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Abstract. A discord is a refinement of the concept of an anomalous sub-
sequence of a time series. The task of discovering discords is applied in
a wide range of subject areas involving time series: medicine, economics,
climate modeling, and others. In this paper, we propose a novel par-
allel algorithm for discord discovery using Intel MIC (Many Integrated
Core) accelerators in the case when time series fit in the main memory.
We achieve parallelization through thread-level parallelism and OpenMP
technology. The algorithm employs a set of matrix data structures to
store and index the subsequences of a time series and to provide an effi-
cient vectorization of computations on the Intel MIC platform. Moreover,
the algorithm exploits the ability to independently computing Euclidean
distances between subsequences of a time series. The algorithm iterates
subsequences in two nested loops; it parallelizes the outer and the inner
loops separately and differently, depending on both the number of run-
ning threads and the cardinality of the sets of subsequences scanned in
the loop. The experimental evaluation shows the high scalability of the
proposed algorithm.

Keywords: Time series · Discord discovery · OpenMP ·
Intel Xeon Phi · Data layout · Vectorization

1 Introduction

The problem of finding an anomalous subsequence in a time series (i.e. a subse-
quence with the least similarity to any other subsequences) is one of the topical
issues in time-series data mining and has applications in a wide range of subject
areas: medicine, economics, climate modeling, predictive maintenance, energy
consumption, and others.

In [9], Keogh et al. introduced the term discord to refine the concept of an
anomalous subsequence. A discord of a time series can informally be defined as
a subsequence that has the largest distance to its nearest non-self match neigh-
bor. Discords are attractive as anomaly detectors because they only require one
intuitive parameter (the length of the subsequence), unlike most anomaly detec-
tion algorithms, which typically require many parameters [10]. The HOTSAX
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algorithm [9] employs SAX (Symbolic Aggregate ApproXimation) [14] transfor-
mation of subsequences and Euclidean distance for discord discovery. HOTSAX
iterates subsequences according to an effective heuristics that allows for prun-
ing large amounts of unpromising candidates for discord without calculating the
distance.

In this paper, we address the task of accelerating the HOTSAX algorithm on
Intel MIC (Many Integrated Core) systems [4,17]. MIC accelerators are based
on the Intel x86 architecture and provide a large number of computing cores
with 512-bit wide vector processing units (VPU) while supporting the same pro-
gramming methods and tools as a regular Intel Xeon CPU. Intel provides two
generations of MIC systems (under the codename of Intel Xeon Phi), namely
Knights Corner (KNC), featuring 57 to 61 cores, and Knights Landing (KNL),
featuring 64 to 72 cores. The benefits from the use of MIC accelerators usually
manifest in applications where the processing of large amounts of data (at least
hundreds of thousands of elements) can be arranged as loops that may be sub-
mitted to vectorization by a compiler [18]. Vectorization means the compiler’s
ability to transform the loops into sequences of vector operations [2] of VPUs.

In this study, we propose a parallel algorithm for discord discovery on Intel
MIC systems, assuming that all the data involved in the computations fit into
the main memory. The paper is structured as follows. In Sect. 2, we give the
formal definitions along with a brief description of HOTSAX. Section 3 contains
a short overview of related work. Section 4 presents the proposed parallel algo-
rithm. In Sect. 5, we give the results of the experimental evaluation of our algo-
rithm. Finally, Sect. 6 summarizes the results obtained and suggests directions
for further research.

2 Problem Statement and the Serial Algorithm

2.1 Notations and Definitions

Below, we follow [9] to give some formal definitions and the statement of the
problem.

A time series T is a sequence of real-valued elements: T = (t1, . . . , tm),
ti ∈ R. The length of a time series is denoted by |T |.

A subsequence Ti, n of a time series T is its contiguous subset of n elements
that starts at position i: Ti, n = (ti, ti+1, . . . , ti+n−1), 1 ≤ n � m, 1 ≤ i ≤
m − n + 1. We denote by Sn

T the set of all subsequences of length n in T . Let N
denote the number of subsequences in Sn

T , i.e. N := |Sn
T | = m − n + 1.

