Computer Aided Design Facilities
for Prototyping the Omega DBMS

Mikhail L. Zymbler
Chelyabinsk State University
Chelyabinsk, Russia
mzym(@csu.ac.ru

Abstract'

The paper describes a set of computer aided design
facilities, used for prototyping the parallel DBMS
(Database Management System), called Omega. This
system is designed for a MBC-100/1000 massively
parallel computer system. These computer aided facilities
include both software tools from third-party vendors and
those especially designed for this project. The former are
a UNIX/Linux operating system, C++ compilers for
MBC-100/1000 and IBM PC, CVS (a Concurrent
Versions System), DOC++ (a documentation system for
C/C++), Router — a distributed operating system for
MBC-100/1000, etc. The latter consists of an operating
environment, a profiler and a debugger. The paper
proposes a certain way of integrating these software tools
for increasing the productivity of the cooperative
development of such a complicated software as a parallel
DBMS for a supercomputer.

1. Introduction

The effective development of complicated software
systems is currently impossible without modern software
engineering. According to the definition given in [1]
Software Engineering is a set of conceptual, management
and programming tools used in software development.

This paper has been supported by the Russian
Foundation for Basic Research (grant No. 97-07-90148).

Permission to copy without fee all or part of this material is provided
that the copies are not made or distributed for direct commercial
advantage, the CSIT copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission
of the Institute for Contemporary FEducation JMSUICE. To copy
otherwise, or to republish, requires a fee and/or special permission
from the JMSUICE.

Proceedings of the Workshop on Computer Science
and Information Technologies CSIT’99
Moscow, Russia, 1999

This paper touches upon the problem of choosing
software facilities for the Omega parallel Database
Management System (DBMS) [2] for a MBC-100/1000
multiprocessor computer system [3].

A developer's tools can be formed in two ways. The
former consists in using an integrated development
environment (the so-called technological complex) to
support all the basic stages of the software development
cycle. A great number of such technological complexes
have already been implemented (see, for instance [4-7]).
The basic disadvantage of this approach is developers'
strict dependence on a specific software which limits their
abilities. To use some function absent in the given
technological complex you either should improve that
complex or chose a new complex. Both situations lead to
extra expenses not connected with the program system
under development. Using a specific technological
complex also limits the developers' choice of a hardware
platform. Such an approach turns out to be productive in
the development of applied software for specific
problems, take for instance, developing applications for
database processing [8].

The latter approach is valid for selecting a set of tools,
each of them supporting some stage of the development
cycle. The basic advantage of this approach is high
flexibility in forming the developers' technological
environment. Even within a single project, they can select
specific components of a technological environment
according to their individual aptitudes. In this case it's
relatively simple to replace some component which ceases
to meet the project's or the developers' requirements. The
main problem of such an approach is the correct choice
and integration of the project technological environment.
This approach is most frequently usable in the
development of system software.

We'll show in this paper the structure of computer aided
design facilities used in the development of a parallel
DBMS prototype for a MBC-100/1000 system. Section 2
gives a brief description of the MBC-100/1000
architecture and the Router distributed operating system.

Workshop on Computer Science and Information Technologies CSIT 99, Moscow, Russia, 1999 1

Section 3 describes the Development Environment of
Omega DBMS including both basic software tools from
third-party vendors and those especially designed for this
project. Section 4 gives the description of project
participants' workplace and the technological cycle of the
development process. The conclusion of the paper carries
an analysis of the efficiency of the tools used and a
possibility of embedding such tools into similar projects.

2. MBC-100/1000 Architecture

MBC-100/1000 supercomputer was designed jointly by
Science Research Institute "Kvant", Institute of Applied
Mathematics by Keldysh of Russian Science Academy,
Science Research Institute of Theoretical Physics and
Institute of Mathematics and Mechanics of Ural Branch of
Russian Science Academy. According to the classification
given in [9], MBC-100/1000 corresponds to a
multiprocessor system with the cluster architecture. In
conformity with Flynn taxonomy [10] MBC-100/1000
architecture can be considered as MIMD.

