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Abstract. Subsequence similarity search is one of the basic problems
of time series data mining. Nowadays Dynamic Time Warping (DTW)
is considedered as the best similarity measure. However despite vari-
ous existing software speedup techniques DTW is still computation-
ally expensive. There are approaches to speed up DTW computation
by means of parallel hardware (e.g. GPU and FPGA) but accelerators
based on the Intel Many Integrated Core architecture have not been
payed attention. The paper presents a parallel algorithm for best-match
time series subsequence search based on DTW distance for the Intel Xeon
Phi coprocessor. The experimental results on synthetic and real data sets
confirm the efficiency of the algorithm.

1 Introduction

Subsequence similarity search is one of the basic problems of time series data
mining and appears in various applications, e.g. climate modeling [1], medical
monitoring [6], economic forecasting [5], etc. Best-match time series subsequence
search assumes that a query sequence and a longer time series are given, and the
task is to find a subsequence in the longer time series, whose distance from the
query is the minimum among all the subsequences.

Nowadays the Dynamic Time Warping (DTW) [2] is considered as the best
similarity measure in many time series applications [3]. DTW is computationally
expensive and there are many software approaches that have been proposed to
solve this problem, e.g. lower bounding [3], computation reusing [13], data index-
ing [9], early abandoning [11], etc. However, DTW is still very time-consuming
and there are approaches to speed up DTW computation by means of parallel
hardware, e.g. computer-cluster [15], multicore [14], FPGA and GPU [13,16] but
none for the Intel Many Integrated Core [4] accelerators.

In this paper we present a parallel algorithm for best-match subsequence
search based on DTW distance adapted for a central processor unit (CPU)
accompanied with the Intel Xeon Phi many-core coprocessor. The remainder
of the paper is organized as follows. Section 2 gives the formal definition of the
problem and briefly considers the Intel Xeon Phi architecture and program-
ming model and discusses related work. The suggested algorithm is described in
Sect. 3. Experimental results evaluating the algorithm are presented in Sect. 4.
Section 5 contains summary and directions of future work.
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2 Background and Related Work

2.1 Problem Definition

A time series T is an ordered sequence t1, to, ..., ty of real data points, measured
chronologically, where N is a length of the sequence.

A query @ is a time series to be found in T’; n is a length of the query, n < N.

A subsequence T, of time series T is its continuous subset starting from i-th
position and consisting of m data points, i.e. T;p, = t;,ti41, .-+, tigm—1, Where
1<i<Nandi+m<N.

Best-match subsequence search aims to finding a subsequence Tj, whose
Dynamic Time Warping distance from @ is the minimum among all the subse-
quences, i.e. DTW (T;,, Q) < DTW (T, Q) for any m such that 1 < m < N—n.

In this paper we do not consider local-best-match search [16], which aims
to finding all the subsequences T;, whose distance from ) is the minimal
among their neighboring subsequences whose distance from @ is under specified
threshold.

Dynamic Time Warping (DTW) is a similarity measure between two time
series X and Y, where X = x1,29,....,xny and Y = y1,¥2,...,yn, is defined as
follows.

DTW(X,Y) = d(N,N),

d(l - ]-3.7)
d(i, j) = |w; — y;| + min § d(i,j — 1)
d(l - 17] - 1)7

d(0,0) = 0:d(i,0) = d(0,§) = cosi = j = 1,2,..., .

2.2 The Intel Xeon Phi Architecture and Programming Model

The Intel Xeon Phi coprocessor is an x86 many-core coprocessor of 61 cores,
connected by a high-performance on-die bidirectional interconnect where each
core supports 4x hyperthreading and contains 512-bit wide vector processor unit
(VPU). Each core has two levels of cache memory: a 32 Kb L1 data cache, a
32 Kb L1 instruction cache, and a core-private 512 Kb unified L2 cache. The
Intel Xeon Phi coprocessor is to be connected to a host computer via a PCI
Express system interface. Being based on Intel x86 architecture, the Intel Xeon
Phi coprocessor supports the same programming tools and models as a regular
Intel Xeon processor.

There are three programming modes to deal with the Intel Xeon Phi coproces-
sor: native, ofload and symmetric. In native mode the application runs indepen-
dently, on the coprocessor only. In offload mode the application is running on
the host and offloads computationally intensive part of work to the coprocessor.
The symmetric mode allows the coprocessor to communicate with other devices
by means of Message Passing Interface (MPI).
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2.3 Related Work

Currently DTW is considered as best similarity measure for many applica-
tions [3], despite the fact that it is very time-consuming [7,15]. Research devoted
to acceleration of DTW computation includes the following.

