
2020 Global Smart Industry Conference (GloSIC) 

978-1-7281-8075-5/20/$31.00 ©2020 IEEE 

Cleaning Sensor Data 
in Smart Heating Control System 

Mikhail Zymbler  
Computer Science Department  

South Ural State University (national 
research university) 

Chelyabinsk, Russian Federation 
mzym@susu.ru 

Yana Kraeva  
Computer Science Department  

South Ural State University (national 
research university) 

Chelyabinsk, Russian Federation 
kraevaya@susu.ru 

Elizaveta Latypova  
Computer Science Department 

South Ural State University (national 
research university) 

Chelyabinsk, Russian Federation 
latypovaea@susu.ru 

Sachin Kumar  
Computer Science Department 

South Ural State University (national 
research university) 

Chelyabinsk, Russian Federation 
sachinagnihotri16@gmail.com 

Dmitry Shnayder 
Automation and Control Department 
South Ural State University (national 

research university) 
Chelyabinsk, Russian Federation 

shnaiderda@susu.ru 

Alexander Basalaev 
Automation and Control Department 
South Ural State University (national 

research university) 
Chelyabinsk, Russian Federation 

basalaevaa@susu.ru 
 

Abstract—Sometimes, smart heating control applications are 
partially equipped with missing values and outliers in the sensor 
data due to software/hardware failures/human errors. To provide 
an effective analysis and decision-making, erroneous sensor data 
should be cleaned by imputation of missing values and smoothing 
outliers. In this paper, we present a case of the Smart Heating 
Control System (SHCS) installed in the South Ural State 
University, and describe the structure and development principles 
of Data Cleaning Module (DCM) of the system. We implement 
DCM through data mining and neural network technologies as a 
set of the following subsystems. The preprocessor extracts raw 
data from the system’s data warehouse and prepares a training 
data for further processing. Predictor provides Recurrent Neural 
Network (RNN) to forecast the next value of a sensor based on its 
historical data. Reconstructor determines if the current value of a 
sensor is an outlier, and if so, imputes it by the synthetic value from 
Predictor. Finally, Anomaly Detector subsystem discovers 
anomalous sequences in the sensor data. In the experiments on the 
real sensor data, DCM showed relatively high and stable accuracy 
as well as adequate detection of anomalies. 

Keywords—sensor data, smart heating control, time series, 
missing data imputation, outlier detection, anomaly detection, 
recurrent neural network 

I. INTRODUCTION 
Modern day Smart Heating Control Systems (SHCS) 

employ various sources of data, including the data from meter’s 
measurements related to utilities consumption, data from 
process controllers and indoor climate control sensors. 
Implementation of the IoT technology in systems of this kind 
additionally enables receiving some sizeable sets of data on 
various parameters having an impact on the overall heating 
conditions in a building. The resulting generation of big data 
allows one to conduct comprehensive analysis of heating 
systems, enabling timely identification of instances of outlying 
performance values and out-of-range energy efficiency 
indicators of dwellings. 

However, in keeping with the reliability theory – when 
reviewing the entire population of data within one single system, 
the growth of the number of data sources may lead to data 
analysis inaccurate, in an unfortunate situation where even one 
data source would fail.  

Occurrence of invalid data, or outliers, may be due to a 
variety of factors: equipment wear or faulty installation or 
operation (generally referred to as the human error factors), 
software and hardware design flaws, operating conditions being 
outside the permissible or design range, etc. 

Invalid data readings or input may lead to a decrease in the 
energy efficiency of dwellings over the course of their use, 
resulting in fallacious control exercised in automatic and 
automated modes, and at times leading to energy penalties from 
the power suppliers. With all this in mind, the task becomes 
current and topical for us to come up with a viable solution for 
prompt data cleaning, which should comprise timely 
identification of outliers and invalid data readings or inputs, as 
well as online reconstruction of the missing data.  

The South Ural State University (SUSU) is an academic and 
research institution possessing advanced competences in the 
field of automated heat supply control systems. The university 
develops and implements automation solutions for its utility 
networks such as heat, water, gas and power supply systems. To 
that end, the SUSU campus has received a new Smart Heating 
Control System based on the SCADA system named 
PolyTER [5], which allows monitoring and control of operating 
conditions of utility systems of the university campus buildings, 
comprising both wired and wireless IoT sensors. Based on the 
data obtained on the energy consumption of various facilities 
and dwellings, experts analyze their energy-related 
performance. 

