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Abstract—A motif is a pair of subsequences of a longer time series, which are very similar to each
other. Motif discovery is applied in a wide range of subject areas involving time series: medicine,
biology, entertainment, weather prediction, and others. In this paper, we propose a novel parallel
algorithm for motif discovery using Intel MIC (Many Integrated Core) accelerators in the case when
time series fit in the main memory. We perform parallelization through thread-level parallelism and
OpenMP technology. The algorithm employs a set of matrix data structures to store and index the
subsequences of a time series and to provide an efficient vectorization of computations on the Intel
MIC platform. The experimental evaluation shows the high scalability of the proposed algorithm.
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1. INTRODUCTION

Time series motif is a pair of subsequences of a longer time series, which are very similar to each
other [13]. The problem of finding motifs in a time series is one of the topical issues in time-series data
mining and has applications in a wide range of subject areas: medicine, biology, entertainment, weather
prediction, and others.

Since straightforward algorithm for computing motifs is quadratic with respect to the time series
length, a number of approximate algorithms to discover motifs have been proposed [2, 8, 9, 15, 18] where
time complexity is linear or logarithmic of the time series length but the associated constant factors are
high. In [10], Mueen et al. introduced the MK algorithm for exact motifs discovery. Despite the fact that
MK is able to reduce the run time by three orders of magnitude, it suffers in case of large time series (the
order of hundreds of thousands). Thus, application of modern parallel hardware to accelerate discovery
motifs in time series is a topical issue.

In this paper, we address the task of accelerating the MK algorithm on Intel MIC (Many Integrated
Core) systems [3, 16]. MIC accelerators are based on the Intel x86 architecture and provide a large
number of computing cores with 512-bit wide vector processing units (VPU) while supporting the
same programming methods and tools as a regular Intel Xeon CPU. Intel provides two generations
of MIC systems (under the codename of Intel Xeon Phi), namely Knights Corner (KNC), featuring 57
to 61 cores, and Knights Landing (KNL), featuring 64 to 72 cores. The benefits from the use of MIC
accelerators usually manifest in applications where the processing of large amounts of data (at least
hundreds of thousands of elements) can be arranged as loops that may be submitted to vectorization
by a compiler [17]. Vectorization means the compiler’s ability to transform the loops into sequences of
vector operations [1] of VPUs.

In this study, we propose a parallel algorithm for exact motif discovery on Intel MIC systems,
assuming that time series fit into the main memory. The paper continues our research on accelerating
various time series mining tasks on Intel MIC systems (namely subsequence matching [6] and discord
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discovery [20]). The remainder of the paper is organized as follows. In Section 2, we give the formal
definitions along with a brief description of the MK algorithm. Section 3 presents the proposed parallel
algorithm. In Section 4, we give the results of the experimental evaluation of our algorithm. Section 5
contains a short overview of related work. Finally, Section 6 summarizes the results obtained and
suggests directions for further research.

2. PROBLEM STATEMENT AND THE SERIAL ALGORITHM

2.1. Notations and Definitions

Below, we follow [10] to give formal definitions and the statement of the problem.
A time series T is a sequence of real-valued elements: T = (t1, . . . , tm), ti ∈ R. The length of a time

series is denoted by |T |.
A subsequence Ti,n of a time series T is its contiguous subset of n elements that starts at position i:

Ti,n = (ti, . . . , ti+n−1), 1 ≤ n � m, 1 ≤ i ≤ m− n+ 1.
A set of all subsequences of T with length n is denoted by Sn

T . Let N denote the number of
subsequences in Sn

T , i.e. N := |Sn
T | = m− n+ 1.

A distance function for any two subsequences is a nonnegative and symmetric function Dist : Rn ×
R
n → R.

A subsequence motif is a pair of subsequences {Ti,n, Tj,n} of the time series T that are most similar.
That is,

∀a, b, i, jDist(Ti,n, Tj,n) ≤ Dist(Ta,n, Tb,n), |i− j| ≥ w, |a− b| ≥ w, w > 0,

where w is a parameter that denotes minimum gap between subsequences in the motif, i.e. subsequences
should stand apart from each other at least w positions in time series. This restriction helps to discard
the trivial subsequence motifs [13].