The SPRING algorithm [12] uses computation-reuse technique. However,
this technique squeezes the algorithm’s applications because data-reuse supposes
non-normalized sequence. In [9] indexing technique to speed up the search was
used, which need to specify the query length in advance. Authors of [8] suggested
multiple index for various length queries. Lower bound technique was proposed
in [7] and prunes off unpromising subsequences using the lower bound of DTW
distance estimated in a cheap way. The UCR-DTW algorithm [11] integrates all
the possible existing speedup techniques and most likely it is the fastest of the
existing subsequence matching algorithms.

All the aforementioned algorithms aim to decrease the calling times of DTW
computation, not accelerating DTW itself. However, because of its complexity,
DTW still takes a large part of the total application runtime. That is why
there are researches exploiting the effectiveness of parallel hardware by means of
allocation of D'T'W calculation of different subsequences into different processing
elements.

In [14] subsequences starting from different positions of the time series are
sent to different Intel Xeon processors, and each processor computes DTW.
In [15] different queries are distributed onto different cores, and each subse-
quence is sent to different cores to be compared with different queries. GPU
implementation [17] parallelize the generation of the warping matrix but still
process the path search serially. GPU implementation proposed in [13] utilizes
the same ideas as in [14]. FPGA implementation described in [13] focuses on the
naive subsequence similarity search, and do not exploit any pre-processing tech-
niques. It is generated by a C-to-VHDL tool and due to lack of insight into the
FPGA can not be applied in big-scale tasks. To address these problems in [16]
a stream oriented framework was proposed. It implements coarse-grained par-
allelism by reusing data of different DTW computations and uses a two-phase
precision reduction technique to guarantee accuracy while reducing resource cost.

In this work a parallel algorithm of the time series subsequence DTW-based
similarity search on the Intel Xeon Phi many-core coprocessor is presented where
the UCR-DTW serial algorithm is used as a basis.

3 Best-Match Subsequence Search on the Intel Xeon Phi

Development of the best-match subsequence search algorithm consists of the
following steps, which will be discussed in detail further.

At first, we developed a parallel version of the UCR-DTW serial algorithm
[11] using OpenMP technology. However, experiments have shown that, despite
the one-order speedup of parallel algorithm, it works slower on the Intel Xeon
Phi coprocessor in native mode than on CPU. This results from low operational
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intensity of our algorithm, i.e. insufficient FLOPs (floating point operations) per
byte of data to be effectively processed on the Intel Xeon Phi coprocessor.

Next, we modified our algorithm combining CPU and coprocessor to process
time series, i.e. CPU and the Intel Xeon Phi run parallel algorithm developed
at the previous step. Here we used offload mode to transfer code and data to
the coprocessor. Experiments, where we varied the portion size of data to be
transferred to the coprocessor, show results similar to those obtained at the first
step due to the same reason.

Finally, we developed an advanced version of the algorithm where the
coprocessor is exploited only for DTW computations whereas CPU performs
pruning and supports a queue of subsequences for the coprocessor. This signifi-
cantly increased the operational intensity of the computations on the coprocessor
and experiments shown acceptable performance of the algorithm.

3.1 Parallel Algorithm for CPU

The UCR-DTW algorithm proposed in [11] is one of the fastest existing subse-
quence matching algorithms. This algorithm (Fig. 1) uses a cascade estimation
of the lower bound of DTW distance. If the lower bound has exceeded some
threshold, the DTW distance also exceeds the threshold, so the subsequence can
be pruned off. Here the bsf (best-so-far) variable stores the distance to the most
similar subsequence.

Get next Tip) 00 Tul

else

(Lower Bound Cascade Pruning /

[Ib_kim = bsf]

non-pruned

LB_Keogh(Tin, Q)

[Ib_keogh = bsf]

[Ib_keogh_ec = bsf]

pruned

[pruned]
else

(bsf = minosf, dist))«—(dist =DTW(Tin, Q)

Fig. 1. Serial algorithm

A parallel version of the UCR-DTW algorithm is depicted in Fig.2. We
parallelize the original algorithm using the OpenMP technology. The time series
is splitted into equal-length portions and each portion is processed by a separate
OpenMP-thread. Let P denotes a number of OpenMP-threads, then a portion
assigned for processing to the k-th thread, 0 < k < P — 1, is defined as a
subsequence Ty;, where
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1 k=0
5= k- [B]—n+2 else
\_%J k=0
l=4 [5]l+n—1+(NmodP),k=P—1
| Z]+n—1 ,else

It means that the head part of every portion except first overlaps with the
tail part of previous portion in n — 1 data points. This permits to keep possible
resulting subsequences from the junctions of portions.