The PolyTER SCADA-system, much like other similar 
systems, has its basic capabilities of identifying outliers in data 
sets, and generating related outlier notification alarms specific 
to the individual subsystems. However, after identification, it 
often takes overly long to address and resolve certain problems 

The study was financially supported by the Ministry of Science and 
Higher Education of the Russian Federation within the framework of the 
Russian Federal Program for the Development of Russian Science and 
Technology from 2014 to 2020; project identifier: RFMEFI57818X0265 
(contract no. 075-15-2019-1339 (14.578.21.0265)). 

375

Authorized licensed use limited to: South-Ural State University. Downloaded on December 01,2020 at 10:01:56 UTC from IEEE Xplore.  Restrictions apply. 



2020 Global Smart Industry Conference (GloSIC)

that may have led to the actual outliers. Moreover, to be 
unambiguously identified, some faults require a deeper analysis. 
In particular, such tasks include identifying areas of the system, 
whose heat supply faults will lead to the unbalancing of 
generation and consumption of thermal resources, which may 
negatively affect the process of comprehensive integrated 
optimization of the heating system, normally performed in real 
time. Because of this, the application of methods for cleaning 
and reconstruction of data is an important basic task that needs 
to be addressed in this system. 

In this paper, we presented an approach to cleaning sensor 
data in the Smart Heating Control System of SUSU. The rest of 
the paper is structured as follows: In section II, we give overview 
of the Smart Heating Control System. Section III briefly 
discusses related work. The structure and development 
principles of Data Cleaning Module are described in Section IV. 
Results of the experimental evaluation of our approach are 
presented in Section V. Section VI concludes the article with a 
discussion on future scope. 

II. OVERVIEW OF SUSU HEATING CONTROL SYSTEMS 
The Smart Heating Control System of SUSU is a cyber-

physical system that encompasses various server and network 
equipment items, metering devices for energy consumption and 
generation monitoring, process controllers for the heating fluid 
and hot water supply, as well as more than 1000 various sensors. 

Fig. 1 shows the structure of the SUSU Smart Heating 
Control System. At the lower level, the System includes various 
wired and wireless sensors, metering devices and controllers. At 
the intermediate level, the communication of controllers and the 
metering units with the database server is enabled and 
maintained by means of various wired and wireless network 
equipment. The third level includes a SCADA system with a 
database server used for processing of information. The 
resulting processed data is then transmitted to the workstations 
of local net users via the SUSU LAN or to the remote users’ 
workstations over the Internet. 

The first steps to implement parts of this system at SUSU 
were taken in 2010. In introducing this system at SUSU, special 
attention was paid to the heating domain. The objective of this 
implementation then was the overall process control 
optimization of heat supply and heat consumption through 
integration of geographically distributed measuring instruments 
into the system of automatic control of the University’s own 
district heating co-generation and distribution systems, both on 
a centralized basis and locally in individual heat energy 
consumers.  

In 2018, the sensor subsystem was significantly expanded 
with new IoT devices (e.g. over 300 wireless temperature 
sensors were then installed), which permitted the SUSU in 
acquiring additional information on the temperature conditions 
of the dwellings, making it possible to significantly optimize 
heating of the buildings. Implementation of Smart Heating 
Control System at the SUSU campus allowed SUSU to mark the 
saving of approximately 15% of the heat energy as compared to 
the historical consumption data. 

 
Fig. 1. Architecture of SUSU automated utilities control system 

A. Software and Hardware Components  
The system consists of the following measuring and control 

equipment: 

� heat energy metering units (57 pcs.) equipped with a heat 
calculator integrated with 2 pressure sensors, 
2 temperature sensors and 2 flow meters; 

� cold water metering units (58 pcs.), equipped with a 
calculator featuring integration with a pressure sensor 
and a flow meter; 

� gas metering units (3 pcs.) equipped with a gas volume 
corrector featuring integration with temperature and 
pressure sensors and a flow meter;  

� process controllers to control distribution of the heat 
energy at individual district heating substations (24 pcs.) 
with 5 temperature sensors connected to them and 
various discrete (Y/N) protection sensors or switch-type 
probes, as well as the actuators for the control and shut-
off valves. 

� process controllers for the control of generation and 
distribution of heat and electrical energy (5 pcs.) of the 
CHP plants, of the gas boiler house and central heating 
units with a multitude of various sensors and control 
instruments and actuation devices. 

� wireless sensors for indoor temperature monitoring (a 
total of over 300 pcs.). 

The core of the system is the PolyTER software package 
based on the C++ programming language. This software 
supports open and proprietary communication protocols with 
equipment from various manufacturers. It has a configurable 
data visualization environment, and SMS and e-mail notification 
capabilities. Oracle Database is used as a database management 
system. The R programming language is used for data analytics. 