As the distance function, we use the ubiquitous Euclidean distance measure, defined as follows.
Given two subsequences X,Y ∈ Sn

T , the Euclidean distance between them is calculated as

ED(X,Y ) :=

[
n∑

i=1

(xi − yi)
2

]1/2

.

2.2. The Serial Algorithm

MK [10] is one of the fastest serial algorithms for discovery exact motifs in time series. The algorithm
supposes that before the search of the subsequence motif, every subsequence is to be z-normalized. The
z-normalization of a subsequence C ∈ ST

n is a subsequence Ĉ = (ĉ1, . . . , ĉn) in which

ĉi :=
ci − μ

σ
, 1 ≤ i ≤ n; μ :=

1

n

n∑
i=1

ci, σ :=

[
1

n

n∑
i=1

c2i − μ2

]1/2

.

The main idea of the algorithm is to reduce the search space by means of the reference subsequence
where a randomly chosen subsequence of the time series is taken as a reference. The algorithm calcu-
lates and sorts the distances from all the subsequences of the time series to the reference subsequence
in ascending order. Then, the algorithm exploits the following observation: if two objects are close in the
original space, they must also be close in the linear ordering (but the opposite is not true). According
to the triangular inequality, the distance in the linear ordering between subsequences of the motif is the
lower bound to the distance between these subsequences in the original space. Hereinafter, to differ the
above-mentioned types of distance, we call the distance in the original space as a true distance.

The algorithm maintains the bsf (best-so-far) variable representing a running minimum, and
updates it whenever the algorithm finds a pair of time series having a smaller true distance between them.
By scanning of the subsequences along the above-mentioned linear ordering, the algorithm calculates
the respective lower bounds. If the lower bound has exceeded bsf , the true distance will exceed bsf as
well, and the respective pair of subsequences is pruned without calculation of the true distance. If the
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pair is not pruned, then the true distance is calculated. Next, bsf is updated if it is larger then the value
of the true distance. Proceeding similarly, the algorithm considers all possible pairs of subsequences,
which are offsef (1 ≤ offset ≤ N − 1) in the linear ordering.

The algorithm continues till it reaches an offset for which there is no pair having lower bound larger
than the bsf and staying offset apart in the linear ordering. At that point the algorithm abandons the
search with the exact motif pair of subsequences which are most similar to each other.

In addition, the algorithm employs multiple reference subsequences to get the tighter lower bounds.
The reference subsequence with the largest standard deviation is found and is used to sort by ascending
the distances between this reference subsequence and all other subsequences from the time series. If
one of the lower bounds is larger than bsf , this pair is pruned. The algorithm stops if all lower bounds of
all pairs of subsequences offset apart are larger than bsf .

3. ACCELERATING MOTIF DISCOVERY ON INTEL MIC SYSTEMS

In this section, we present an approach to the parallelization of the MK algorithm [10] on the Intel
MIC platform. We exploit the thread-level parallelism and the OpenMP technology [7]. Below, in
Section 3.1 we describe internal data layout of the algorithm, and in Section 3.2, we show the proposed
parallel algorithm.

3.1. Data Layout

Since OpenMP is more suitable to process arrays and matrices, we employ a set of matrix data
structures that store the algorithm’s data. In addition, data structures are aligned in main memory,
and computations are organized with as many vectorizable loops as possible. Vectorization means a
compiler’s ability to transform the loops into sequences of vector operations [1] of VPUs. We should
avoid unaligned memory access since it can cause inefficient vectorization due to timing overhead for
loop peeling [1].

The parallel algorithm employs the data structures depicted in Fig. 1. The time series is stored as a
matrix of aligned subsequences. Let us denote by widthV PU the number of floats stored in the VPU. If
n (i.e. the length of the discord to be discovered) is not a multiple of widthV PU , then the subsequence
is padded with zeroes, with a number of zeroes pad := widthV PU − (n mod widthV PU). The aligned
subsequence T̃i,n is defined as follows:

T̃i,n =

⎧⎪⎨
⎪⎩
ti, ti+1, . . . , ti+n−1, 0, 0, . . . , 0︸ ︷︷ ︸

pad

, if n mod widthV PU > 0,

ti, ti+1, . . . , ti+n−1, otherwise.