The MBC-100/1000 consists of processor modules. Each
module is a double-processor computer having
computation and communication processors. The MBC-
100/1000 uses the superscalar Intel i860 processor as
computation processor. The communication processor
addresses all RAM of a processor module, the
computation processor addresses only some part of RAM.
Synchronizing of computation and communication
processors is implemented on the hardware level. The
only external devices of a processor module are speed
channels, namely /inks of the communication processor.
The communication processor has about four (MBC-100)
or six (MBC-1000) links. By means of such links
processor modules are connected with each other and a
disk subsystem. The MBC can include hundreds of
modules and several disk subsystems organized as a
module network.

The network obtained in such a way is connected with the
control computer (host-computer) via one link. IBM PC
compatible workstation is used as a host-computer.

OS Router designed by the Institute of Applied
Mathematics by Keldysh of the Russian Science Academy
is used as a MBC-100/1000 operating system. The host-
computer usually runs under UNIX or Linux.

OS Router is a distributed operating system of the toolset
class. It consists of a processor server for running on each
communication processor and the host-server (iserver.exe)
for running on the host-computer. Both processor server
and host-server are always loaded before the user's task.

OS Router provides the following basic functions:
e loading the user's programs from the host-computer to
processor modules;

e interchanging data between the user program and the
host-computer in the form of some subset of UNIX
input/output functions;

e interchanging via links among programs run on
different processors.

The user's task can be run only on computation
processors. This task is a totality of processes. Each
processor module can execute the only one process of the
user. Each process is implemented as program, that is, as
individual load module of a programming system.
Program text has calls of OS Router functions, which
realize a message exchange among other programs. There
are no tools to provide a program development for the
whole processor network.

3. Omega Project Development Environment

The Omega project Development Environment (DE)
consists of software tools from third-party vendors and
those especially designed for this project. The former set
includes GNU Emacs text editor, CVS versions control
system, DOC++ (all under Linux), Portland Group C++
compiler (PGCC), Borland C++ compiler for Windows
and some UNIX utilities. The latter set consists of
Debugger and Profiler (all for i860).

The main purpose of forming the Omega DE is to create
suitable environment supporting the basic stages of
developing lifecycle of C system software for the MBC-
100/1000. Such an DE is supposed to guarantee the
project participants' effective work.

3.1 Software Tools from Third-party Vendors

The basic software tools from third-party vendors used in
the Omega project are CVS versions control system and
DOC++ source code documentation system.

CVS Versions Control System

CVS (concurrent versions system) [11] is the basic tool to
provide the Omega project versioning and to support the
developers' co-work.

CVS runs under UNIX and can be used by a developer as
CASE-package (toolkit) on the stages of coding and
maintenance. CVS supports the concepts of the repository
and the working copy of the project. The repository stores
a complete copy of all the files and directories which are
under version control. No developer ever accesses any of
the files into the repository directly. Instead, he uses CVS
commands to get his own copy of the files and then work
on that copy.

Having made a set of changes, each developer is to
commit (check-in) them back into the repository to make
them accessible for other developers. Each developer has
to update his working copy periodically to get changes

Computer Aided Design Facilities for Prototyping the Omega DBMS 2

from other developers. While checking-in the developer is
to comment on his changes for the repository to contain
all the changes whenever and whoever made by. During
updating and checking-in CVS automatically merges the
changes from other developers, if these changes do not
affect the same lines of the source code. If modifications
overlap the resulting file includes both versions of the
overlapping lines, which are delimited by special markers.
The developer is to resolve this conflict manually to finish
the checking-in.

The developer can get the history of changes of the
specified file and compare two versions of this file. He
can also get its current status, which is up-to-date, locally
modified, needing a merging, having an unresolved
conflict etc.

Each version of a file has a unique revision number which
changes automatically after checking-in. Revision
numbers look like "1.1', "1.2', "1.3", or "1.3.2.2' and even
*1.3.2.2.4.5" in case of the project's branch. Project files
(called release) with specified revisions can be assigned to
the same symbolic tag. For instance, a release may have
name ‘release-1', ‘release-2', ‘release-1 patches'. The
developer can check-out the specified file or the whole
release using their tags.

