
12: if I ⊆ T then

support(I)← support(I) + 1

14: . Generate candidate itemsets
for all I ∈ DASHEDCIRCLE do

16: if support(I) ≥ minsup then
MoveItemset(I, DASHEDBOX)

18: for all i ∈ I do
C ← I ∪ i

20: if ∀s ⊆ C s ∈ SOLIDBOX∪DASHEDBOX then
MoveItemset(C, DASHEDCIRCLE)

22: . Check full pass completion for itemsets
for all I ∈ DASHEDCIRCLE do

24: if IsPassCompleted(I) then
MoveItemset(I , DASHEDBOX)

26: for all I ∈ DASHEDBOX do
if IsPassCompleted(I) then

28: MoveItemset(I , SOLIDBOX)
L ← SOLIDBOX

The DIC algorithm tries to reduce the number of passes
made over the transaction database while keeping the number
of itemsets counted in a pass relatively low. Alg. 1 depicts
pseudo-code of the DIC algorithm. DIC processes database
with stops at equal-length intervals between transactions (pa-
rameter M of the algorithm). At the end of the transaction
database it is necessary to rewind to its beginning.

DIC maintains four sets of itemsets, namely Dashed Circle,
Dashed Box, Solid Circle and Solid Box. Itemsets in the
“dashed” sets are subjects for support counting while itemsets
in the “solid” sets do not need to be counted. “Circles” contain
infrequent itemsets while “boxes” contain frequent itemsets.

Thus, Dashed Circle and Dashed Box contain itemsets
that are suspected infrequent and are suspected frequent re-
spectively while Solid Circle and Solid Box contain itemsets

that are confirmed infrequent and are confirmed frequent
respectively. At start Dashed Box, Solid Circle and Solid Box
are assumed to be empty and Dashed Circle contains all the
1-itemsets.

Before the stop, DIC counts support of itemsets from
“dashed” sets for each transaction. At any stop DIC per-
forms as follows. Itemsets whose support exceeds minsup
are moved from Dashed Circle to Dashed Box. New itemsets
are added into Dashed Circle, they are immediate supersets
of those itemsets from Dashed Box with all of its subsets
from “box” lists. Itemsets that have completed one full pass
over the transaction database are moved from the “dashed” set
to “solid” set. DIC proceeds if any itemset in “dashed” sets
remains.

II. PARALLEL DIC ALGORITHM

A. Internal Data Layout

In this work we suggest direct bit representation for both
transactions and itemsets. For a transaction T ⊆ D (for an
itemset I ⊆ I, respectively) this means that it is represented
by a word where each p-th bit is set to one if an item ip ∈ T
(ip ∈ I , respectively) and all other bits are set to zero. The
word’s length W in bytes depends on system environment and
it is calculated as W = d m

sizeof(byte)e. In our implementation
we use C++ and unsigned long long int data type, so
we have W = 8 and m = 64. This could be extended through
an open-source library for arbitrary precision arithmetic, for
instance, GNU Bignum Library1.

Let us denote by BitMask a function that returns direct
bit representation of a given itemset or transaction as a word,
i.e. BitMask : I → Z+. Then direct bit representation of
transaction database D is an n-element array B, where ∀j, 1 ≤
j ≤ n B[j] = BitMask[Tj ].

Direct bit representation has several major merits. It often
requires less space than byte-based representation for dense
transaction database with long transactions. In fact, B requires
n ·W bytes to store and allows B to fit in main memory. For
instance, netflix2, one of the most referenced datasets, contains
n = 17, 771 transactions consisting of m = 480, 189 distinct
items. Hence, direct bit representation of the netflix dataset
takes about 1 Gb. Thus, in what follows we assume that B
has been preliminary produced from D and it is available in
main memory.

Direct bit representation simplifies support counting as
well. The fact of I ⊆ T can be checked by the
predicate with one logical bitwise operation, that is
BitMask(I) AND BitMask(T ) = BitMask(I).

Thereby, we implement an itemset as a record structure with
the following basic fields, namely mask to provide direct bit
representation, k as number of items in the itemset, stop as
counter to determine when full pass for the given itemset is
completed, and supp to store support count.