B. The Need and Basic Functions of Data Cleaning 
The main problem in the operation of measuring equipment 

is the recurrent data output errors or outlying data due to 
perturbation inputs of indeterminate or arbitrary nature. 

One of the possible relevant causes is equipment failure. 
About 10 to 20 devices have to be replaced annually over 

376

Authorized licensed use limited to: South-Ural State University. Downloaded on December 01,2020 at 10:01:56 UTC from IEEE Xplore.  Restrictions apply. 



2020 Global Smart Industry Conference (GloSIC)

equipment obsolescence or inadvertent departure from the 
intended operating conditions or haphazard. Another reason is 
the loss of the necessary contact with the measured heat 
medium, e.g. due to pressure gauge clogging etc. Besides, 
interruption of communication links with field instruments and 
sensors may be the recurrent factor having its fair share of 
contribution. Moreover, not all instruments feature internal 
hardware-based data archiving capability, which is especially 
true for controllers. Another cause may be the faulty installation 
of equipment, which may lead to extra perturbation inputs 
associated with abnormal operating conditions of sensors in the 
actual areas of their faulty placement.  

Occurrence of invalid or outlying data leads: 

� to invalid erroneous calculations occurring when 
optimization algorithms are run, to build incorrect 
properties of the controlled objects or processes and 
consequently to wrong strategic decision making; 

� to incorrect administrative managerial decisions taken by 
personnel when faced with the misleading and false 
deviations of the current performance indicators from 
their intended rated values and ranges; 

� to fallacious automatic control exercised by the process 
controllers, which, in turn, may not only lead to excess 
energy penalties, but also to failure of district and local 
utility networks (e.g., freeze-ups of the heating system 
pipelines); 

� to metering device sensor failures, in which case 
erroneous calculation of utilities consumption may 
occur, not to mention the possible energy penalty 
charged by the power provider to the power consumer for 
untimely detection and late or missing remedial action. 

Fig. 2 shows an example of one of the problems associated 
with the failure of the power supply unit of a flow meter on the 
return pipeline, which led to the false negative heat load in an 
open circuit heating system.  

In conditions of the voltage drops that occurred at the mains, 
the power supply unit failed to provide the necessary stable 
voltage level to properly power up the flow meter, thus 
triggering constant consecutive reboots of the flow meter 
firmware, which caused the instrument to transmit spurious, 
unwanted signals to the heat meter at each of these abnormal 
startups. 

 
Fig. 2. Medium mass flow rate and heat load during failure of the power 

supply unit of a flow meter 

Therefore, timely detection, and rectification of equipment 
malfunctions and data reconstruction have a significant 
administrative and economic effect by reducing or eliminating 
loss of benefit, when such equipment problems occur. 

The data cleaning module operation accomplishes the 
following main purposes: 

1) online detection of gaps and outliers in the sensor 
measurement data and replacement or filling of such outlying 
values or empty value slots with plausible deductive synthetic 
values; 

2) online detection of anomalous sensor behavior and 
notifying the operator of the anomalies discovered. 

The data cleaning module is integrated into the system 
between the level of data reading and the level of use of the data 
for analytical calculations, and visualization or representation. 
In the meantime, the visualized data are marked as either 
original or reconstructed, with the access conveniently retained 
to the outlying data for possible deeper analysis of the same, in 
case of need.  

III. RELATED WORK 
Several techniques are devoted to outlier detection; many of 

them are used in fault detection theory [19], [22].  

The basic approaches include the methods that define and 
thus help to identify departures of actual values beyond the 
permissible deviation spread based on the values obtained by 
object simulation [18], [24].  

In research paper [20] for the ventilation and air conditioning 
monitoring systems, the authors employed a combination of 
three techniques for online fault detection, namely reduction of 
dimensionality of correlated data which indicate occurrence of 
outliers (ReliefF method + Adoptive Genetic Algorithm); 
application of Extended Kalman Filter for noise filtering and 
data decomposition into time series; separation of areas of valid 
and invalid values of static and dynamic parameters of the object 
model using recursive one-class SVM.  

To determine deviations in the district heating substation 
(DHS) operation in research paper [9], the authors proposed the 
reference-group (peer-group) based approach to operational 
monitoring. The performance parameters of a group of similar 
DHSs are considered as a reference, based on the �-most similar 
objects criterion using the Euclidean distance. Deviations of the 
performance of one DHS from its kin group’s indicators by the 
value of the relevant threshold are regarded as outliers, thus 
enabling possible fault detection at the DHS.  