While debugging or maintaining previous project releases
there often arises a necessity to change something in them
and then to spread modifications to the current release.
CVS supports the concepts of the main trunk and branches
of the revision tree. To solve the problem the developer
can check-out a necessary release, then create a branch
and make modifications in this branch (without affecting
the main trunk). When the modifications are made the
developer can select either to incorporate them into the
main trunk and check-in, or to leave them in the branch.

CVS seems to be very useful for cooperative development
of some complicated software systems.

DOC++ Source Code Documentation System

DOC++ source code documentation system [12] helps to
create high quality documentation on a program system
immediately while the editing of C/C++ sources. Such an
approach allows to fulfil the code self-explicability
requirement as well as to avoid the duplication of the
information in documentation and source codes. This is
the most effective way to secure the adequacy of
documentation and its conformity to source codes.

The main purpose of documentation system is to include
into the source text comments of a special format:
[

Such comments, unlike those with only one preceding
asterisk will be analyzed by DOC++ and converted into

HTML format. At the same time documenting system uses
the number of reserved words started with ‘@' and placed
into a special comment. The following specification of a
function is to be processed by DOC++:

[**
Create a new thread and calculate its T-
factor. There is no transmission of control
to the new thread. In fact th fork()
creates a new record in the threads table
of the thread manager. If the factor-
function is omitted it is assumed to be
(TH_FACTOR MAX/2). If priority is
TH _LOWEST NICE then the given thread will
be run only in the absence of other ready-
to-run threads with higher priorities.
@memo Create a new thread
@param proc - pointer to function
representing thread body
@param param - pointer to parameter list or
NULL
@param factorfn - pointer to factor-
function or NULL
@param type - a thread type:
\begin{verbatim}
TH AND - conjunction
TH OR - disjunction
TH SYS - system
\end{verbatim}
@param nice - thread priority
number from -20 to 20).
@return - the positive tid of a new thread
or a negative error code:
\begin{verbatim}
TH OVERFLOW - an overflow of the threads
table,
TH ENOMEM - not enough memory to create a
new thread
\end{verbatim}
@see th proc t
*/
extern th tid t th fork(th proc t proc,
void* param, th factorfn t factorfn,
th type t type, th nice t nice);

(integer

The source codes like those given above will be
automatically compiled into high quality HTML
documents.

The main advantages of such an approach are a)
permanent adequacy of documentation b) possibility to
use documentation under any hard/soft-ware platform with
HTML browser c¢) possibility to use documentation via
Internet.

3.4 Software Tools Especially Designed for the
Omega Project

Debugger
PGCC for MBC-100/1000 Development Environment has

no internal debugger. Therefore within the frame of the
Omega project a Debugger has been designed.

Computer Aided Design Facilities for Prototyping the Omega DBMS 3

The Omega Debugger provides developers with unified
tools for program debugging. All the functions of the
Debugger are embedded into the object code if the
OMEGA DEBUG special pre-processor symbol is
defined. The Debugger has the following basic functions:

e void db_setMode (char mode) - setthe
debug mode;

e void db_setScale(long bitscale) -set
the processors debug print scale;

e void db printf(char * pointid, char
* fmtstr, ...) -show the values of variables.

The db setMode (mode) function call secures the
setting either a step-by-step mode or a dump mode for the
db_printf () function. In the step-by-step mode each
debug message requires press Enter to continue. In the
dump mode the debug message has no pause, it is
assumed that the developer redirects output to a file.

The db setScale (bitscale) function call allows
to specify CPU numbers for which debug messages will
be shown. If the i-th right bit of argument is set then
debug messages are printed for the respective i-th
processor. All the bits of the debug print scale are set by
default.

The db_printf (pointid, fmtstr, ...)function
call outputs debug messages of the following unified
format:

<call>: <CPU>: <formatted

argument list>,

<point id>:

where
e call isthe serial number of db_printf () call;
e CPU is the current processor's number;

e point id is a string to identify the place of
db printf ()call in the program. Developers are
recommended to use the following format of
point id:
<the name of the function >: <the serial number of
db_printf() call in the function>

e fmtstr is astring to format an argument list.

Such a debugger, of course, can not replace a full-value
symbolic debugger. Still it helps to increase debugging
effectiveness.