1The GNU Multiple Precision Arithmetic Library
2http://www.netflixprize.com

https://gmplib.org/
http://www.netflixprize.com


To implement a set of itemsets, we use vector, which
represents an array of elements belonging to the same type
and provides random access to its elements with an ability to
automatically resize when appending elements. Such a data
structure is implemented in C++ Standard Template Library
as a class with iterator and methods for inserting an element
and removing an element with complexity of O(1) and O(s)
respectively, where s is the current size of a vector.

To reduce costs of moving elements across vectors, we
establish a DASHED vector for “dashed box” and “dashed
circle” itemsets and a SOLID vector for “solid box” and “solid
circle” itemsets and provide the itemset’s record structure
with fig field to indicate an appropriate set the given itemset
belongs to.

B. Parallelization of the Algorithm

The proposed parallel version of DIC algorithm is presented
in Alg. 2 and basic sub-algorithms are depicted in Alg. 3–5.

Algorithm 2. ParalDIC(in B, in minsup, in M , out L)

. Initialize sets of itemsets
2: SOLID.init(); DASHED.init()

k ← 1
4: for all i ∈ 0..m− 1 do

I.fig ← NIL; I.bitmask ← 0
6: I.mask ← SetBit(I.mask, i)

I.stop← 0; I.supp← 0; I.k ← k
8: SOLID.push back(I)

stopmax ← d n
M e; stop← 0

10: FirstPass(SOLID, DASHED)
while not DASHED.empty() do

12: . Scan database and rewind if necessary
stop← stop+ 1

14: if stop > stopmax then
stop← 1

16: first← (stop− 1) ·M ; last← stop ·M − 1
k ← k + 1

18: CountSupport(DASHED)
CutDashedCircle(DASHED)

20: GenCandidates(DASHED)
CheckFullPass(DASHED)

22: L ← {I ∈ SOLID, I.fig = BOX}

We enhance the classical DIC algorithm by adding two more
stages, namely FirstPass and CutDashedCircle where each of
them is aimed to reducing the number of itemsets to perform
support counting of.

We parallelize the following stages of the algorithm, namely
support counting (cf. Alg. 3), reduction of Dashed Circle set
(cf. Alg. 4) and checking full pass completion for itemsets
(cf. Alg. 5) through OpenMP technology and thread-level
parallelism.

In the classical DIC algorithm, the Dashed Circle set is
initialized by all the 1-itemsets (cf. Alg. 1, line 3). In contrast
with classical DIC, we use the technique of full first pass [4].
This means that we initially perform one full pass over D
to find L1, the set of frequent 1-itemsets (this done similarly

to Alg. 3). Then candidate 2-itemsets are computed from L1

through the Apriori join procedure [1]. This done via logical
bitwise OR operation on each pair of frequent 1-itemsets
and candidates are inserted in the Dashed Circle set. This
technique helps to reduce cardinality of the Dashed Circle set
in further computations because infrequent 1-itemsets and their
supersets have been pruned according to the a priori principle.

Algorithm 3. CountSupport(in out DASHED)

if DASHED.size() ≥ num of threads then
2: #pragma omp parallel for

for all I ∈ DASHED do
4: I.stop← I.stop+ 1

for all T ∈ B[first] .. B[last] do
6: if I.mask AND T = I.mask then

I.supp← I.supp+ 1

8: else
omp set nested(true)

10: #pragma omp parallel for
num threads(DASHED.size())

12: for all I ∈ DASHED do
I.stop← I.stop+ 1

14: #pragma omp parallel for reduction(+:I.supp)
num threads(dnum of threads

DASHED.size()
e)

16: for all T ∈ B[first] .. B[last] do
if I.mask AND T = I.mask then

18: I.supp← I.supp+ 1

In the original algorithm support counting is performed
through two nested loops (cf. Alg. 1, lines 9–13) where the
outer loop takes transactions and the inner loop takes the
“dashed” itemsets. As opposed to the classical DIC algorithm
we change the order of these loops to parallelize outer loop
through omp parallel for pragma (cf. Alg. 3). This shuffle
avoids data races when threads process different transactions
but need to change support count of the same itemsets simul-
taneously.