! Read data Swap Buf_1
Open file and Buf 2
else [EOF]

Read data UCR-DTW | [ UCR-DTW | -+- | UCR-DTW
in Buf_2

[result = min_dist(result, resq, ..., feSCPU_THREADS)J

[Buf_2 is empty]
Output ) else
@4—( result H Close file

Fig. 2. Parallel algorithm for CPU

Here UCR-DTW is a subroutine that implements the original serial algorithm.
In contrast with the serial version the bsf variable is shared among the threads.
This allows each thread to prune off unpromising subsequence using lower bound-
ing. Master thread reads new data from a file simultaneously with processing of
data that have been read.

The obtained algorithm is ready to run on the Intel Xeon Phi in native mode
but experiments have shown that (Fig.6) although parallel algorithm expect-
edly surpasses the serial algorithm it works slower on the coprocessor than on
CPU. This was a result of low operational intensity of our algorithm, i.e. insuf-
ficient FLOPs per byte of data to be effectively processed on the Intel Xeon Phi
COProcessor.

3.2 Naive Parallel Algorithm for CPU and the Intel Xeon Phi

Figure3 depicts the modified version of the algorithm. This version is called
“naive”, because in comparison with the previous version it only distributes
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CPU Intel Xeon Phi
Receive

Swap Buf_1 Read data
and Buf 2 Open file
Q portion of Buf_1
else [EOF] Send
a portion of Buf_1 l l

[Read data} [UCR-DTWJ (UCR-DTW) ---(UCR-DTW) (UCR-DTW) (UCR-DTW}

in Buf_2
Receive phi_result l l

phi_result = min_dist
(res1, ..., respHI_THREADS)

(result = min_dist(result, resq, ..., rESCPU_THREADS)J l

[Buf_2is Send phi_result
else /\empy] ) Output
Close file ®

Fig. 3. Nalve parallel algorithm for CPU and the Intel Xeon Phi

work among CPU and the coprocessor. Here « is a parameter that determines
a proportion of data to be transferred to the coprocessor. We use offload mode
to organize data exchange between CPU and the coprocessor. The min dist
subroutine chooses a subsequence with minimal value of DTW.

As well as in the previous step we evaluated the obtained algorithm and
experiments have shown that regardless of the o value the algorithm has worse
performance in comparison with the parallel algorithm for CPU.

This is because we still have not increased operational intensity of calculations
on the coprocessor. Additionally, bsf shared variable can not be synchronized
between the CPU and the coprocessor while offloading is performed (the syn-
chronization is possible at the beginning and at the end of offload section). That
is why we have more non-pruned subsequences to compute DTW.

3.3 Advanced Parallel Algorithm for CPU and the Intel Xeon Phi

The advanced version of the algorithm obtained at the previous step is depicted
in Fig. 4.

The algorithm is based on the following two ideas. First, the coprocessor should
be exploited only for DTW computation whereas CPU prunes unpromising subse-
quences and computes DTW in case if it really does not have another job. Second,
CPU should support a queue of subsequences that are candidates to be offloaded
to the coprocessor to compute DTW for each candidate subsequence.

To reduce amount of data transferred to the coprocessor the following tech-
nique has been used. Queue does not store each candidate subsequence T;,, but
stores its corresponding tuple (i, A), where A is an n-element array containing
LBgcogn lower bounds for each position of the subsequence which is used for
early abandoning of DTW [11]. CPU offloads current part of the time series once
whereas queue is offloaded each time it is full.
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CPU Intel Xeon Phi

Swap Buf_1 Read data
and Buf_2 in Buf_1

Open file

Receive
candidates

else [EOF]

Wait for
candidates

(Read dataj EJCR—DTW*J [UCR-DTW*J ---EJCR—DTW*J

in Buf_2
(Send candidates)— l l
else
Receive DTW DTW
phi_result l l
[no candidates and
all threads are finished] l

phi_result = min_dist
(res1, ..., respPH|_THREADS)

(result = min_dist(result, res1, ..., reSCPU_THREADS)J

¥ Buf 2is

else /\empty] - Output ® Send phi_result
Close file result

Fig. 4. Advanced parallel algorithm for CPU and the Intel Xeon Phi

The number of elements in the queue is calculated as C' - h - W, where C
is a number of cores of the coprocessor, h is a hyperthreading factor of the
coprocessor and W is a number of candidates to be processed by a coprocessor’s
thread (i.e. W is a parameter of the algorithm).

One of the CPU threads is declared as a master and the rest as workers. At
start master sends a buffer with the current portion of the time series to the
coprocessor. If queue is full then master offloads it to the coprocessor to per-
form DTW computation for the corresponding subsequences by the coprocessor’s
threads.

