Implementation Principles
of File Management System for Omega Parallel DBMS

Mikhail L. Zymbler

Leonid B. Sokolinsky

Chelyabinsk State University Chelyabinsk State University

Russia
mzym(@cgu.chel.su

Abstract

The paper describes development principles and the
program structure of the Omega File Management
System (OFMS) for the Omega parallel DBMS
engine. The paper gives requirements for OFMS and
the description of its general structure and
components. The paper gives some effective protocol
for interaction with the Disk Subsystem Unit and
describes architecture of the Disk Subsystem
Emulator. The paper also proposes a page replacement
strategy based on so-called static and dynamic page
ratings. Described OFMS was implemented for the
MBC-100 massively parallel computing system.

1 Introduction

A parallel database management system (DBMS) design
usually has some operating environment level in its
structure. This level provides process management and
scheduling, interprocess communication support, buffer
management functions and the file management system.

The DBMS developer is faced with two approaches to
implement such low-level services. The first, use these
services from the operating system (OS) he or she works
with, and the second, implement these services as part of
DBMS. Current DBMSs usually use the latter alternative
because general-purpose OS services usually are either

! This work was supported by the Russian Foundation for
Basic Research under Grant 00-07-90077.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the CSIT copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Institute for Contemporary Education JMSUICE. To
copy otherwise, or to republish, requires a fee and/or special
permission from the JMSUICE.

Proceedings of the Workshop on Computer Science
and Information Technologies CSIT 2000
Ufa, Russia, 2000

Russia
sokolinsky@acm.org

too slow or inappropriate for database management needs
[1].

This paper describes the Omega File Management
System designed and implemented within the frames of
the Omega Project [2]. The Omega Project is aimed to
develop the parallel DBMS with hierarchical shared-
nothing architecture for the MBC-100 multiprocessor
computing system [3].

The Omega system hardware architecture corresponds to
three-level hierarchy. The MBC processor module
consisting of computation and communication processors
presents first level. The second level corresponds to the
Q-cluster including four MBC processor modules
connected each other and with Disk Subsystem Unit
(DSU) by links. The third level of hardware hierarchy is
presented by Q-clusters composed into the Q-system in
shared-nothing manner. The detailed description of each
level of the Omega system hardware architecture is given
in [4].

The Omega Project Development Environment, its tools,
cooperative development cycle are described in [5].

The Omega File Management System (OFMS) was
created as a part of the Omega Operating System (OOS).
The OOS includes also the following subsystems: the
Thread Manager, the Q-conductor and the Q-router. The
Thread Manager provides light-weighted processes (or
threads) support. The Q-conductor provides a message-
passing system for communication within a cluster based.
The Q-router provides a message passing system for
communication among clusters. Both the Q-conductor
and the Q-router based on virtual channel mechanism.
The interfaces and description of used algorithms of the
above OOS subsystems are given in [4].

The rest of the paper is organized as follows. Section 2
describes the general structure of the Omega File
Management System and requirements for it. Section 3
contains a description of the Disk Subsystem Emulator.
In section 4 we give implementation principles of the
Disk Manager and also and the protocol for data

Workshop on Computer Science and Information Technologies CSIT’2000, Ufa, Russia, 2000 1

interchange with the Disk Subsystem Unit. The
implementation principles of the Page Manager are given
in section 5. A page replacement technique based on so-
called static and dynamic page ratings is presented in
section 6. Section 7 is devoted to development principles
of the File Manager. Section 8 contains a conclusion.

2 General Structure of the Omega File
Management System

The Omega File Management System provides
connections between the Omega DBMS and the Disk
Subsystem Unit. OFMS runs on each node of the cluster.

The main purpose of the OFMS is supporting concept of
a file taken as a set of records of fixed length. Such files
are used on the higher levels of system hierarchy to
represent relations (tables), indexes and other
components of a stored database.

The basic requirements for the OFMS are the following:

e OFMS should support files consisting of records of
fixed length. Each file should have its ID unique
within the given disk. Each record should have its ID
unique within the given disk.

e OFMS should provide opportunity to introduce intra-
file clustering on the higher levels of the system
hierarchy. The Omega system does not support inter-
file clustering.

e OFMS should support page buffering based on the
uniform internal buffer pool. Access to file contents
is possible by means of this buffer only.

e OFMS should support virtual shared-nothing
architecture. It means that a separate virtual disk
(disk pool) is assigned to each processor node of the
Q-cluster. One processor node can not address
virtual disks (disk pools) of another.

e OFMS should not provide facilities to work with
disks not belonging to the given Q-cluster.

e OFMS should not support fragmentation and
replication of files; fragmentation and replication are
to be implemented on the higher levels of the system
hierarchy. It means that each relation (table)
fragment or replica corresponds to a separate and
independent file.