Research paper [11] exploits the Principal Component 
Analysis (PCA) method for identification of outliers in the 
performance data of HVAC-systems whereas the authors of 
research paper [8] described the data reconstruction method 
used in conjunction with the PCA. 

The balance models construction technique is also 
noteworthy. The heat power or hydraulic imbalance in such 
models indicates presence of faults in the system or presence of 
outliers [13].  

377

Authorized licensed use limited to: South-Ural State University. Downloaded on December 01,2020 at 10:01:56 UTC from IEEE Xplore.  Restrictions apply. 



2020 Global Smart Industry Conference (GloSIC)

Reconstruction of data lost to the outliers is performed by 
predictive techniques. A lot of research work was devoted to 
predict the parameters of heating systems using static and 
dynamic factor models and time series models with relevant 
identification enabled by the autoregressive analysis [23], 
support vector machine (SVM) [12], and recurrent neural 
networks [2]. 

Our interest was also attracted by an approach to reconstruct 
the static and dynamic properties of models, whose distortion 
occurs because of variable thermal perturbation inputs. Such 
perturbation inputs are considered by virtue of their description 
through schedule based indicator functions [6]. 

In the meantime, it is noteworthy that the peculiarity of the 
performance data of such heat energy supply systems is the 
periodic or recurrent nature associated with the cyclical change 
in weather conditions and the intended operating conditions of 
dwellings in function to the time of the day. The performance 
data outliers that occur in the course of operation of the various 
heating subsystems are characterized by abrupt changes in the 
signal values, with these surges lasting for limited periods.  

Based this, our research proposes the use of long short-term 
memory recurrent networks to detect outlier sequences, and to 
reconstruct the lost sequences of performance measurement 
data, which have a cyclical changing nature to them. 

IV. DEVELOPMENT OF THE DATA CLEANING MODULE 
In this section, we describe module structure and 

development principles of DCM. 

A. General Structure 
Fig. 3 depicts overall workflow of DCM. DCM is developed 

for each single sensor of the cyber-physical system, and consists 
of four subsystems, namely Preprocessor, Predictor, 
Reconstructor, and Anomaly Detector. The Preprocessor 
subsystem prepares sensor data for further processing. The 
Predictor subsystem provides an artificial neural network 
(ANN) to forecast the next value of a sensor based on its 
historical data. The Reconstructor subsystem determines if a 
given value of a sensor is an outlier, and if so, imputes it by the 
synthetic value received from Predictor. Finally, the Anomaly 
Detector subsystem discovers anomalous sequences in the 
sensor data. 

Workflow of DCM for a specified sensor explained as 
follows. Preprocessor performs its actions regularly with the ��
period of time. Such a period is predefined by an operator of the 
cyber-physical system with the typical value �� =3 months. 
Preprocessor extracts a part of the sensor data accumulated up 
to the current time, prepares a training set for Predictor’s ANN. 

Then, the following actions are performed regularly with the ��  period of time where �� � �� . Such a period is also 
predefined by the operator of the system, and its typical value is ��=300 seconds. ANN predicts the current value of the sensor. 
If the real value returned by the sensor is NULL (i.e. it is missed) 
then current value is changed to the value predicted by ANN. If 
the real value is not missed, then Reconstructor checks if it is an 
outlier or normal. If the real value is recognized as “normal”, 
then DCM passes it to the system to save in the data warehouse. 
Otherwise, Reconstructor changes the current value to the value 

produced by Predictor. Finally, Anomaly Detector determines if 
the current value ends some anomalous sequence of sensor 
values, and if so, notifies the operator. 

 
Fig. 3. Overall workflow of DCM. 

Below, we give more detailed description of the above-
mentioned subsystems. 

B. Preprocessor 
Preprocessor is aimed to prepare a training set for the 

learning ANN of the Predictor subsystem. Preprocessor 
consists of the following subsystems, namely Parser, Restorer, 
Outlier Detector, and Normalizer. 

Preprocessor performs as depicted in Fig. 4. At first, Parser 
extracts a part of the sensor data from the data warehouse, and 
transforms it in an appropriate way to be processed further. Next, 
Restorer imputes missing values in the parsed sensor data. Then, 
Outlier Detector finds points in the data that deviate 
significantly from the rest data points. All the outliers found are 
substituted by NULLs as if they missed, and Restorer performs 
imputation once again. Finally, Normalizer splits imputed 
sensor data into a set of fragments, and performs normalization 
of each fragment. These steps result in a data file to learn ANN 
of the Predictor subsystem. 