A distance function for any two subsequences is a nonnegative and symmetric
function Dist : Rn × R

n → R.
We say that two subsequences Ti, n, Tj, n ∈ Sn

T are a non-self match to each
other at distance Dist(Ti, n, Tj, n) if |i−j| ≥ n. A non-self match of a subsequence
C ∈ Sn

T is denoted by MC .
A subsequence D ∈ Sn

T is said to be a discord of T if it has the largest
distance to its nearest non-self match. That is,

∀C,MC ∈ Sn
T min

(
Dist(D,MD)

)
> min

(
Dist(C,MC)

)
. (1)
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As the distance function, we use the ubiquitous Euclidean distance measure,
defined as follows. Given two subsequences X,Y ∈ Sn

T , the Euclidean distance
between them is calculated as

ED(X,Y ) :=

√√
√
√

n∑

i=1

(xi − yi)2 . (2)

2.2 The Serial Algorithm

The HOTSAX algorithm [9] consists of two stages. At the first stage, HOTSAX
converts each subsequence of the input time series into its SAX representa-
tion [14]. Then the algorithm forms an array of SAX words and counts how
often each word occurs. Afterward, it builds a prefix trie with each leaf contain-
ing a list of all array indices that map to that terminal node. At the second
stage, the algorithm scans subsequences via the trie and discovers a discord. We
below describe these stages in more detail.

The algorithm consequentially applies z-normalization, PAA transformation,
and SAX transformation to a given subsequence to produce its SAX word.

We define the z-normalization of a subsequence C ∈ ST
n as a subsequence

Ĉ = (ĉ1, . . . , ĉn) in which

ĉi =
ci − μ

σ
, 1 ≤ i ≤ n;

μ =
1
n

n∑

i=1

ci, σ2 =
1
n

n∑

i=1

c2i − μ2.
(3)

The PAA (Piecewise Aggregate Approximation) [14] represents a subsequence
C = (c1, . . . , cn) as a vector C = (c1, . . . , cw) in a w-dimensional space, for a
certain parameter w ≤ n; moreover, the i-th coordinate of C is calculated as
follows:

ci =
w

n
·

n
w ·j∑

j=
n
w ·(j−1)+1

cj . (4)

Next, the PAA representation is coded through the SAX (Symbolic Aggregate
approXimation) [14] transformation. For a given subsequence C = (c1, . . . , cn),
its SAX word Ĉ = (ĉ1, . . . , ĉw) is produced as follows. Assume we have an
alphabet A = (α1, . . . , α|A|) to map a vector C into a word Ĉ; here, |A| is the
alphabet cardinality, and α1 = ‘a’, α2 = ‘b’, α3 = ‘c’, and so on. Then,

ĉi = αi ⇔ βj−1 ≤ ĉi < βj , (5)

where βi are breakpoints [14] defined as a sorted list of numbers, B := (β0, β1, . . . ,
β|A|−1, β|A|), such that β0 := −∞, β|A| := +∞, and the area under the N(0, 1)
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Gaussian curve between βi and βi+1 equals 1
|A| . The breakpoints may be deter-

mined by looking them up in a statistical table [9]. It has been confirmed empir-
ically that w = 3, 4 and |A| = 3, 4 are suitable values for the discovery of
time-series discords in a wide spectrum of subject areas [9].

Further, the algorithm produces an array of SAX words, counts the frequency
of each word, and builds a prefix trie to store this information. The prefix trie [6]
is a tree in which each edge is labeled with a symbol from the A alphabet in such
a manner that all the edges connecting a node with its children are labeled with
different symbols. The SAX word that corresponds to a leaf of the prefix trie
is obtained by concatenation of all the characters that label the edges from the
root to the leaf. Each leaf stores a sorted list of all array indices of the respective
SAX word.

Alg. 1 HOTSAX(in T, n; out posbsf , distbsf )
1: distbsf ← 0; distmin ← ∞
2: for Ci ∈ (

NearDiscords · Others
)
do

3: for Cj ∈ (
Neighbors(Ci) · Strangers(Ci)

)
do

4: dist ← ED(Ci, Cj)
5: if dist < distbsf then
6: break
7: distmin ← min(dist, distmin)

8: distbsf ← max(distmin, distbsf ); posbsf ← i

9: return {posbsf , distbsf}

Algorithm 1 presents the HOTSAX pseudo code. The algorithm takes a time
series and a discord length and returns the index of the discord as well as the
distance to its nearest neighbor subsequence. The algorithm looks through all
the pairs of subsequences of the time series, calculates the Euclidean distance
between them, and finds the maximum among the distances to nearest neighbors.
The subsequence having the maximum distance to its nearest neighbor is a
discord. The subsequences are iterated through two nested loops. Throughout
the iterations, unpromising subsequences are pruned without calculating their
distances. A subsequence is said to be unpromising if some of its neighbors
is closer to it than the current maximum of the distances to all the nearest
neighbors.