The general structure of the OFMS is given in the Figure
1. OFMS includes the Disk Manager, the Page Manager
and the File Manager.

The Disk Manager provides representation of a virtual
disk as a set of numbered pages of 4 Kbytes length. In the
future it is planned to add an opportunity to specify
desirable page size for a file depending on available
variants (for example, 4, 24 or 32 Kbytes).

The Page Manager provides representation of a stored
database (more precisely its part) as a totality of page
sets. Page set corresponds to a linked page list. The Page
Manager allows to create and remove page sets, to add
and remove page into/from a set and to access directly a
page with a specified ID.

The File Manager provides database representation as a
totality of files. Here file is a successive set of
unstructured records of the same length (a record has
only one info field). The File Manager allows to create
and remove files, to add and remove records into/from a
file, to edit record's contents (the value of info field), to
access directly a record with a specified ID and also
make iterators to cyclically return pointers to all records
of a file without duplication.

3 Omega Disk Subsystem Emulator

The hardware platform of the Omega DBMS prototype
development represents the MBC-100 multiprocessor
system with four processor modules without a disk
subsystem unit. Therefore there is a necessity to create
the Omega Disk Subsystem Emulator (ODSE).

ODSE uses both electronic disks and disks of the Host-
computer. At ODSE initialization there occurs an
automatic reading of the database from the Host-
computer disk and loading it into an electronic disk of
some selected processor module. At a normal system
shutdown there happens a reverse database dump from
the electronic disk back to the Host-computer disk.
During work some intermediate dumps to the Host-
computer disk are possible.

For the Disk Subsystem Unit modeling a root processor
module of the MBC-100 was allocated. This module is
connected with Host-computer via a link. The Disk
Subsystem Unit processor module is not used as a
computational module. Thus the Q-cluster was designed
to use three processor modules and one Disk Subsystem
Unit.

The ODSE encapsulates hardware features of the Disk
Subsystem Unit. Such an approach allows to leave the
same interface of the Disk Manager at porting to
hardware configuration with real Disk Subsystem Unit,
which, in turn, requires minimal modifications at porting
the system as a whole.

2 Implementation Principles of the File Management System for Omega Parallel DBMS

Q-DBMS

Query Return

of the r record the r record

from the ffile of the f'file
: OFMS |
' File i
i Manager i
i Query Return i
i of the p page the p page i
! from the s set of the s set !
i Page i
! Manager !
' Query Return i O DBMS
! of the n page the n page ! Engine level
! from the d disk of the d disk !

=:=|I:=:=:=:=:=:=: === :=:=:=:=:=:=:'I=:=:=:=:=:=
i _ i Q DBMS
! Disk ! Operating
i Manager i Environment
S S level
Query Reading data
to the virtual from the virtual
disk disk

Figure 1. General structure of the Omega File Management System

4 Disk Manager

The Disk Manager provides basic input-output functions
to organize data exchange with the Disk Subsystem Unit.
The Disk Manager allows to abstract from hardware
features of the Disk Subsystem Unit clusters and to
consider it a virtual device consisting of some number of
logical drives with page organization.

The number of disks equals the number of processor
modules of the cluster. One disk is assigned to each
processor module. The process can not access disks,
which do not belong to it. Such approach simulates
shared nothing architecture.

The page size is a parameter of the Omega system and
equals to 4 Kbytes.

The Disk Manager implements virtual channel
architecture. It means that via a link connecting the
processor module with the Disk Subsystem Unit any
number of read-write operations can be concurrently
performed.

The Disk Manager was designed using client-server
technique. The client's part of the Disk Manager runs on
the every working node. And the server's part runs on the
node of the disk subsystem unit.