 
Fig. 4. Workflow of Preprocessor. 

Normally speaking, Parser extracts a time series �, which is 
a chronologically ordered sequence of real-valued elements 
(with a small fraction of empty values): � = (��, … , �	) where 

 called length of time series, and �� �  or �� = NULL. Then, 
Restorer and Outlier Detector together transform �  so as 
�� �� � .  

Normalizer produces ���, a set of normalized subsequences 
of �  with length � (� � 
) , and � , a set of respective 
predictions. A subsequence of time series � is its contiguous 
subset consisting of �  elements, and starting from the given 
position � : ��,� = (��, … , ������) , 1 � � � 
 � � + 1 . A 
normalized subsequence is calculated by min-max scaling as 
follows: ���,� = (���, … , �������)  where ��� = ������� 

��!"�����
, and ��� �

378

Authorized licensed use limited to: South-Ural State University. Downloaded on December 01,2020 at 10:01:56 UTC from IEEE Xplore.  Restrictions apply. 



2020 Global Smart Industry Conference (GloSIC)

[0; 1]. For a normalized subsequence ���,�  an element �����  is 
treated as its prediction. 

The length of the subsequence is calculated as � = # $ % 
where # is the sensor frequency, and % is time interval in the 
past used by Predictor (historical horizon). The latter is a 
parameter predefined by an operator of the cyber-physical 
system. For instance, if the sensor frequency is 4 times an hour 
and the historical horizon is 12 hours, then the length of 
sequence is 48. 

Preprocessor is implemented by several Python libraries as 
follows. Parser uses the standard openpyxl and pandas libraries. 
Outlier Detector is based on the algorithms from the adtk 
(Anomaly Detection Toolkit) library [3]. Restorer exploits the 
ARIMA (AutoRegressive Integrated Moving Average) 
model [7] implemented in the standard statsmodels library. 
Normalizer is implemented by the standard sklearn library. 

C. Predictor 
Predictor provides a recurrent neural network (RNN) with 

long short-term memory (LSTM) [10] layer. We learn RNN on 
the set of normalized subsequences of the sensor data prepared 
by Preprocessor. When using, RNN takes a subsequence of the 
real sensor values preceding to the predicted value as an input, 
and outputs the predicted value. 

RNN performs as depicted in Fig. 5. The LSTM layer is 
composed of LSTM cells (memory blocks) where the number of 
cells is equal to the subsequence length chosen at the 
preprocessing step. Performing together, LSTM cells produce 
column vector % , so-called hidden state. Length of this vector is 
a parameter predefined by an operator of the cyber-physical 
system. The Dropout layer randomly deactivates &  percent of 
neurons in the % vector to prevent overfitting of RNN. The ratio 
of deactivated neurons is also a parameter of the system with 
typical value & = 20%. The Dense layer applies rectified linear 
unit (ReLU) as an activation function to transform data to the 
single predicted value �*���.  

Each LSTM cell consists of a cell state and several gate 
layers. The cell state is a vector that carries the information from 
the previous moments and will flow through the entire chain of 
LSTM cells. The LSTM cell has three gate layers, namely the 
input gate, the forget gate and the output gate, which regulate 
the amount of the data should be kept, forgot and delivered to 
the output, respectively. 

Predictor is implemented by the Keras library [16] and the 
TensorFlow framework [1]. 

 
Fig. 5. Workflow of Predictor. 

D. Reconstructor 
Reconstructor takes the current non-NULL value of the 

sensor, and checks if it is significantly dissimilar to the value 
produced by Predictor. If so, the real value is recognized as an 
outlier and changed by the synthetic value from Predictor. 

Implementation of Reconstructor is based on the probability 
distribution of the prediction error [17]. Following this method, 
we should determine dissimilarity threshold - > 0 for a real and 
a synthetic value of the sensor, ����  and �*��� , respectively. If |���� � �*���| . -, then �� represents an outlier. The dissimilarity 
threshold is calculated as - = / + �3  where /  is mean of 
prediction errors, 3 is standard deviation of prediction errors, 
and � > 0 is predefined parameter of the system (with typical 
value � = 3 ). A single prediction error is calculated as an 
absolute difference between the last point of a subsequence from 
the Predictor’s training set and corresponding synthetic value 
produced by Predictor. 

E. Anomaly Detector 
Anomaly Detector takes a set of subsequences in the time 

series of the sensor data ended by the current value and 
determines if each subsequence of the set is significantly 
dissimilar to the rest subsequences of the series, and if so, 
notifies the operator of the cyber-physical system. 

