
An Approach to Fuzzy Clustering of Big
Data Inside a Parallel Relational DBMS

Mikhail Zymbler(B) , Yana Kraeva, Alexander Grents, Anastasiya Perkova,
and Sachin Kumar

South Ural State University, Chelyabinsk, Russia
{mzym,kraevaya,grentsav,perkovaai}@susu.ru,

sachinagnihotri16@gmail.com

Abstract. Currently, despite the widespread use of numerous NoSQL
systems, relational DBMSs remain the basic tool for data processing
in various subject domains. Integration of data mining methods with
relational DBMS is a topical issue since such an approach avoids export-
import bottleneck and provides the end-user with all the built-in DBMS
services. Proprietary parallel DBMSs could be a subject for integration
of data mining methods but they are expensive and oriented to cus-
tom hardware that is difficult to expand. At the same time, open-source
DBMSs are now being a reliable alternative to commercial DBMSs and
could be seen as a subject to encapsulate parallelism. In this study, we
present an approach to fuzzy clustering of very large data sets inside
a PDBMS. Such a PDBMS is obtained by small-scale modifications of
the original source code of an open-source serial DBMS to encapsulate
partitioned parallelism. The experimental evaluation shows that the pro-
posed approach overtakes parallel out-of-DBMS solutions with respect to
export-import overhead.

Keywords: Big Data · Parallel DBMS · PostgreSQL · Fuzzy
clustering

1 Introduction

Currently, despite the widespread use of numerous NoSQL systems, relational
DBMSs remain the basic tool for data processing in various subject domains. To
make sure of this fact, let us take a look to statistics from the DB-Engines.com
portal. At the end of 2019, relational DBMSs kept the last place by popularity
among the data management systems (by their mentions in news feeds, social
and professional networks, etc.) yielding all the NoSQL systems. At the same
time, ranking of the systems above by database model showed that relational
DBMSs take three quarters of the market.

In addition to OLTP and OLAP scenarios, current data intensive applica-
tions should provide data mining abilities. This fact makes the integration of
data mining methods with relational DBMS a topical issue [18]. Indeed, if we

c© Springer Nature Switzerland AG 2020
A. Elizarov et al. (Eds.): DAMDID/RCDL 2019, CCIS 1223, pp. 211–223, 2020.
https://doi.org/10.1007/978-3-030-51913-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51913-1_14&domain=pdf
http://orcid.org/0000-0001-7491-8656
http://orcid.org/0000-0003-3949-0302
https://db-engines.com/
https://doi.org/10.1007/978-3-030-51913-1_14

212 M. Zymbler et al.

consider DBMS only as a fast and reliable data repository, we get significant
overhead for export large data volumes outside a DBMS, changing data format,
and import results of analysis back into a DBMS. Moreover, such an integration
provides the end-user with all the built-in DBMS services (query optimization,
data consistency and security, etc.).

Nowadays, Big Data phenomenon demands parallel DBMSs (PDBMSs) to
processing very large databases. Proprietary PDBMSs could be a subject for
integration of data mining methods but they are expensive and oriented to cus-
tom hardware that is difficult to expand. Open-source DBMSs are now being a
reliable alternative to commercial DBMSs but there is a lack of open-source par-
allel DBMSs since the development of such a complex software system is rather
expensive and takes a lot of time.

This paper is a revised and extended version of the invited talk [31]. In the
paper, we present an approach to fuzzy clustering of very large data sets inside a
PDBMS. Such a PDBMS is obtained by small-scale modifications of the original
source code of an open-source serial DBMS to encapsulate partitioned paral-
lelism. The paper is structured as follows. Section 2 contains a short overview
of related work. Section 3 describes a method of encapsulation of partitioned
parallelism into serial DBMS. In Sect. 4, we present fuzzy clustering algorithm
for PDBMS described above. In Sect. 5, we give the results of the experimental
evaluation of our approach. Finally, Sect. 6 summarizes the results obtained and
suggests directions for further research.

2 Related Work

Research on the integration of data analytic methods with relational DBMS
started as far as data mining became full-fledged scientific discipline. First inves-
tigators proposed mining query languages [7,10] and SQL extensions for data
mining [15,29]. There are SQL implementations of algorithms to solve data min-
ing basic problems, namely association rules [26,27], classification [19,25], and
clustering [16,17], as well as graph mining problems [14,21].