Profiler

One of the most important problems to arise in the DBMS
design and its realization is query optimization. The most
time valuable things during the query execution in parallel
DBMS for cluster architecture platforms are the data

passing among processor nodes and transfers among
disks. Therefore to estimate any query execution plan one
must know the amount of all the data which are involved
in the interchanges among disks and transfers via links.

So within the frame of the Omega project a Profiler has
been designed to solve such problems for the MBC-
100/1000 multiprocessor system. All the functions of the
Profiler are imbedded into the object code if the
OMEGA PROFILE special pre-processor symbol is
defined. The Profiler has the following basic functions:

e int pf createTag(int tag) - create atag;

e int pf startProfile(int tag) - start
profiling by a specified tag;

e int pf stopProfile(int tag) -stop
profiling by a specified tag;

e long pf_getValue(int tag, int type) -
get a value of a specified type for a specified tag;

e int pf addvalue(int tag, int type,
long value) - update a value of a specified type
for a specified tag.

The pf createTag(tag) function call creates a
record with a specified tag in the profiler table. This
record has fields to accumulate interchanges among disks
and transfers via links initiated by the given thread. In fact
a tag is some kind of identification which allow users to
sum profile results received after the execution of some
query on several processors.

The pf startProfile(tag) function call switches
on a profile mode for the specified tag. This call does not
clear interchange and message counters i.e. new values
will be added to the old ones.

The pf stopProfile(tag) function call switches
off a profile mode for the specified tag. This call does not
clear interchange and message counters i.e. a developer
can continue profiling for the specified tag later.

The pf getValue (tag, type) function call returns
the value of the specified type for the specified tag. Here
type indicates a type of the value: is it interchange
among disks or transfer via links.

To profile disk interchanges and transfers via links of
some thread developers are to use the
pf addvalue (tag, type, value) function call
to update the respective (in the sense of the type
argument) counters of all the profile records with a profile
mode switched on.

Computer Aided Design Facilities for Prototyping the Omega DBMS 4

4. Omega Project Cooperative Development
Organization

4.1 Network Environment

The designed Omega DE proposes two different variants
of the project participants' workplace (see Figure 1).

‘Work station
(MS Windows)

® Borland C++

* WWW Browser
¢ WS-FTP

o Telnet

Work station
(MS Windows)

* X-Window
Linux terminal

| GNU Emacs

* WWW Browser

i LAN

! Linux Server

L 2

L]
T S
-_..D!=,DOCJHr v MVS
® GNU Emacs
o WWW Browser

Figure 1. Network Environment Structure of the
Omega DBMS Development

The former provides Borland C++ Integrated DE (IDE).
The sources are stored on developer's workstation. After
editing, the developer transfers those files to Linux-server
via ftp. In this case telnet is used as a Unix-terminal.
telnet also helps to run PGCC compiler on the Linux-
server, after that it runs a task execution on the MBC-
100/1000. Both variants use the standard UNIX make
utility.

The latter variant is fully oriented upon Linux. GNU
Emacs is used as a text editor because it has built-in C and
CVS support. In fact, Emacs plays the role of some kind
of shell which provides C sources editing, compiling and
running. The developers have workstations with Windows
95/NT installed. The workstations are connected into a
local network with Linux-server as the host-computer of
the MBC-100/1000. Developers use X-terminals to deal
with the Linux-server.

The first variant has two important advantages. Firstly, it
allows working via Internet which would be impossible in
the first variant with the inadmissible slow speed of X-
terminal for data transferring. Secondly, Borland C++
IDE can be used for compiling, running and, what is most
important, debugging hardware-independent parts of the

sources because Borland C++ IDE unlike PGCC has a
powerful built-in Debugger.

4.2 Technological
Development

Cycle of Cooperative

Working on his module of the project each developer uses
directly only Profiler and Debugger of the project DE.
Project versioning (connected with CVS) and source code
documentation support (connected with DOC++) is under
responsibility of the Librarian Programmer of the project
(see Figure 2). He is also in charge of making the project
and all-system testing.

A Developer can not check-in changes in his working
copy into the project repository directly (CVS provides
such a possibility). He can only check-out or update his
working copy using special scripts (precisely check-out or
update parts of project the corresponding to his module).
At the same time the Developer can use CVS to support
his repository for his own purposes.