Workshop on Computer Science and Information Technologies CSIT’2000, Ufa, Russia, 2000 3

break;

if (write operation via link is in progress) {
stroke_counter--;
break;

lock link by write;
run writing header to the server;

Phase Client Phase Server
1. if (link is locked by write) { if (dump disk operation is in progress) {
stroke_counter--; stroke_counter--;

break;

}

if (client's link is locked by read) {
stroke_counter--;
break;

lock client's link by read;
lock client's link by write;
run reading header from the client;

2. if (write operation via link is in progress) {
stroke_counter--;
break;
}

run writing info part to the server;

if (read operation via client's link is in progress) {
stroke_counter--;
break;
}
write page to the disk;
run writing header with code "operation done" to
the client;

3. if (header with code "operation done"
has not come from the server) {
stroke_counter--;
break;

unlock link by write;
stroke_counter=-1;

if (write operation via client's link is in progress) {
stroke_counter--;
break;

unlock client's link by read;
unlock client's link by write;
stroke_counter=-1;

Figure 2. Client and Server instruction phases of write page operation

The Server executes clients' queries to make some
operation with the disk subsystem unit. Clients and the
server exchange messages consisting of two parts — a
header and an info part. The message header has the
following fields: operation ID, operation type, page
number and client's node number. Info part has no
structure; it is a byte array length of which equals the
page size. Message passing is carried out in two steps:
message header first and then the info part.

Whenever a client starts any operation the descriptor of
this operation is inserted into the operation table. Such a
table is organized as a queue and its element has the
following fields: operation ID, page number, client's node
number, pointer to the buffer and operation state. The
operation table is processed by the client's system thread.
The factor-function of this system thread [4] activates the
above thread only when asynchronous read-write
operations via links are finished and the rest of the time
this thread is disabled.

The server is made out as an independent process
operating on a similar operation table in the disk
subsystem node. This process cyclically carries out the
following sequence of actions:

1) Wait for a message header from clients.

2) Process header, i.e. insert a new element into the
operation table.

3) Process the operation table, i.e. execute possible
actions (read page from disk, dump disk etc.).

Client and server use instruction phases ideology [4] to
exchange data. Figure2 shows client and server
instruction phases of write page operation.

5 Page Manager

The Page Manager provides representation of a stored
database as a totality of page sets. A page set corresponds
to a linked page list. A page consists of a header and an
info field.

e The Page Manager should satisfy to the following
basic requirements:

e Page Set Allocation Table (SAT) should be
supported. SAT is stored in a continuous disk area
starting from the zero page.

e A special page set, the Free Space List (FSL) should
be supported.

e An opportunity to add continuous blocks of pages to
the set should be supported (for example up to 64
pages).

e Buffering of pages on the basis of uniform buffer
space should be supported. The swap table (buffer
pool index), containing numbers of all pages that are
at the moment in the buffer should be supported. The
page replacement algorithm should effectively work
for completely filled buffer (it is a regular situation
in case of database systems, - a page is ejected from
the buffer when and only when it really is necessary
for loading some other page).

4 Implementation Principles of the File Management System for Omega Parallel DBMS

e Access to contents of a page can be carried out only
through its image in the memory.

e Page Identification (PID) should be supported. Such
a PID should be unique within the disk. PID should
provide direct access to a page. In an elementary
case page number could be used as PID.

e The pre-fetch page selection should be supported.

Implementation of the Page Manager’s main operations is
based on the following subsystems: Buffer Manager,
Buffer Directory, Free Space List Manager, Disk
Directory Manager, SAT (Set Allocation Table) and
Open Sets Manager.

The Buffer Manager provides allocation and releasing
continuous memory chunks in the buffer pool using the
Free Space List. The minimal unit of memory allocation
is a 4 Kbytes block.

The Buffer Directory is used for organizing asynchronous
operations of loading, saving and replacing page's images
in the buffer pool. The Buffer Directory has the number
of positions exceeding the number of pages can be placed
into the buffer pool. This fact is essentially used for
choosing replacement strategy (see 6).

The Free Space List Manager provides allocation of
continuous page blocks and utilization of released pages.

The Disk Directory Manager provides functions to
maintain the disk directory. The disk directory is situated
in the zero page. It stores the free space list, the set
allocation table and some other system information.

The SAT (Set Allocation Table) subsystem implements
the set allocation table. Such a table is stored in the disk
header and is sent to RAM simultaneously with
initialization of the Page Manager. SAT's element
contains the following information: the set identification,
identifications of the set's first and last pages and some
other system information.

The Open Sets Manager implements the table of open
sets' descriptors.

6 Buffer Pool Management
Buffer pool management in the Omega DBMS supports:

o well-knowing page replacement strategies (e.g. LFU,
FIFO, LIFO, LRU);

e dynamic selection of the best strategy for a specified
page set and its access behavior;

e page privileges.
These principles are based on concepts of the redundant
index of the buffer pool and page ratings.