Next, we store all (aligned) subsequences of a time series in the subsequence matrix Sn
T ∈

R
N×(n+pad), which is defined as below: Sn

T (i, j) := t̃i+j−1. Let us denote the number of randomly chosen
reference subsequences exploited by the algorithm as r (0 < r � N). Then Ref , set of reference
subsequences is defined as follows:

Ref := {Ti1,n, . . . , Tir ,n | Tij ,n ∈ Sn
T , ij = random(1..N)}.

The index of reference subsequences IRef ∈ N
r contains position in T of each reference subse-

quence. Given a subsequence matrix Sn
T and an index of reference subsequences IRef , we define

the distance matrix D ∈ R
r×N that contains distances between all reference subsequences and all

subsequences of Sn
T as follows:

D(i, j) := ED(TIRef (i),n, Tj,n).

The reference deviation vector is an array SD ∈ R
r that for each reference subsequence contains

standard deviation in the distances from itself to all the subsequences in Sn
T .

The reference deviation index ISD ∈ N
r contains unique numbers in range from 1 to r where each

number reflects the position of the respective reference subsequence in Ref ordered by descending of
their standard deviation.
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Fig. 1. Data flow of the algorithm.

The subsequence deviation index is an array IS ∈ N
N that contains indices of subsequence in

Sn
T ordered ascending by their distances to a reference subsequence, which has the largest standard

deviation.
We also establish the index motif matrix IM ∈ N

N×2 to store pairs of indices of two subsequences,
which are the possible motif and are located from each other by offset in the deviation index IS .

The lower bound matrix LB ∈ R
r×N contains lower bounds between each reference subsequence

and each possible motif, and calculated as follows:

LB(i, j) := |D(ISD(i), IM (j, 1)) −D(ISD(i), IM (j, 2))|.

The bitmap vector is an array B ∈ B
N , which for each possible motif stores the logical conjunction

of comparison bsf and all the motif’s lower bounds. If an element of the bitmap vector equals FALSE
then the respective motif is discarded without calculation of the distance between its subsequences. The
bitmap vector is defined as follows:

B(i) := ∧r
j=1(LB(i, j) < bsf), 1 ≤ i ≤ N.

3.2. Parallel Implementation of the Algorithm

The proposed algorithm (see pseudo-code in Algorithm 1) consists of two phases, namely prepro-
cessing and discovery. At the preprocessing phase, the algorithm forms the subsequence matrix Sn

T and
performs z-normalization of its rows. Then the Ref set of randomly chosen reference subsequences and
its index IRef are formed. After that, algorithm calculates the distance matrix D and reference deviation
vector SD. Next, reference deviation index ISD and subsequence deviation index IS are formed. The
bsf threshold is initialized by the minimum in distance matrix D. The above-described computations
are implemented as parallelized loops that are easily vectorized by the compiler.
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Algorithm 1. PhiMotifDiscovery (in T , n, r; out motif )

� Data preprocessing

1: Znormalize(Sn
T )

2: Ref ← r randomly chosen subsequences from Sn
T

3: IRef ← r indices of elements in Ref

4: D ← CalculateDistances(Sn
T , Ref )

5: SD ← CalculateStdDev(D)

6: ISD ← Sort(SD); IS ← Sort(D(ISD(1), ·))
7: bsf ← min(di,j)

� Parallel motif discovery

8: #pragma omp parallel

9: start ← threadnum ·N ; end ← threadnum · (N + 1)

10: #pragma omp for schedule (dynamic)

11: for all offset ∈ 1..N do

12: bsflocal ← bsf ; motiflocal ← {∞;∞; bsflocal}
13: IM ← GeneratePairs (offset, IS)

14: LB ← CalculateLowerBounds (D)

15: B(i)←∧end
i=startLB(i, j) < bsf

16: abandon←∨end
i=startB(i)

� Pruning unpromising motifs

17: if abandon = TRUE then

18: #pragma omp cancel for

19: else

20: for all i ∈ start..end do

21: if B(i) = TRUE then

22: d ← ED(TIM (i,1),n, TIM (i,2),n)

23: if d < bsflocal then

24: bsflocal ← d; motiflocal ← {IM (i, 1); IM (i, 2); bsflocal}
25: #pragma omp critical

26: if bsflocal < bsf then

27: bsf ← bsflocal; motif ← motiflocal

28: #pragma omp cancellation point for

29: return motif

At the discovery phase, the algorithm searches the subsequence motif through the loop along the
offset variable. The loop is parallelized by the standard OpenMP compiler directive #pragma omp for.
Pruning unpromising motifs results in uneven computational loading of threads. Thus, to increase the
efficiency of the parallel algorithm, we add to the above-mentioned #pragma the schedule (dynamic)
parameter, which dynamically distributes loop iterations among threads.