A Developer must comment upon his sources correctly in
the sense of DOC++. Moreover, a Developer must design
program(s) for his module testing. After that he sends the
module sources and the program for testing to the
Librarian Programmer via email.

Here is a sample technological cycle of development:

a) a Developer sends modified source and change log to
the Librarian Programmer;

b) the Librarian Programmer makes Developer's module
and executes a module test, then makes an all-system
test;

¢) in case of any error a Developer will get a test log
and a notification about the necessity of further
correction;

d) in case of success the Librarian Programmer checks-
in the modified sources commenting upon changes by
the log (from a) step);

e) the Librarian Programmer generates a new version of
the project documentation, if needed,;

f) the Librarian Programmer notifies the Project
Manager and then the Project Manager notifies the
rest of the developers.

Project Manager is the only person in charge of making
decisions to tag the project's release or to create a project
branch.

Computer Aided Design Facilities for Prototyping the Omega DBMS 5

ENEES
vv\ e~
\0
} \
. . . N A
’ ’ Q-Repository
D1 Include r—————————
L/JJ L/JI\ o
- N~
\ 1
] T
|)

Load module

A

Q-Lib
Reference Manual

T

Load module

_/

sources

i
|
|
i
|
|
|
i
i t

—. _,4_ .—| b2

Librarian Programmer

Dump Dump

<
<
| %) |
<
<
<« %) <«

Figure 2. Cooperative Development Organization for the Omega Project

(ADBIS’97), St.-Petersburg. September 2-5, 1997,
vol. 2, pp 88-90.

Zabrodin A.V., Levin V.K., Korneev V.V. "The
Massively Parallel Computer System MBC-100". In:
Proceedings of PaCT-95, 1995, pp 342-356 (Lecture
Notes in Computer Science, vol. 964)

4. Velbitsky I.V. "Software
Tekhnika, 1984 (in russian)

5. Conclusion

The presented technological cycle and its software 3.
facilities could be used in the cooperative development of
complicated software systems for various purposes. The
Development Environment proposed here allows taking
into account individual aptitudes of the project
participants. Such an environment guarantees effective
work under any hard/soft-ware platform either in a local

Engineering". Kiev,

network or via Internet. 5. Melnikov ILA., Raabe A.S., Tamm B.G. "Computer
Aided Facilities Supporting Software Lifecycle.
References Review of Foreigp Tools". Applied Informatic 1988;
L Saf VO "p . L d 14: 16-40 (in russian)
- Satonov V. rogrammms angua%es an 6. Sokolinsky L.B. "Programming Support for TIP-
Methods for Elbrus Computer System". Nauka, .
. . technology on Elbrus Multiprocessor System". In:
Moscow, 1989 (in russian) ;) ;
) . Proceedings of the First Regional Conference on
2. quolmsky L., Axenov O., GutovaS. Orpeg;:: The Software Engineering, Applied and System Software.
glghlyd'Parallel " D;t'abaj;: sttem Pr?ect : 'In: Perm: PermSU-press. 1989. pp. 32-33 (in russian)
t t -
roceedings of the First East-European Symposium 7. Fuksman A.A.. "Theoretical Aspects of Programming

on Advances in Database and Information Systems

Workshop on Computer Science and Information Technologies CSIT 99, Moscow, Russia, 1999 6

10.

11.

12.

Computer Aided Design Facilities for Prototyping the Omega DBMS

Systems Development". Statistika, Moscow, 1979 (in
russian)

Pozin B.A. "Modern Software Engineering Tools for
Development Open Applied Information Systems"
DBMS 1995; 1: 139-144 (in russian)

Pfister G. "Sizing Up Parallel Architectures".
DataBase Programming & Design OnLine 1998;
May (http://www.dbpd.com/9805feat.html)

Flynn M.J., Rudd K.W. "Parallel architectures". ACM
Computing Surveys. 1996; March. Vol. 28. No. I:
67-70

Berliner B. "CVSII: Parallelizing Software

Development"
http://www.hu.freebsd.org/hu/doc/psd/28.cvs/paper.html
Wunderling R., Zdckler M. "DOC++. A

Documentation System for C/C++ and Java".
http://www.zib.de/Visual/software/doc++