The number of such subsequences is a parameter predefined 
by the operator so that each subsequence length corresponds to 
some typical time interval in the subject domain. Therefore, the 
subsequence length is calculated depending on the sensor 
frequency. For instance, if the sensor frequency is 4 times an 
hour and the operator would like to be notified on possible 
anomalies in the sensor data in the nearest 12 hours, 1 day, and 
2 days, then Anomaly Detector will try to determine anomalous 
subsequences with lengths 48, 96, and 182 points, respectively. 

Implementing Anomaly Detector, we exploit the discord 
concept [14], [21]. A discord looks attractive as an anomaly 
detector because it only requires one intuitive parameter (the 
subsequence length), as opposed to most anomaly detection 
algorithms, which typically require many parameters [15]. 
Discords are formally defined as follows. 

Two subsequences ��,�  and �5,�  are non-trivial matches, if 
6�7,� � ���, � <  8 < 9: ED?��,�, �5,�@ < ED?��,�, �7,�@  where 
ED($,$) denotes the Euclidean distance. Let AB denotes a non-
trivial match of a subsequence C � ��� . Then a subsequence 
F � ��� is said to be the most significant discord in � if �C �
��� min?ED(F, AG)@ > min (ED(C, AB)), i.e. if the Euclidean 
distance to its nearest non-trivial match is the largest. A 
subsequence F � ��� is called the most significant �-th discord 
in � if the distance to its �-th nearest non-trivial match is the 
largest. 

Thus, Anomaly Detector notifies the operator if a 
subsequence with the predefined length and the current sensor 
value at its end is the most significant �-th discord where � is 
also a parameter predefined by the operator of the system. 
Implementation of Anomaly Detector is based on the MatrixProfile 
library for Python [4]. 

379

Authorized licensed use limited to: South-Ural State University. Downloaded on December 01,2020 at 10:01:56 UTC from IEEE Xplore.  Restrictions apply. 



2020 Global Smart Industry Conference (GloSIC)

V. EXPERIMENTAL EVALUATION 
We evaluated the proposed approach during the experiments 

conducted on the real sensor data taken from SUSU SHCS data 
warehouse.  

We assessed the accuracy of DCM as follows. We took the 
2018 year data of a sensor installed in a lecture hall, and pass it 
to Preprocessor. Then, we learned Predictor’s RNN by 80 
percent part of resulting data produced by Preprocessor. Finally, 
we simulated every-day work of DCM on the block of rest 20 
percent part of the Preprocessor resulting data, treating it as a 
test set. 

In the experiments, we configured DCM subsystems 
follows. To learn Predictor’s RNN, we used subsequences of 
length �=48 corresponding 12 hours of the sensor work. In 
RNN, we took hidden state %  as a column vector of length 
|%|=32. We used MSE (mean square error) as a loss function, 
Adam as an optimizer while learning, 15 epochs, and size of 
batch 32. 

As accuracy measure, we used the root mean square error 

(RMSE), defined as RMSE = H �
|I| J (�� � �*�)�|I|

�K�  where ��  and 

�*� are the real and synthetic sensor values, respectively, and |O| 
denotes the block length. Fig. 6 shows the experimental results 
regarding RMSE where we took block length from one week to 
two months (i.e. up to full length of the series in the test set).  

As can be seen, DCM provides relatively high and stable 
accuracy. Fig. 7 visualizes two excerpts from simulation of 
DCM work, namely for one-month and two-month block length. 
As can be seen, DCM adequately predicts normal values as well 
as detects outliers. 

Fig. 8 depicts an example of two anomalies found during the 
simulation of DCM work. Both anomalies correspond to two 
days activity of the above-mentioned sensor. The first one is 
top-1 discord in the test set, and may indicate that the sensor was 
temporarily out of order. The second anomaly represents top-10 
discord in the test set, and may indicate fast decrease of 
temperature in the lecture hall because of intensive ventilation 
due to the large number of open windows on a hot day. Anyway, 
anomalies detected are the subject of the operator's reaction. 

 
Fig. 6. Accuracy of DCM. 

 
a) One-month block 

 
b) Two-months block 

Fig. 7. Simulation of DCM work. 

 
a) Top-1 anomaly (2-days sensor activity) 

 
a) Top-10 anomaly (2-days sensor activity) 

Fig. 8. Anomalies found during simulation of DCM work. 

VI. CONCLUSIONS

In this paper, we addressed the problem of cleaning sensor 
data in smart heating control systems. We presented a case of 
the Smart Heating Control System (SHCS) installed in the South 
Ural State University, and described the structure and 
development principles of Data Cleaning Module (DCM) of 
SHCS. We developed DCM for each single sensor of SHCS as 
a set of subsystems, namely Preprocessor, Predictor, 
Reconstructor, and Anomaly Detector.  