Each of the following data structures, namely index motif matrix IM , lower bound matrix LB, and
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bitmap vector B is split into logical equal-length segments, and while scanning, a thread processes its
own segment. Each thread maintains its own local threshold bsflocal initialized by the bsf value.

A thread performs as follows. Index motif matrix IM is filled in by pairs of subsequence indices that
are of offset apart in the subsequence deviation index IS . Then, according to the triangular inequality,
lower bounds for possible motifs are calculated and the lower bound matrix LB is filled in. After that,
bitmap vector B is calculated. Next, if the logical disjunction of all the elements of the bitmap vector
is TRUE (i.e. all the lower bounds for all the pairs of offset apart are larger than bsf ) then the motif is
found and the rest candidates can be abandoned. This implemented through the #pragma omp cancel
for directive for a thread that reaches this line of code first and the #pragma omp cancellation point
for directive for the rest threads.

If the motif is not found then the algorithm calculates true distance between subsequences in each
possible motif for which the respective element of the bitmap vector is TRUE. In case the true distance
is less than bsflocal, it is updated by the true distance value. Then the algorithm finds bsf as minimum
of all the bsflocal values and updates the motif accordingly. Here, the critical section is used in order to
update the shared variable bsf correctly.

A lot of statements of the algorithm, namely calculations of the lower bounds, the bitmap vector,
Euclidean distances, and abandoning criterion are vectorized by the compiler, so this increases the
overall algorithm’s performance.

4. THE EXPERIMENTS

4.1. The Experimental Setup

We evaluated the proposed algorithm in experiments conducted on Intel many-core systems at the
South Ural State University [5] (see Table 1 for a summary of the hardware involved).

In the experiments, we assessed the performance and scalability of the algorithm while varying the
motif length. We measured the run time (after deduction of the I/O time required for reading input
data and writing the results) and calculated the algorithm’s speedup and parallel efficiency, which are
defined as follows. The speedup and the parallel efficiency of a parallel algorithm employing k threads are
calculated, respectively, as s(k) = t1

tk
and e(k) = t1

k·tk , where t1 and tk are the run times of the algorithm
when one and k threads, respectively, are employed.

In the experiments, we used two following time series, each of 4× 105 elements. The ECG dataset [4]
represents electrocardiogram signals digitized at 128 Hz. The RW dataset was generated according to
the Random Walk model [14] and considered for evaluation of the MK algorithm [10].

4.2. Results and Discussion

Figure 2 depicts experimental results regarding the algorithm’s scalability on the Intel MIC system.
For both datasets, the algorithm showed close-to-ideal speedup and a 80 to 100 percent parallel
efficiency (with respect to the length of the motif that is to be found) when the number of threads matches
the number of physical cores the algorithm runs on. As expected, the algorithm demonstrates better
scalability with larger values of the motif length because this provides a higher computational load.
When more than one thread per physical core is employed, the algorithm shows sub-linear speedup
and an accordingly diminished parallel efficiency, but without a tendency to degrade.

Experimental results concerning the algorithm’s performance on various Intel platforms are depicted
in Table 2. As expected, our parallel algorithm substantially outruns the serial MK algorithm. Also, as
we can see, our algorithm performs better on systems with greater numbers of cores. At the same time,
when our algorithm runs on the Intel MIC accelerator, it performs better than when it runs on a node
equipped with two Intel Xeon CPUs.

Summing up, the proposed algorithm efficiently utilizes the vectorization capabilities of the many-
core system and shows high scalability, especially in case of high computational load due to larger motif
length.
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Fig. 2. Scalability of the algorithm.

5. RELATED WORK

Since straightforward algorithm for computing motifs is quadratic of the time series length, a number
of approximate algorithms to discover motifs have been proposed, e.g. [2, 8, 9, 15, 18]. These algorithms
are O(m) or O(mlogm) time complexity with very high associated constant factors.