HOTSAX iterates subsequences according to a heuristic rule that enables
pruning large amounts of unpromising subsequences. For this, the algorithm
employs the following four sets of subsequences. The NearDiscords set contains
subsequences with the least frequent SAX words; the Others set contains the rest
of the subsequences. For a given subsequence C, the Neighbors(C) set contains
the subsequences whose SAX words match the SAX word of C. Conversely, the
Strangers(C) set contains the subsequences whose SAX words differ from that of
C. The heuristics prescribes the following order for the iteration of subsequences.
In the outer loop, subsequences from the NearDiscords set should be considered
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first, and then those from the Others set. In the inner loop, subsequences from
the Neighbors set are considered first, and then those from the Strangers set.

3 Related Work

Following their introduction in [9], time-series discords and the HOTSAX algo-
rithm have motivated considerable interest and follow-up work. Discords are
applied for discovering abnormal heart rhythm in ECG [5], weird patterns of
electricity consumption [1], unusual shapes [20], and others.

Among the attempts made to improve HOTSAX, we can mention the fol-
lowing. The iSAX algorithm [16] and the HOTiSAX algorithm [3] are the most
direct enhancements to HOTSAX based on the indexable SAX transformation.
A different approach is used in the WAT algorithm [7], in which Haar wavelets
are employed instead of SAX transformations for time-series approximation.
Another worth-noting example is the Hash DD algorithm [19], which makes
use of a hash table as an alternative to the prefix trie. We should also men-
tion the BitClusterDiscord algorithm [13], which resorts to clustering of the bit
representation of subsequences.

With reference to parallel discord discovery, we can draw attention to the fol-
lowing developments for computing systems with distributed memory. The PDD
(Parallel Discord Discovery) algorithm [8] employs a Spark cluster [24] to split
time series into fragments that are processed separately. PDD puts forward the
Distributed Discord Estimation (DDE) method, which estimates the discord’s
distance to the nearest neighbor and minimizes the communication between
computing nodes. Next, for each subsequence, PDD calculates the distance to
its nearest neighbor and updates both posbsf and distbsf . A bulk of continuous
subsequences is transmitted and calculated in batch mode to reduce message
passing overhead. During this process, the early abandon technique is used to
reduce computational complexity. Although PDD outruns HOTSAX, message
passing between cluster nodes is a potential cause of significant degradation of
the algorithm’s performance as the number of nodes increases.

In [22], Yankov et al. propose a disk-aware algorithm (for brevity, referred
to as DADD, Disk-Aware Discord Discovery) based on the concept of a range
discord. For a given range r, the algorithm finds all discords at a distance of
at least r from their nearest neighbor. The algorithm performs in two phases,
namely candidate selection and discord refinement, with each phase requiring
one linear scan through the time series on disk. By running HOTSAX for a uni-
formly random sample of the whole time series, which fits in the main memory,
one can obtain the r parameter as the distbsf value of the discord found [22].
Later, in [23], Yankov et al. presented a parallel version of DADD based on the
MapReduce paradigm (for brevity, we denote the corresponding algorithm by
MR-DADD). We should also mention the DDD (Distributed Discord Discov-
ery) algorithm [21], which parallelizes DADD through a Spark cluster [24]. As
opposed to DADD and MR-DADD, DDD computes the distance without taking
advantage of an upper bound for early abandoning, which would increase the
algorithm’s performance.
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To the best of our knowledge, no attempts have been made to parallelize
HOTSAX for multi-core CPUs or many-core accelerators. Such an algorithm
might be useful, though, both when time series fit in the main memory (e.g.,
to discover discords in ECG time series with tens of millions of elements) and
in the case of disk-aware discord discovery as a sub-algorithm to obtain the r
parameter quickly.

4 Accelerating Discord Discovery on Intel MIC Systems

The parallelization of the HOTSAX algorithm for the Intel MIC platform
employs thread-level parallelism and OpenMP technology [15]. It is based on
the following ideas: separate parallelization of outer and inner loops that iterate
subsequences, use the square of the Euclidean distance, and use matrix repre-
sentation of data.