The MADlib library [8] provides many data mining methods inside Post-
greSQL. The MADlib exploits user-defined aggregates (UDAs), user-defined
functions (UDFs), and a sparse matrix C library to provide efficient data pro-
cessing on disk and in memory.

The Bismarck system [5] exploits UDFs as a convenient interface for in-
DBMS data mining. The Bismarck supports logistic regression, support vector
machines and other mining methods, which are based on incremental gradient
descent technique.

The DAnA system [13] automatically maps a high-level specification of in-
DBMS analytic queries to the FPGA accelerator. The accelerator implementa-
tion is generated from an UDF, expressed as part of a SQL query in a Python-
embedded Domain-Specific Language. The DAnA supports striders, a special
hardware structures that directly interface with the buffer pool of the DBMS to
extract and clean the data tuples, and pass the data to FPGA.

An Approach to Fuzzy Clustering of Big Data Inside a Parallel DBMS 213

This paper extends our previous research as follows. In [23,24], we presented
an approach to encapsulation parallel mining algorithms for many-core accelera-
tors into an open-source DBMS (with PostgreSQL as an example) for small-scale
data sets. In [20,22], we developed a method for encapsulation parallelism into an
open-source DBMS (with PostgreSQL as an example). In this paper, we apply
the resulting PDBMS to fuzzy clustering very large data sets, extending our
previous in-PostgreSQL fuzzy clustering algorithm [16].

3 Encapsulation of Partitioned Parallelism into a Serial
DBMS

3.1 Basic Ideas

Our development is based on the concept of the partitioned parallelism [4], which
assumes the following. Let us consider a computer cluster as a set of alike com-
puters (nodes) connected with high-speed network where each node is equipped
with its own main memory and disk, and has an instance of PDBMS installed.

Each database table is fragmented into a set of horizontal partitions according
to the number of nodes in the cluster, and partitions are distributed across
nodes. The way of partitioning is defined by a fragmentation function (a table
is associated with its own fragmentation function), which takes a tuple of the
table as an input and returns a node where the tuple should be stored. One of
the table attributes is declared as a partitioning attribute to be an argument of
the fragmentation function.

One of the PDBMS instances is declared as a coordinator. A retrieve query
is executed independently by all the PDBMS instances where each instance
processes its own database partition and generates a partial query result, and
then partial results are merged by the coordinator into the resulting table.

Fig. 1. Structure of the Exchange operator

To implement the schema described above, PDBMS engine provides the
Exchange operator [28]. Such an operator is inserted into a serial query plan
and encapsulates all the details related to parallelism. Exchange is a composite
operator (see Fig. 1) with two attributes, namely port and distribution function.

214 M. Zymbler et al.

Port is serial number of the Exchange operator in the query plan to provide
concordance of all the query plans of PDBMS instances. The distribution func-
tion takes a tuple as an input and returns a number of the instance where the
tuple should be processed.

The Split operator computes the distribution function for an input tuple.
If the tuple is to be processed by the current instance, it passed to the Merge
operator. Otherwise, the tuple is passed to the Scatter operator to be sent
to the respective instance. The Gather operator receives tuples from other
instances and passes them to Merge. The Merge operator alternately combines
the tuple streams from Split and Gather.

Exchange provides data transfers in case of queries where tables are joined,
and partitioning attribute of the table(s) does not match to join attribute. Also,
Exchange with distribution function identical to the coordinator number being
inserted into the root of a query plan, provides merging partial results of the
query into the resulting table.

3.2 Implementation with PostgreSQL

Open-source DBMSs are now being a reliable alternative to commercial DBMSs.
In this regard, an idea of obtaining a PDBMS by small-scale modifications of
the original source code of an open-source serial DBMS to encapsulate parti-
tioned parallelism looks promising. PargreSQL [20,22] is an example of PDBMS
implemented on top of PostgreSQL in an above-mentioned way.

Fig. 2. Structure of PargreSQL

Figure 2 depicts module structure of PargreSQL. The original open-source
DBMS is considered as one of PDBMS subsystems. Novel subsystems extend
PargreSQL as follows.

An Approach to Fuzzy Clustering of Big Data Inside a Parallel DBMS 215

The par Storage subsystem provides metadata on partitioning in PDBMS
dictionary. In PargreSQL, each table should contain at least one integer column
to be a partitioning attribute. Thus, each CREATE TABLE command should be
ended by the (WITH FRAGATTR=pa) clause to provide the table’s fragmentation
function as pa mod P where pa is partitioning attribute and P is the number of
PDBMS instances.