The FLAME algorithm by Wilson et al. [19] was designed to find guaranteed motifs in DNA but
the authors show that a time series can be discretized and given to FLAME. Thus the algorithm is
approximate for real-valued time series.

The MK algorithm by Mueen et al. [10] finds the exact motif and is based on the following idea. Given
a set of points in space that are ordered with respect to the distance to a randomly chosen reference point,
any two objects, which are close in the original space, will also be close in the linear ordering (but the
opposite is not true). Further, the algorithm is generalized to multiple reference points in order to reduce
the search space and results in much faster motif discovery (up to three orders of magnitude faster than
straightforward approach for large time series data).

The Par-MK algorithm by Narang et al. [11] is a parallel algorithm for exact discovery of time series
motifs on SMP systems for the case when data fit in the main memory. Par-MK exploits thread-
level parallelism and POSIX threads [12]. Par-MK employs two dimensions of parallelism, namely
array parallelism and offset parallelism. The former is intended to split across threads the sorted array
containing the distances with respect to the reference point. The latter is along the increasing offset
value from 1 to n− offset. When both the dimensions of parallelism are used, the threads that work
on different offsets but the same array partition are co-scheduled on the same core or multiple cores
that share the same L2 cache. The authors proposed two versions of the algorithm to optimize the
imbalance across the threads caused by non-uniform workload on each thread, namely Par-MK-SLB
and Par-MK-DLB (static and dynamic load balancing, respectively). In the experiments on real dataset,
|T | = 1.8× 105 and n = 200, the algorithm showed super-linear speedup on 32 cores due to the dynamic
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Table 1. Hardware environment for the experiments.

Specifications Host MIC

Model, Intel Xeon X5680 Phi SE10X

Physical cores 2 × 6 61

Hyperthreading factor 2× 4×
Logical cores 24 244

Frequency, GHz 3.33 1.1

VPU size, bit 128 512

Peak performance, TFLOPS 0.371 1.076

Table 2. Performance of the algorithm.

ECG dataset RW dataset

Motif

length

MK Our algorithm MK Our algorithm

Host

(1 core)

Host

(12 cores,

24 threads)

MIC

(61 cores,

244 threads)

Speedup

(Host/MIC)

Host

(1 core)

Host

(12 cores,

24 threads)

MIC

(61 cores,

244 threads)

Speedup

(Host/MIC)

128 1 908.3 974.7 787.1 1.2× 2 143.7 1 036.3 820.4 1.3×
1 024 20 083.6 1 870.2 662.7 2.2× 13 274.9 1 575.8 877.4 1.8×

load balancing with superior L2 cache performance. However, on synthetic dataset |T | = 5× 104 with
larger motif length, n = 1024, the algorithm’s speedup drops down to 8.6× due to reduction in cache
performance owing to larger size of subsequences. In further work, authors planned to investigate the
algorithm’s scalability on many-core architectures but to the best of our knowledge, this research has
not been extended.

This paper contributes in accelerating the MK algorithm on Intel MIC system. Having been designed
with the OpenMP technology and matrix data structures to efficiently exploit vectorization capabilities
of the MIC system, our algorithm provides high scalability, especially in the case of greater motif length.

6. CONCLUSIONS
In this paper, we addressed the task of accelerating the discovery of time series motifs on Intel MIC

(Many Integrated Core) systems. A motif is a pair of subsequences of a longer time series, which are
very similar to each other. Motif discovery is applied in a wide range of subject areas involving time
series: medicine, biology, entertainment, weather prediction, and others.

We proposed a novel parallel algorithm for exact motif discovery on Intel MIC systems in the case
of time series fit in the main memory. Our algorithm parallelizes the serial MK algorithm by Mueen
et al. [10]. The parallelization makes use of thread-level parallelism and OpenMP technology and applies
matrix layout for algorithm’s data to efficiently vectorize calculations. In the experimental evaluation,
the proposed algorithm showed high scalability, especially in the case of high computational load due to
greater motif length.

In further studies, we plan to elaborate versions of the algorithm for other hardware platforms, namely
GPU accelerators and cluster systems with nodes based on Intel MIC or GPU accelerators.
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