Additionally, our algorithm balances the load of threads
depending on the current total number of elements in both
Dashed Circle and Dashed Box sets. If the number of available
threads does not exceed current total number of “dashed”
itemsets, we parallelize the outer loop (along itemsets) using
all the threads. Otherwise, we enable nested parallelism and
parallelize the outer loop using a number of threads equal
to the current total number of “dashed” itemsets. Then we
parallelize the inner loop (along transactions) so that each
outer thread forks an equal-sized set of descendant threads
where descendants perform counting through reduction of
summing operation. This balancing technique allows to pro-
cessing data effectively in the final stage of counting when
the number of candidate itemsets tends to zero and increases
overall performance of the algorithm.

After the support counting, in addition to moving appro-
priate itemsets from Dashed Circle set to Dashed Box set
as in classical DIC (cf. Alg. 1, line 17), we reduce Dashed
Circle set pruning clearly infrequent itemsets as follows [9].
We compute an itemset’s highest possible support by adding



Algorithm 4. CutDashedCircle(in out DASHED)

#pragma omp parallel for
2: for all I ∈ DASHED and I.fig = CIRCLE do

if I.supp ≥ minsup then
4: . Move appropriate itemsets to Dashed Box set

I.fig ← BOX
6: else

. Prune clearly infrequent itemset
8: suppmax ← I.supp+M · (stopmax − I.stop)

if suppmax < minsup then
10: I.fig ← NIL

. Prune supersets of infrequent itemset
12: for all J ∈ DASHED and J.fig = CIRCLE do

if I.mask AND J.mask = I.mask then
14: J.fig ← NIL

DASHED.erase(∀I, I.fig = NIL)

its current support to the number of transactions have not been
processed yet (cf. Alg. 4). If the value of the itemset’s highest
possible support is less than minsup threshold, then the itemset
is pruned and after that we prune all its supersets according
to the a priori principle.

After the reduction of Dashed Circle set we generate afresh
itemsets to be inserted in that set performing Apriori join
procedure [1] via logical bitwise OR operation between all
the itemsets marked as “boxes”.

Algorithm 5. CheckFullPass(in out DASHED)

#pragma omp parallel for
2: for all I ∈ DASHED do

if I.stop = stopmax then
4: if I.supp ≥ minsup then

I.fig ← BOX
6: SOLID.push back(I)

I.fig ← NIL
8: DASHED.erase(∀I, I.fig = NIL)

Finally, for all itemsets in the Dashed Circle set we check
if an itemset has been counted through all the transactions
and if yes, we make the itemset “solid” and stop counting it
(cf. Alg. 5). This activity is also parallelized along itemsets
through omp parallel for pragma.

In the end DASHED vector contains “box” itemsets as a
result of the algorithm.

III. RELATED WORK

The Original DIC algorithm was presented by Brin et al.
in [2], where the authors briefly discuss a way to parallelize
DIC using the distribution of the transaction database among
the nodes so that each node counts all the itemsets for its own
data segment. The authors noticed that it is unnecessary to
perform synchronization and load balancing in parallel version
of DIC.

Paranjape-Voditel et al. proposed DIC-OPT [10], a parallel
version of DIC for distributed memory systems. The key idea
is that each node sends messages to other nodes after every M

transactions have been read regarding the counts of potentially
frequent itemsets. This initiates the early counting of the
itemsets on other nodes without waiting for synchronization
with other nodes. Authors carried out experiments on up
to 12 nodes where their implementation showed sub-linear
speedup.

Cheung et al. suggested APM [4], a DIC-based parallel
algorithm for SMP systems. APM is an adaptive parallel
mining algorithm, where all CPUs generate candidates dy-
namically and count itemset supports independently without
synchronization. The transaction database is partitioned across
CPUs with a highly homogeneous itemset distributions. This
technique addresses to the problem of a large number of candi-
dates because of the low homogeneous itemset distribution in
most cases. The experiments on the Sun Enterprise 4000 server
with up to 12 nodes showed that APM outperforms Apriori-
like parallel algorithms. However, APM’s speedup gradually
drops down to 4 when the number of nodes is grater than 4.
This is because APM suffers from the SMP’s inherent problem
of I/O contention when the number of nodes is large.