The par Exchange subsystem implements the Exchange operator described
above. The par Parallelizer subsystem inserts Exchanges into the appropriate
places of a query plan given from PostgreSQL.

The par libpq subsystem is a modified version of the PostgreSQL libpq
library. Being a wrapper over the original PostgreSQL libpq-fe front-end, the
par libpq-fe provides connection of a client to all the PDBMS instances and
replicates a query to each PargreSQL engine.

The par Compat subsystem is a set of C preprocessor macros that change
the original PostgreSQL API calls into the PargreSQL API calls to provide
transparent migration of PostgreSQL applications to PargreSQL.

In the end, resulting parallel DBMS is obtained by modifications that took
less than one per cent of whole source code of PostgreSQL.

4 Fuzzy Clustering Inside a Parallel DBMS

Clustering could be seen as a task of grouping a finite set of objects from finite-
dimensional metric space in such a way that objects in the same group (called
a cluster) are closer (with respect to a chosen distance function) to each other
than to those in other groups (clusters). Hard clustering implies that each object
must belong to a cluster or not. In fuzzy clustering, each object belongs to each
cluster to a certain membership degree. Fuzzy C-means (FCM) [3] is the one of
the most widely used fuzzy clustering algorithm.

Further, in Sect. 4.1, we give notations and definitions regarding FCM, and
in Sect. 4.2, we show in-PDBMS implementation of FCM.

4.1 Notations and Definitions

Let X = {x1, . . . , xn} is a set of objects to be clustered where an object xi ∈ R
d.

Let k ∈ N is the number of clusters where each cluster is identified by a number
from 1 to k. Then C ∈ R

k×d is the matrix of centroids where cj ∈ R
d is center

of a j-th cluster.
Let U ∈ R

n×k is the matrix of memberships where uij ∈ R reflects member-
ship of an object xi to a centroid cj and the following holds:

∀ i, j uij ∈ [0; 1], ∀ i

k∑

j=1

uij = 1. (1)

216 M. Zymbler et al.

The objective function JFCM is defined as follows:

JFCM (X, k,m) =
n∑

i=1

k∑

j=1

um
ij ρ2(xi, cj) (2)

where ρ : Rd × R
d → R+ ∪ 0 is the distance function to compute proximity of

an object xi to a centroid cj , and m ∈ R (m > 1) is the fuzzyfication degree of
JFCM (the algorithm’s parameter, which is usually taken as m = 2). Without
loss of generality, we may use the Euclidean distance, which is defined as follows:

ρ2(xi, cj) =
d∑

�=1

(xi� − cj�)2. (3)

FCM iteratively minimizes JFCM according to the following formulas:

∀j, � cj� =

n∑

i=1
um

ij ·xi�

n∑

i=1
um

ij

(4)

uij =
k∑

t=1

(
ρ(xi,cj)
ρ(xi,ct)

) 2
1−m

. (5)

Finally, Algorithm 1 depicts basic FCM.

Alg. 1. FCM(in X, m, ε, k; out U)
1: U (0) ← random(0..1); s ← 0
2: repeat
3: Compute C(s) by (4)
4: Compute U (s) and U (s+1) by (5)
5: s ← s + 1
6: until maxij {|u(s+1)

ij − u
(s)
ij |} ≥ ε

7: return U

4.2 The PgFCM Algorithm

The pgFCM algorithm is an in-PDBMS implementation of FCM. Our algorithm
provides a database partitioned among the disks of computer cluster nodes,
and performs fuzzy clustering by SQL queries where each database partition
is processed independently by the respective instance of the PargreSQL DBMS
described above.

Table 1 depicts design of pgFCM database. Underlined column name specifies
primary key, and double underlined column name specifies partitioning attribute
of the respective table. To improve efficiency of query execution, we provide index

An Approach to Fuzzy Clustering of Big Data Inside a Parallel DBMS 217

Table 1. Database scheme of the pgFCM algorithm

Table Columns Indexed column(s) Meaning

SH i, x1, x2, . . . , xd i Set of objects X,
horizontal
representation

SV i, �, val i, �, (i, �) Set of objects X,
vertical
representation

C j, �, val �, (j, �) Matrix of centroids
C, vertical
representation

SD i, j, dist i, (i, j) Distances between
objects xi and
centroids cj

U i, j, val i, (i, j) Matrix of
memberships U at
the s-th step,
vertical
representation

UT i, j, val (i, j) Matrix of
memberships U at
the (s + 1)-th step,
vertical
representation

file where indices by the primary key of the tables are automatically created, and
the rest indices are created manually.