At the first stage of HOTSAX, a matrix data layout enables an effective par-
allelization of computations in (3), (4), and (5) through OpenMP. In addition,
matrix data structures are aligned in the main memory, so the calculations are
organized with as many vectorizable loops as possible. We avoid unaligned mem-
ory access since it can cause inefficient vectorization due to time overhead for
loop peeling [2]. Since OpenMP is more suitable to process matrices than trees,
we employ a set of matrix data structures that store the same information as
the prefix trie.

At the second stage of HOTSAX, distances between subsequences can be
calculated independently by different threads of the parallel application. The
parallel iteration of subsequences from the NearDiscords, Others, Neighbors,
and Strangers sets can be performed separately and differently for the outer and
the inner loops, depending on the number of running threads and the cardinality
of the above-mentioned sets. To speed up the computations in (2), the square-
root calculation can be omitted since this does not change the relative ranking
of potential discords (indeed, the ED function is monotonic and concave).

In Sects. 4.1 and 4.2, we will show an approach to the implementation of
these ideas.

4.1 Parallel Implementation of the Algorithm

To parallelize HOTSAX, we split the algorithm into two steps, namely finding
and refinement (see Algorithm 2 and Algorithm 3, respectively; cf. Algorithm 1).
In the finding step, the iteration in the outer loop involves only subsequences
from the NearDiscords set. At the same time, only the inner loop is paral-
lelized since the number of least frequent SAX words (i.e. the cardinality of the
NearDiscords set) is potentially less than the number of threads the algorithm
is running on.

In the refinement step, the iteration in the outer loop involves only subse-
quences from the Others set; the outer loop is parallelized, in view of the fact
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Alg. 2 PhiDiscordDiscovery-Find(in T, n; out posbsf , distbsf )
1: distbsf ← 0; distmin ← ∞
2: for Ci ∈ NearDiscords do
3: #pragma omp parallel for
4: for Cj ∈ (

Neighbors(Ci) · Strangers(Ci)
)
do

5: d ← ED2(Ci, Cj)
6: if d < distbsf then
7: break
8: distmin ← min(d, distmin)

9: distbsf ← max(distmin, distbsf )
10: if distbsf < distmin then
11: posbsf ← i

12: return {posbsf , distbsf}

Alg. 3 PhiDiscordDiscovery-Refine(in T, n; out posbsf , distbsf )
1: distbsf ← 0; distmin ← ∞
2: #pragma omp parallel for
3: for Ci ∈ Others do
4: for Cj ∈ (

Neighbors(Ci) · Strangers(Ci)
)
do

5: d ← ED2(Ci, Cj)
6: if d < distbsf then
7: break
8: distmin ← min(d, distmin)

9: distbsf ← max(distmin, distbsf )
10: if distbsf < distmin then
11: posbsf ← i

12: return {posbsf ,
√

distbsf}

that the cardinality of the Others set is potentially greater than the number of
threads the algorithm is running on.

In both steps, the loop is parallelized by the standard OpenMP com-
piler directive #pragma omp parallel for. Pruning unpromising subsequences
results in uneven computational loading of threads. Therefore, to increase the
efficiency of the parallel algorithm, we add to the above-mentioned #pragma the
schedule (dynamic) parameter, which dynamically distributes loop iterations
among threads. The statements in the loop body that calculates the squared
Euclidean distances are vectorized by the compiler.

4.2 Internal Data Layout

The parallel algorithm employs the data structures depicted in Fig. 1. The time
series is stored as a matrix of aligned subsequences to enable computations over
aligned data with as many auto-vectorizable loops as possible. Let us denote by
widthV PU the number of floats stored in the VPU. If n (i.e. the length of the
discord to be discovered) is not a multiple of widthV PU , then the subsequence
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Fig. 1. Data layout of the algorithm

is padded with zeroes, with a number of zeroes pad := widthV PU − (n mod
widthV PU ). The aligned subsequence T̃i,n is defined as follows:

T̃i,n :=

{
ti, ti+1, . . . , ti+n−1,

pad
︷ ︸︸ ︷
0, 0, . . . , 0, if n mod widthV PU > 0;

ti, ti+1, . . . , ti+n−1, otherwise.
(6)

The subsequence matrix Sn
T ∈ R

N×(n+pad) is defined as

Sn
T (i, j) := t̃i+j−1. (7)

The matrix of PAA codes PAAn,w
T ∈ R

N×w contains the data calculated in
accordance with (4).