Schlegel et al. proposed mcEclat [12], a parallel version
of the well-known mining algorithm Eclat [14] for the Intel
Xeon Phi coprocessor. mcEclat converts a dataset being mined
into a set of tid-bitmaps, which are repeatedly intersected
to obtain the frequent itemsets. Tid-bitmap maps the IDs of
transactions in which an itemset occurs to bits in a bitmap at
certain positions. For instance, if the itemset i exists in 4-th
and 7-th transactions then the respective bits of i’s tid-bitmap
are set to one while all its other bits are set to zero. Tid-
bitmaps are intersected via logical bitwise AND operation and
then support of an itemset is obtained by counting the one
bits in its respective tid-bitmap. Experiments showed up to
100× speedup of mcEclat on the Intel Xeon Phi. However, the
algorithm’s performance on the Intel Xeon Phi coprocessor is
similar or slightly worse (for smaller values of minsup) than
on system with two Intel Xeon CPUs when the maximum
number of threads is employed on both systems. The reason
is that mcEclat does not fully exploit the Intel Xeon Phi’s
powerful vector processing capabilities.

Kumar et al. presented Bitwise DIC [9], a serial version of
the DIC algorithm based upon tid-bitmap technique mentioned
above. Bitwise DIC outperforms the original DIC. Unfortu-
nately, the authors poorly supported their study by experiments
and discussion of the results (only five runs of the algorithms
on one dataset with 5, 000 transactions for fixed value of
minsup were conducted and only runtime was presented).

In serial algorithms MAFIA [3] and BitTableFI [6] Burdick
et al. and Dong et al., respectively, used vertical bitmap to
compress the transaction database for quick candidate itemsets
generation and support count. Vertical bitmap is a set of integer
in which every bit represents an item. If an item i appears in
a transaction j, then bit j of the bitmap for item i is set to
one; otherwise, the bit is set to zero. This idea is applied
to transactions and itemsets. In cases where itemsets appear
in a significant number of transactions, the vertical bitmap is
the smallest representation of the information. However, the



weakness of a vertical representation is the sparseness of the
bitmaps, especially at the lower support levels.

In this paper we suggested a parallel version of the DIC
algorithm for Intel Xeon and Xeon Phi many-core systems
(which was done for the first time, to the best of our
knowledge) where we use direct bit representation of both
transaction database and itemsets.

IV. EXPERIMENTAL EVALUATION

To evaluate the developed algorithm, we performed exper-
iments on the Tornado SUSU [8] supercomputer’s node (cf.
Tab. I for its specifications).

TABLE I: Specifications of hardware

Specifications CPU Coprocessor
Model, Intel Xeon X5680 Phi SE10X
Cores 6 61
Frequency, GHz 3.33 1.1
Threads per core 2 4
Peak performance, TFLOPS 0.371 1.076
Memory, Gb 24 8
Cache, Mb 12 30.5

We compiled source code using Intel icpc compiler (ver-
sion 15.0.3). Experiments have been performed on realistic
and synthetic3 datasets summarized in Tab. II.

TABLE II: Specifications of datasets

Dataset Category # transactions # items
SKIN [5] Real 245,057 11
RECORDLINK [11] Real 574,913 29
20M Synthetic 2 · 107 64

In the experiments, we studied the following aspects of
the developed algorithm. We compared the performance of
parallel DIC with serial implementations of DIC4 and Apriori5

algorithms. We also evaluated the scalability of our algorithm
depending on the value of M (the number of transactions that
should be processed before stop) and on minsup threshold.