The Buffer Directory mentioned above provides
redundant index of the buffer pool. It means that size of

Buffer Directory is k*M where M is size of the buffer
pool in pages and integer k>>1.

Redundancy of that index allows to store the history of
loading pages into the buffer. Each Buffer Directory
element has statistical attributes to provide well-knowing
replacement strategies: reference counter, time of recent
reference, time spending in buffer etc. These attributes
change when system works. The Page Manager
dynamically investigates the Buffer Directory to find
replacement cycles. When a cycle is found the Page
Manager selects the best replacement strategy for a
specified page set and its access behavior.

Each element of the Buffer Directory (i.e. each page) has
two attributes named static and dynamic ratings. The
static rating is an integer from the [0;20] interval. User
assigns the static rating at loading a page into the buffer.
The static rating remains constant during a page is in the
buffer and the static rating lost when the page is dropped
from the buffer.

The dynamic rating is the function from the statistical
attributes of the Buffer Directory, it's a real from the [0;1]
interval. The Page Manager calculates the dynamic
rating. The dynamic rating's value of a page may change
during work.

The summary rating of a page is sum of the static and
dynamic rating. If there is a necessity to make room for a
new page then the page with minimal summary rating is
to be dropped from the buffer. If there are several pages
with minimal summary rating then their oldest page will
be dropped.

Mechanism of the static rating realizes page privileges.
We can divide all the pages into at least two classes:
privileged that can remain in memory regardless of
chosen replacement policy, and others. Mechanism of the
dynamic rating allows to imitate any replacement
strategy. For any two pages user can define an order of
their replacement. This possibility is very important for a
database recovery after crash.

7 File Manager

The File Manager provides database representation as a
totality of files. Here a file is a successive set of records
of the same length. In turn, a record consists of a header
and an info field.

The basic functions of the File Manager are create/delete
a file, open/close a file, append a record to a file, mark a
record for deletion, remove all the records marked for
deletion, fetch a specified record of a specified file.

Each file is placed in a separate page set. The FAT (File
Allocation Table) stores information about
correspondence between files and page sets. The FAT is
placed in the continuous disk area starting from zero

page.

Workshop on Computer Science and Information Technologies CSIT’2000, Ufa, Russia, 2000 5

8 Conclusion

This paper has presented implementation principles and
the program structure of the Omega File Management
System (OFMS) as part of the Omega Operating System
(O0S). The OOS is used in parallel DBMS designed for
the Russian MBC-100 massively parallel computing
system. Requirements for the OFMS and description of
its general structure and components were given.

Description of the Disk Subsystem Emulator and the
effective protocol for interaction with the Disk
Subsystem Unit were given.

The page replacement technique based on static and
dynamic page ratings was proposed. Such a technique in
fact allows implementation of any page replacement
strategy.

The OFMS was implemented for the MBC-100 in C
programming language. There are experiments with
imitations various page replacement strategies now.

Described OFMS is mainly oriented on using in Omega
project. However, it can be used in other similar
applications with intensive disk interactions for the
MBC-100.

References

1. Stonebraker, M. Operating System Support for
Database Management. CACM 24:7 (July 1981)
412-418.

2. Sokolinsky, L., Axenov, O., Gutova, S. Omega:
The Highly Parallel Database System Project.
Proceedings of the 1st East-European
Symposium on Advances in Database and
Information Systems (ADBIS’97), St.-
Petersburg. September 2-5, 1997, vol. 2. Nevsky
Dialect (1997) 88-90

3. Zabrodin, A.V., Levin, V.K., Korneev, V.V.: The
Massively Parallel Computer System MBC-100.
Proceedings of PaCT-95. Lecture Notes in
Computer Science, vol. 964 (1995) 342-356

4. Sokolinsky, L.B. Operating System Support for a
Parallel DBMS with an Hierarchical Shared-
Nothing Architecture. Proc. of the Third East-
European Conf. on Advances in Databases and
Information Systems (ADBIS'99), Maribor,
Slovenia, September 13-16, 1999. Maribor
University Publishing (1999) 38-45.

5. Zymbler, M.L. Computer Aided Design Facilities
for Prototyping the Omega DBMS CSIT'99,
Proceedings of the 1st International Workshop on
Computer Science and Information
Technologies, January 18-22, 1999, Moscow,
Russia, vol. 2. MEPhI Publishing (1999)

6 Implementation Principles of the File Management System for Omega Parallel DBMS