A worker’s behavior is depicted in the Fig. 5. Worker computes cascade esti-
mates for the current subsequence. If it is dissimilar to the query then the worker

[pruned]
Lower Bound Cascade Pruning I'"ﬂ

else

(Queue.Push (candidate) glse

L
[Queue.IsFull]

(bsf = min(bsf, dist))(—( dist = DTW(Tjn, Q)

Fig. 5. UCR-DTW* subroutine
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prunes it off otherwise worker pushes this subsequence to the queue. If the queue
is full and data previously transferred to the coprocessor have not been processed
yet, the worker computes DTW by itself.

At the end of offload section the information about most similar subsequence
found on the coprocessor is transferred to the CPU. The final result is computed
among the most similar subsequence found on the CPU and same that found on
the coprocessor.

4 Experimental Results

To evaluate the developed algorithm we performed experiments on the Tornado
SUSU supercomputer’s node (Table 1 contains its specifications).

Table 1. Specifications of the Tornado SUSU supercomputer’s node

Specifications Processor Coprocessor

Model Intel Xeon X5680 | Intel Xeon Phi SE10X
Cores 6 61

Frequency, GHz 3.33 1.1

Threads per core 2 4

Peak performance, TFLOPS | 0.371 1.076

We measured search runtime while varying query length. Experiments have
been performed on synthetic and real time series. We also investigated the impact
of queue size on the speedup and compared performance of the algorithm with
analogues for GPU and FPGA.

4.1 Performance

In the first experiment we used synthetic time series generated by one-
dimensional random walk [10] comprising of 100 million data points. Exper-
imental results (Fig.6a) show that our algorithm is more effective for longer
queries. In case of shorter queries the algorithm has the same performance as
parallel algorithm for CPU only.

The second experiment investigates the algorithm’s performance on real elec-
trocardiographic (ECG) data with about 20 million data points (approximately
22 hours of ECG sampled at 250 Hz). Our algorithm shows (Fig.6b) a three
times higher performance than the parallel algorithm for CPU only.

4.2 Impact of Queue Size

Results of experiments investigating the impact of queue size on performance are
depicted in Fig. 7. In the current experimental environment, i.e. hyperthreading
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factor of the coprocessor h is 4, number of cores of the coprocessor C is 60,
optimal number of candidates to be processed by a coprocessor’s thread W is
10, so optimal number of the elements in the queue is 2400. Experimental results
described in Sect. 4.1 have been achieved with this queue size.

4.3

Comparison with Analogues

We compared the performance of our algorithm with analogues for GPU and
FPGA developed in [13]. We repeated the experiments presented in that paper

using the same data set and query length.

The results of the experiments are depicted in Fig. 8, here percentage on the
top of the bar indicates a proportion of subsequences that have not been pruned

1 One of the coprocessor’s cores is not involved in computations as it is recommended
by the Intel Xeon Phi programmer’s manual.
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Fig. 8. Comparison of performance

and subjected to the DTW calculation in our experiments. We also add to the
chart results of experiments on random walk and ECG data sets.

We took into account that the peak performance of the hardware we used is
significantly greater than its counterparts of that paper, i.e. overall peak perfor-
mance of our hardware was 1.44 TFLOPS whereas GPU as NVIDIA Tesla C1060
had 77.8 GFLOPS and FPGA as Xilinx Virtex-5 L.X-330 had 65 GFLOPS.

To provide more “fair” comparison we added to the chart hypothetical results
for modern NVIDIA Tesla K40 (1.43 TFLOPS) and Xilinx Virtex-7 980XT
(0.99 TFLOPS) multiplying real results of NVIDIA Tesla C1060 and Xilinx
Virtex-5 LX-330 by a respective scaling factor. As we can see our algorithm
does not concede to analogous on performance.

5 Conclusion

In this paper an approach to best-match time series subsequence search under
DTW distance on the Intel Many Integrated Core architecture has been pre-
sented. The parallel algorithm combines capabilities of CPU and the Intel Xeon
Phi many-core coprocessor. The coprocessor is exploited only for DTW com-
putations whereas CPU performs lower bounding, prepares subsequences for
the coprocessor and computes DTW as a last resort. CPU supports a queue
of candidate subsequences to be offloaded to the coprocessor to compute DTW.
Experiments on synthetic and real data sets have shown that our algorithm does
not concede to analogous algorithms for GPU and FPGA on performance.

As future work we plan to extend our research in the following directions:
implement our algorithm for the cases of several coprocessors and cluster system
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based on nodes equipped with the Intel Xeon Phi coprocessor(s) and apply our
approach to the task of local-best-match time series subsequence search.
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