Fig. 1 illustrates the results of the first set of experiments
where we compare the performance of parallel DIC with
serial DIC and Apriori on CPU. As was seen, serial DIC
performs the worst for all the datasets we have tested on6 and
this is in accordance with testing results of B. Goethals. For
datasets with relatively small number of short transactions, se-
rial Apriori performs best whereas parallel DIC demonstrates
degradation of the performance. However, in case of a large
dataset, parallel DIC outperforms serial Apriori. Hence, our
algorithm behaves the best way when the transaction database
provides sufficient amount of work in support counting, which

3We use IBM Quest Synthetic Data Generator similar to original paper [2].
4Frequent Pattern Mining Implementations by Bart Goethals
5Apriori – Frequent Item Set Mining by Christian Borgelt
6For 20M dataset Serial DIC was stopped after 30 hours without output.

Fig. 1: Comparison of performance (minsup = 0.1)

is the heaviest part of the algorithm. This is why we use 20M
dataset in the next set of experiments.

Fig. 2 depicts the results of the second set of experiments
where we studied the scalability of parallel DIC w.r.t. M
parameter on both platforms using 20M dataset. Experimental
results show that parallel DIC outperforms serial Apriori much
more often than not. A greater value of M results in less
runtime and greater speedup. On both platforms at greater
value of M our algorithm shows speedup closer to linear when
the number of threads matches the number of physical cores
the algorithm is running on and speedup becomes sub-linear
when the algorithm uses more than one thread per physical
core. Parallel DIC achieves up to 12× and 90× speedup on
CPU and Xeon Phi, respectively.

(a) Intel Xeon CPU

(b) Intel Xeon Phi coprocessor

Fig. 2: Scalability w.r.t. M (20M dataset, minsup = 0.1)

https://ibmquestdatagen.sourceforge.io/
http://adrem.ua.ac.be/~goethals/software/
http://www.borgelt.net/apriori.html


(a) Intel Xeon CPU

(b) Intel Xeon Phi coprocessor

Fig. 3: Scalability w.r.t. minsup (20M dataset, M = 107)

Fig. 3 presents the results of the third set of experiments
where we evaluated scalability of parallel DIC w.r.t. minsup
threshold on both platforms. Our algorithm still shows better
speedup when only physical cores are involved. Runtime and
speedup of the algorithm expectedly suffer from decreasing of
minsup value. Parallel DIC outperforms serial Apriori with
the exception of hard case minsup = 0.02 on CPU where our
algorithm shows almost the same runtime as Apriori when the
maximum number of threads is employed. On the Intel Xeon
Phi platform it is enough for our algorithm to use 10 threads
to overtake serial Apriori.

Summing up, parallel DIC demonstrates good performance
and scalability on both platforms.

CONCLUSION

In this paper we presented a parallel implementation of
Dynamic Itemset Counting (DIC) algorithm for Intel many-
core systems, where DIC is a variation of classical Apriori
algorithm for frequent itemset mining.

We enhance the DIC algorithm by adding two more stages,
which are devoted to reducing the number of itemsets to
perform support counting of. We also propose direct bit repre-
sentation for transactions and itemsets with the assumption that
such a representation of the transaction database fits in main
memory. This technique reduces memory space for storing the
transaction database and also simplifies support counting and
candidate itemsets generation via logical bitwise operations.
We parallelize the DIC algorithm through of OpenMP tech-
nology and thread-level parallelism. Our algorithm balances
support counting between threads depending on the current

total number of candidate itemsets. We performed experimen-
tal evaluation on the platforms of the Intel Xeon CPU and
the Intel Xeon Phi coprocessor with large synthetic database,
showing the good performance and scalability of the proposed
algorithm.

In continuation of the presented research, we plan to imple-
ment the developed parallel algorithm for the case of cluster
systems based on nodes with the Intel Xeon Phi many-core
coprocessor on-board.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules in large databases,” in VLDB’94, Proceedings of 20th International
Conference on Very Large Data Bases, September 12-15, 1994, Santiago
de Chile, Chile, J. B. Bocca, M. Jarke, and C. Zaniolo, Eds. Morgan
Kaufmann, 1994, pp. 487–499.