380

Authorized licensed use limited to: South-Ural State University. Downloaded on December 01,2020 at 10:01:56 UTC from IEEE Xplore.  Restrictions apply. 



2020 Global Smart Industry Conference (GloSIC) 

Preprocessor prepares a training set to learn Predictor’s 
Recurrent Neural Network (RNN). Preprocessor includes the 
following subsystems. Parser extracts a part of the sensor data 
from the data warehouse, and transforms it in an appropriate 
way. Next, Restorer imputes missing values in the parsed data. 
Then, Outlier Detector finds deviant data points, substitutes 
them to NULLs as if they missed, and Restorer imputes once 
again. Finally, Normalizer splits imputed sensor data into a set 
of normalized subsequences. 

Predictor provides RNN with long short-term memory 
(LSTM) layer learned on the data prepared by Preprocessor. 
When using, RNN takes a subsequence of the real sensor values 
preceding to the predicted value as an input, and outputs the 
predicted value.  

Reconstructor takes the current non-NULL value of the 
sensor, and checks if it is significantly dissimilar to the value 
produced by Predictor. If so, the real value is substituted by the 
synthetic value from Predictor. 

Anomaly Detector takes a set of subsequences in the time 
series of the sensor data ended by the current value, checks if a 
subsequence is anomalous, and if so, notifies the operator of 
SHCS. 

We presented experimental evaluation of DCM on the real 
data from sensors of SHCS, and experiments illustrated that 
proposed approach are able to achieve higher accuracy. 

In further studies, we plan to elaborate our approach by 
application of parallel algorithms for mining time series 
data [25], [26]. 

REFERENCES 
[1] M. Abadi, P. Barham, J. Chen, and Z. Chen, A. Davis, “TensorFlow: A 

system for large-scale Machine Learning,” OSDI, pp. 265–283, 2016. 
[Online]. Available: https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/abadi 

[2] T. Ahmad, H. Chen, and Y. Huanga, “Short-term energy prediction for 
district-level load management using machine learning based 
approaches,” Energy Procedia, vol. 158, pp. 3331–3338, 2019. DOI: 
10.1016/j.egypro.2019.01.967 

[3] Anomaly Detection Toolkit, User Guide. [Online]. Available: 
https://arundo-adtk.readthedocs-hosted.com/en/stable/userguide.html 

[4] A. Van Benschoten, A. Ouyang, F. Bischoff, and T. Marrs, “MPA: a novel 
cross-language API for time series analysis,” Journal of Open Source 
Software, vol. 5, no. 49, 2020. DOI: 10.21105/joss.02179 

[5] A. Basalaev, “Automated energy management for heat and power system 
of university campus,” Bulletin of the South Ural State University. Ser. 
Computer Technologies, Automatic Control, Radio Electronics, vol. 15, 
no. 4, pp. 26–32, 2015. [Online]. Available: 
https://vestnik.susu.ru/ctcr/article/view/4355  

[6] A. Basalaev, M. Tochilkin, and D. Shnayder, “Enhancing room thermal 
comfort conditions modeling in buildings through schedule-based 
indicator functions for possible variable thermal perturbation inputs,” 
Proc. of 2019 Int. Conf. on Industrial Engineering, Applications and 
Manufacturing, pp. 1–8, 2019. DOI: 10.1109/ICIEAM.2019.8742907 

[7] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series 
analysis: forecasting and control. Whiley, 2015. 

[8] R. Dunia and S. Joe Qin, “Joint diagnosis of process and sensor faults 
using principal component analysis,” Control Engineering Practice, vol. 
6, is. 4, pp. 457–469, 1998. DOI: 10.1016/S0967-0661(98)00027-6 

[9] Sh. Farouq, S. Byttner, M.-R. Bouguelia, and N. Nord, “Large-scale 
monitoring of operationally diverse district heating substations: A 
reference-group based approach,” Eng. Appl. Artif. Intell., vol. 90, pp. 1–
16, 2020. DOI: 10.1016/j.engappai.2020.103492 

[10] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural 
Computation, vol. 9, no. 8, pp. 1735–1780, 1997. DOI: 
10.1162/neco.1997.9.8.1735 

[11] Y. Hu, H.Chen, G. Li, and H. Li, “A statistical training data cleaning 
strategy for the PCA-based chiller sensor fault detection, diagnosis and 
data reconstruction method,” Energy and Buildings, vol. 112, pp. 270–
278, 2016. DOI: 10.1016/j.enbuild.2015.11.066 