FCM computations (2)–(5) require aggregations over columns of the input
table, which are directly impossible in SQL. To overcome this, in addition to
horizontal representation of the algorithm’s key data, namely set of objects and
the matrix of memberships, we provide their vertical representation. Such a
technique allows for using SQL aggregation functions SUM and MAX while imple-
menting computations in FCM as a set of SQL queries.

Alg. 2. pgFCM(in table SH, m, ε, k; out table U)
1: Initialize table U, table SV
2: repeat
3: Compute centroids by modifying table C
4: Compute distances by modifying table SD
5: Compute memberships by modifying table UT
6: TRUNCATE U; INSERT INTO U SELECT * FROM UT
7: δ ← SELECT max(abs(UT.val - U.val)) FROM UT, U WHERE UT.i=U.i

AND UT.j=U.j
8: until δ ≥ ε
9: SELECT * FROM U

218 M. Zymbler et al.

Algorithm 2 depicts implementation schema of pgFCM. The algorithm is
implemented as an application in C language, which connects to all PargreSQL
instances and performs computations by SQL queries over tables described in
Table 1.

Fig. 3. Implementation of initialization steps of pgFCM

Figure 3 shows how to form vertical representation of the SH table, and ini-
tialize the U table according to (1).

1 Computing c en t r o i d s by modi fy ing table C
2 INSERT INTO C
3 SELECT R . j , SV . � , sum(R . s SV . val) /sum(R . s) AS val
4 FROM (SELECT i , j , U . valˆm AS s FROM U) AS R , SV
5 WHERE R . i=SV . i
6 GROUPBY j , � ;
7 Computing d i s t an c e s by modi fy ing table SD
8 INSERT INTO SD
9 SELECT i , j , s q r t (sum((SV . val C . val) ˆ2)) AS dist

10 FROM SV , C
11 WHERE SV . �=C . � ;
12 GROUPBY i , j ;
13 Computing memberships by modi fy ing table UT
14 INSERT INTO UT
15 SELECT i , j , SD . distˆ(2ˆ(1 m)) SD1 . den AS val
16 FROM (SELECT i , 1/sum(distˆ(2ˆ(m 1))) AS den FROM SD
17 GROUPBY i) AS SD1 , SD
18 WHERE SD . i=SD1 . i ;

Fig. 4. Implementation of computing steps of pgFCM

Figure 4 depicts computational steps of the pgFCM algorithm. While modify-
ing the UT table, we exploit the following version of (5), which is more convenient
for computations in SQL:

An Approach to Fuzzy Clustering of Big Data Inside a Parallel DBMS 219

uij = ρ
2

1−m (xi, cj) ·
(

k∑

t=1

ρ
2

m−1 (xi, ct)

)−1

. (6)

5 The Experiments

We evaluated the proposed algorithm in experiments conducted on the Tornado
SUSU supercomputer [11]. In the experiments, we compared the performance of
pgFCM with the following analogs.

In [6], Ghadiri et al. presented BigFCM, the MapReduce-based fuzzy clus-
tering algorithm. BigFCM was evaluated on a computer cluster of one master
and 8 slave nodes over the HIGGS dataset [2] consisting of 1.1 · 107 the 29-
dimensional objects. Hidri et al. [9] proposed the parallel WCFC (Weighted
Consensus Fuzzy Clustering) algorithm. In the experiments, WCFC was evalu-
ated on a computer cluster of 20 nodes over the KDD99 dataset [1] consisting of
4.9 · 106 the 41-dimensional objects. According to the experimental evaluation
performed by the authors of the above-mentioned algorithms, both BigFCM and
WCFC overtake other out-of-DBMS parallel implementations of FCM, namely
MR-FCM [12] and Mahout FKM [30].

(a) pgFCM vs BigFCM over the
HIGGS dataset (n = 1.1 · 107,

d = 29, k = 2)

(b) pgFCM vs WCFC over the
KDD99 dataset (n = 4.9 · 106,

m = 41, k = 2)

Fig. 5. Comparison of pgFCM with analogs

We ran pgFCM on Tornado SUSU with a reduced number of nodes to make
the peak performance of our system approximately equal to that of the system
on which the corresponding competitor was evaluated. Throughout the experi-
ments, we used the same datasets that were employed for the evaluation of the
competitors. For comparison purposes, we used the run times reported in the
respective papers [6,9].