The matrix of SAX words SAXn,A
T ∈ N

N×w contains the data calculated
according to (5).

The index of potential discords is an ascending-ordered array Cand ∈ N
N

that contains the indices of those subsequences of Sn
T having the least frequent

SAX words in SAXn,A
T . The index of potential discords determines the order

of iteration of subsequences that can be discords and is formally defined in the
following way:

Cand(i) = k ⇔ FSAX(k) = min
1≤j≤N

FSAX(j) ∧
∀i < j Cand(i) < Cand(j).

(8)
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In (8), FSAX ∈ N
N is an array that stores the frequency indices of SAX

words and is defined as

FSAX(i) = k ⇔ |{j | SAXn,A
T (j, ·) = SAXn,A

T (i, ·)}| = k. (9)

The dictionary is a matrix A∗ ∈ N
dictsize×w that contains all possible w-

length words in the alphabet A. The dictionary is generated according to the
algorithm proposed in [11], and all symbols in a word (the elements in a row of
the matrix), as well as all words (the rows of the matrix), are ascending-ordered.
The cardinality of the dictionary dictsize is calculated as follows:

dictsize := Āw
|A| = |A|w. (10)

It has been empirically confirmed that such small values as w = 4 and |A| = 4
are the best suited for virtually any time-series task from any subject area [9].
Therefore, the dictionary fits well in the main memory (indeed, dictsize × w =
44 × 4 = 256 elements).

Treating the A alphabet as an ordered sequence of natural numbers 1, . . . , |A|,
we can define a hash function h : Nw → {1, . . . , dictsize} to map the words of the
alphabet, namely

h(a1, . . . , aw) :=
w+1∑

j=1

aj · ww−j−1. (11)

Next, the dictionary index is a matrix IA∗ ∈ N
dictsize×N comprising the

indices of alphabet words contained in the matrix of SAX words. The dictionary
index is defined as

IA∗(i, j) = k ⇔ A∗(i, ·) = SAXn,A
T (k, ·). (12)

Finally, the frequency index of the dictionary is an array FA∗ ∈ N
|A|w whose

elements are the numbers of occurrences of the words of the dictionary in the
matrix of SAX words. The frequency index is defined in the following manner:

FA∗(i) = k ⇔ k = |{j | A∗(i, ·) = SAXn,A
T (j, ·)}|. (13)

5 The Experiments

5.1 The Experimental Setup

We evaluated the proposed algorithm in experiments conducted on Intel many-
core systems at the Siberian Supercomputing Center1 and the South Ural State
University [12] (see Table 1 for a summary of the hardware involved).

In the first series of experiments, we assessed the performance and scalability
of the algorithm while varying the discord length. We measured the run time
(after deduction of the I/O time required for reading input data and writing the

1 Hardware specifications of the Siberian Supercomputing Center.

http://www.sscc.icmmg.nsc.ru/hardware.html
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Table 1. Hardware environment for the experiments

Characteristic Intel Xeon CPU Intel Xeon Phi Accelerator

Model E5-2630v4 E5-2697v4 SE10X (KNC) 7290 (KNL)

Physical cores 2 × 10 2 × 16 60 72

Hyperthreading factor 2× 2× 4× 4×
Logical cores 40 64 240 288

Frequency, GHz 2.2 2.6 1.1 1.5

VPU size, bit 256 256 512 512

Peak performance, TFLOPS 0.390 0.600 1.076 3.456

results) and calculated the algorithm’s speedup and parallel efficiency, which are
defined as follows. The speedup and the parallel efficiency of a parallel algorithm
employing k threads are calculated, respectively, as s(k) = t1

tk
and e(k) = t1

k·tk ,
where t1 and tk are the run times of the algorithm when one and k threads,
respectively, are employed. We used two synthetic time series considered in [8]
for evaluation of the PDD algorithm, namely SCD-1M and SCD-10M (with 106

and 107 elements, respectively).
In the second series of experiments, we compared the performance of our

algorithm against analogs we have already considered: PDD, DDD, and MR-
DADD (see Sect. 3). Throughout the experiments, we used the same datasets
that were employed for the evaluation of the competitors. We ran our algorithm
on an Intel Xeon Phi KNL system (see Table 1) with a reduced number of cores to
make the peak performance of our accelerator approximately equal to that of the
system on which the corresponding competitor was evaluated. For comparison
purposes, we used the run times reported in the respective papers [8,21,23]
(for the DDD and MR-DADD algorithms, we excluded the run time needed to
calculate the r parameter).