[12] S. Idowu, S. Saguna, C. Åhlund, and O. Schelén, “Applied machine 
learning: Forecasting heat load in district heating system,” Energy and 
Buildings, vol. 133, pp. 478–488, 2016. [Online]. Available: 
https://DOI.org/10.1016/j.enbuild.2016.09.068 

[13] K. Jha, “Minimal loop extraction for leak detection in water pipe 
network,” Proc. of 2012 1st Int. Conf. on Recent Advances in Information 
Technology, pp. 687–693, 2012. DOI: 10.1109/RAIT.2012.6194578 

[14] E. J. Keogh, J. Lin, and A. W. Fu, “HOT SAX: efficiently finding the 
most unusual time series subsequence,” Proc. of the 5th IEEE Int. Conf. 
on Data Mining, pp. 226–233, 2005. DOI: 10.1109/ICDM.2005.79 

[15] E. J. Keogh, S. Lonardi, and C. A. Ratanamahatana, “Towards parameter-
free data mining,” Proc. of the 10th ACM SIGKDD Int. Conf. on 
Knowledge Discovery and Data Mining, pp. 206–215, 2004. DOI: 
10.1145/1014052.1014077 

[16] Keras Developer Guides. [Online]. Available: https://keras.io/guides/ 
[17] P. Malhotra, L. Vig, G. M. Shroff, and P. Agarwal, “Long Short Term 

Memory Networks for anomaly detection in time series,” Proc. of the 23rd 
European Symposium on Artificial Neural Networks, pp. 89–94, 2015. 
[Online]. Available: 
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf 

[18] W. J. N. Turner, A. Staino, and B. Basu, “Residential HVAC fault 
detection using a system identification approach,” Energy and Buildings, 
vol. 151, pp. 1–17, 2017. DOI: 10.1016/j.enbuild.2017.06.008 

[19] V. Venkatasubramanian, “Process Fault Detection and Diagnosis: Past, 
Present and Future,” IFAC Proc. Volumes, vol. 34, is. 27, pp. 1–13, 2001. 
DOI: 10.1016/S1474-6670(17)33563-2 

[20] K. Yan, Zh. Ji, and W. Shen, “Online fault detection methods for chillers 
combining extended Kalman filter and recursive one-class SVM,” 
Neurocomputing, vol. 228, pp. 205–212, 2017. DOI: 
10.1016/j.neucom.2016.09.076 

[21] D. Yankov, E. J. Keogh, and U. Rebbapragada, “Disk aware discord 
discovery: finding unusual time series in terabyte sized datasets,” Knowl. 
Inf. Syst., vol. 17, no. 2, pp. 241–262, 2008. DOI: 10.1007/s10115-008-
0131-9 

[22] Y. Zhao, T. Li, X. Zhang, and C. Zhang, “Artificial intelligence-based 
fault detection and diagnosis methods for building energy systems: 
Advantages, challenges and the future,” Renewable and Sustainable 
Energy Reviews, vol. 109, pp. 85–101, 2019. DOI: 
10.1016/j.rser.2019.04.021 

[23] Y. Zhao, C. Zhang, Y. Zhang, and Z. Wang, “A review of data mining 
technologies in building energy systems: Load prediction, pattern 
identification, fault detection and diagnosis,” Energy and Built 
Environment, vol. 1, is. 2, pp. 149–164, 2020. DOI: 
10.1016/j.enbenv.2019.11.003 

[24] N. Zimmerman, E. Dahlquist, and K. Kyprianidis, “Towards on-line fault 
detection and diagnostics in district heating systems,” Energy Procedia, 
vol. 105, pp. 1960–1966, 2017. DOI: 10.1016/j.egypro.2017.03.567 

[25] M. Zymbler and Ya. Kraeva, “Discovery of time series motifs on intel 
many-core systems,” Lobachevskii Journal of Mathematics, vol. 40, no. 
12. pp. 2124–2132, 2019. DOI: 10.1134/S199508021912014X 

[26] M. Zymbler, A. Polyakov, and M. Kipnis, “Time series discord discovery 
on intel many-core systems,” Revised Selected Papers. Communications 
in Computer and Information Science, vol. 1063. pp. 168–182, 2019. 
DOI: 10.1007/978-3-030-28163-2_12 

 

381

Authorized licensed use limited to: South-Ural State University. Downloaded on December 01,2020 at 10:01:56 UTC from IEEE Xplore.  Restrictions apply. 