[2] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic itemset count-
ing and implication rules for market basket data,” in SIGMOD 1997,
Proceedings ACM SIGMOD International Conference on Management
of Data, May 13-15, 1997, Tucson, Arizona, USA., J. Peckham, Ed.
ACM Press, 1997, pp. 255–264.

[3] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu, “MAFIA:
A maximal frequent itemset algorithm,” IEEE Trans. Knowl. Data Eng.,
vol. 17, no. 11, pp. 1490–1504, 2005.

[4] D. W. Cheung, K. Hu, and S. Xia, “An adaptive algorithm for mining
association rules on shared-memory parallel machines,” Distributed and
Parallel Databases, vol. 9, no. 2, pp. 99–132, 2001.

[5] A. Dhall, G. Sharma, R. Bhatt, and G. M. Khan, “Adaptive digital
makeup,” in Advances in Visual Computing, 5th International Sympo-
sium, ISVC 2009, Las Vegas, NV, USA, November 30 - December 2,
2009, Proceedings, Part II, ser. Lecture Notes in Computer Science,
G. Bebis, R. D. Boyle, B. Parvin, D. Koracin, Y. Kuno, J. Wang,
R. Pajarola, P. Lindstrom, A. Hinkenjann, L. M. Encarnação, C. T. Silva,
and D. S. Coming, Eds., vol. 5876. Springer, 2009, pp. 728–736.

[6] J. Dong and M. Han, “Bittablefi: An efficient mining frequent itemsets
algorithm,” Knowl.-Based Syst., vol. 20, no. 4, pp. 329–335, 2007.

[7] M. HooshSadat, H. W. Samuel, S. Patel, and O. R. Zaı̈ane, “Fastest
association rule mining algorithm predictor (FARM-AP),” in Fourth
International C* Conference on Computer Science & Software Engi-
neering, C3S2E 2011, Montreal, Quebec, Canada, May 16-18, 2011,
Proceedings, B. C. Desai, A. Abran, and S. P. Mudur, Eds. ACM,
2011, pp. 43–50.

[8] P. Kostenetskiy and A. Safonov, “Susu supercomputer resources,”
in PCT’2016, International Scientific Conference on Parallel Com-
putational Technologies, Arkhangelsk, Russia, March 29–31, 2016,
L. Sokolinsky and I. Starodubov, Eds. CEUR Workshop Proceedings.
vol. 1576, 2016, pp. 561–573.

[9] P. Kumar, P. Bhatt, and R. Choudhury, “Bitwise dynamic itemset
counting algorithm,” in Proceedings of the ICCIC 2015, IEEE In-
ternational Conference on Computational Intelligence and Computing
Research, December 10–12, 2015, Madurai, India, N. Krishnan and
M. Karthikeyan, Eds. IEEE, 2015, pp. 1–4.

[10] P. Paranjape-Voditel and U. Deshpande, “A dic-based distributed algo-
rithm for frequent itemset generation,” JSW, vol. 6, no. 2, pp. 306–313,
2011.

[11] M. Sariyar, A. Borg, and K. Pommerening, “Controlling false match
rates in record linkage using extreme value theory,” Journal of Biomed-
ical Informatics, vol. 44, no. 4, pp. 648–654, 2011.

[12] B. Schlegel, T. Karnagel, T. Kiefer, and W. Lehner, “Scalable fre-
quent itemset mining on many-core processors,” in Proceedings of the
Ninth International Workshop on Data Management on New Hardware,
DaMoN 1013, New York, NY, USA, June 24, 2013, R. Johnson and
A. Kemper, Eds. ACM, 2013, p. 3.

[13] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. Liu, “Knights landing: Second-generation
intel xeon phi product,” IEEE Micro, vol. 36, no. 2, pp. 34–46, 2016.

[14] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New algorithms for
fast discovery of association rules,” in Proceedings of the Third Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD-97),
Newport Beach, California, USA, August 14-17, 1997, D. Heckerman,
H. Mannila, and D. Pregibon, Eds. AAAI Press, 1997, pp. 283–286.


	Serial DIC Algorithm
	Parallel DIC algorithm
	Internal Data Layout
	Parallelization of the Algorithm

	Related Work
	Experimental Evaluation
	References