5.2 Results and Discussion

Figure 2 depicts experimental results regarding the algorithm’s scalability on the
Intel Xeon Phi KNL system. The algorithm showed a 40 to 60× speedup and
a 50 to 85% parallel efficiency (with respect to the length of the discord that
is to be found) when the number of threads matches the number of physical
cores the algorithm runs on. As expected, the algorithm performs at its best
with greater values of the m and n parameters (time-series length and discord
length, respectively) because this provides a higher computational load. When
more than one thread per physical core is employed, the algorithm shows sub-
linear speedup and an accordingly diminished parallel efficiency, but without a
tendency to stagnate or degrade.

Experimental results concerning the algorithm’s performance on various Intel
many-core systems are depicted in Fig. 3. The algorithm performs better on
systems with greater numbers of cores. At the same time, when the algorithm
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(a) SCD-1M dataset

(b) SCD-10M dataset

Fig. 2. Scalability of the algorithm

(a) SCD-1M dataset (b) SCD-10M dataset

Fig. 3. Performance of the algorithm

runs on the Intel MIC accelerator, it performs better than when it runs on a
node equipped with two Intel Xeon CPUs.

Summing up, the proposed algorithm efficiently utilizes the vectorization
capabilities of the many-core system and shows high scalability, especially in
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Table 2. Comparison of the proposed algorithm with analogs

Experimental setup Performance, s

Analog Time series
length

# cores (threads)
of Intel MIC

Our
algorithm

Competitor

Competitor Hardware

MR-DADD [23] 8 CPU 3.0GHz 106 8 (32) 101.6 240

DDD [21] 4 CPU 2.13GHz 107 4 (16) 1 745.3 5 382

PDD [8] 10 CPU 1.2GHz 107 10 (40) 833.3 399 600

case of high computational load due to greater time-series length and discord
length (tens of millions and tens of thousands of elements, respectively).

Table 2 summarizes the performance of the proposed algorithm compared
with analogs. We can see that our algorithm outruns its competitors. PDD is far
behind due to a significant overhead caused by message passing among cluster
nodes. The reason for DDD and MR-DADD being inferior to our algorithm is
disk I/O overhead, which can amount to a half of the whole run time of the
algorithm. In addition to the use of the main memory rather than the disk,
our algorithm also takes advantage of the vectorization capabilities of the Intel
MIC accelerator. We may conclude that the parallel algorithm we have pro-
posed should be preferred over similar disk-aware parallel algorithms for discord
discovery in the case when time series fit in the main memory.

6 Conclusions

In this paper, we addressed the task of accelerating the discovery of time series
discords on Intel MIC (Many Integrated Core) systems. A discord is a refine-
ment of the concept of an anomalous subsequence (i.e. a subsequence that is
the least similar to all the other subsequences) of a time series. Discord discov-
ery is applied in a wide range of subject areas involving time series: medicine,
economics, climate modeling, and others.

We proposed a novel parallel algorithm for discord discovery on Intel MIC
systems in the case of time series that fit in the main memory. Our algorithm
parallelizes the serial HOTSAX algorithm by Keogh et al. [9]. The parallelization
makes use of thread-level parallelism and OpenMP technology and is based on
the following ideas: separation of parallelization of iteration loops, use of the
squared Euclidean distance, and application of matrix layout for algorithm’s
data.

The proposed algorithm showed high scalability throughout the experimental
evaluation, especially in the case of high computational load due to greater
time series length and discord length (tens of millions and tens of thousands of
elements, respectively). Moreover, the experiments showed that our algorithm
outperforms analogous disk-aware parallel algorithms for discord discovery when
time series fit in the main memory.

In further studies, we plan to elaborate versions of the algorithm for other
hardware platforms, namely GPU accelerators and cluster systems with nodes
based on Intel MIC or GPU accelerators.
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