220 M. Zymbler et al.

For out-of-DBMS analogs, we measured the run time needed to export the
initial dataset from the PostgreSQL DBMS (as conversion of a table to CSV file)
and import the clustering results back into PostgreSQL (as loading of a CSV
file into DBMS as a table), and added these overhead costs to the clustering
running time of analogs. We assume the typical scenario when the data to be
clustered are stored in a DBMS, and it is necessary to export the data outside
the DBMS before clustering and import clustering results back into the DBMS
after clustering.

Experimental results are depicted in Fig. 5. As can be seen, pgFCM is inferior
to analogs in the performance of clustering. However, unlike the analogs, pgFCM
performs clustering inside a PDBMS and does not need to export data and
import results, and we can see that the proposed algorithm outruns analogs
with respect to the overhead costs on export-import data.

6 Conclusions

In this paper, we addressed the task of mining in very large data sets inside a
relational DBMSs, which remain the basic tool for data processing in various
subject domains. Integration of data mining methods with relational DBMS
avoids export-import bottleneck and provides the end-user with all the built-in
DBMS services (query optimization, data consistency and security, etc.).

To effectively process very large databases, we encapsulate parallelism into
the PostgreSQL open-source DBMS. Resulting parallel DBMS (called Par-
greSQL) is obtained by small-scale modifications of the original source code
of PostgreSQL. Such modifications took less than one per cent of whole source
code of PostgreSQL.

In this study, we implement Fuzzy C-Means clustering algorithm inside Par-
greSQL. The algorithms is implemented as an application in C language, which
utilizes PargreSQL API. We design the algorithm’s database in a way that allows
for employing SQL row aggregation functions. We carry out experiments on com-
puter cluster system using referenced data sets and compare our approach with
parallel out-of-DBMS solutions. The experimental evaluation shows that the
proposed approach overtakes analogs with respect to overhead on export data
outside a DBMS and import results of analysis back into a DBMS.

In further studies, we plan to apply PargreSQL to other data mining problems
over very large databases, e.g. association rules and classification.

Acknowledgments. The study was financially supported by the Ministry of Science
and Higher Education of the Russian Federation within the framework of the Rus-
sian Federal Program for the Development of Russian Science and Technology from
2014 to 2020; project identifier: RFMEFI57818X0265 (contract no. 075-15-2019-1339
(14.578.21.0265)).

References

1. KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html. Accessed 01 July 2019

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

An Approach to Fuzzy Clustering of Big Data Inside a Parallel DBMS 221

2. Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic particles in high-energy
physics with deep learning. Nat. Commun. 4, 4308 (2014). https://doi.org/10.
1038/ncomms5308

3. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Springer, New York (1981). https://doi.org/10.1007/978-1-4757-0450-1

4. DeWitt, D.J., Gray, J.: Parallel database systems: the future of high performance
database systems. Commun. ACM 35(6), 85–98 (1992). https://doi.org/10.1145/
129888.129894

5. Feng, X., Kumar, A., Recht, B., Ré, C.: Towards a unified architecture for in-
RDBMS analytics. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, 20–24 May 2012,
pp. 325–336 (2012). https://doi.org/10.1145/2213836.2213874

6. Ghadiri, N., Ghaffari, M., Nikbakht, M.A.: BigFCM: fast, precise and scalable
FCM on hadoop. Future Gener. Comput. Syst. 77, 29–39 (2017). https://doi.org/
10.1016/j.future.2017.06.010

7. Han, J., et al.: DBMiner: a system for mining knowledge in large relational
databases. In: Proceedings of the 2nd International Conference on Knowledge Dis-
covery and Data Mining (KDD 1996), pp. 250–255, Portland (1996). http://www.
aaai.org/Library/KDD/1996/kdd96-041.php

8. Hellerstein, J.M., et al.: The MADlib analytics library or MAD skills, the SQL.
PVLDB 5(12), 1700–1711 (2012). https://doi.org/10.14778/2367502.2367510

9. Hidri, M.S., Zoghlami, M.A., Ayed, R.B.: Speeding up the large-scale consensus
fuzzy clustering for handling big data. Fuzzy Sets Syst. 348, 50–74 (2018). https://
doi.org/10.1016/j.fss.2017.11.003

10. Imielinski, T., Virmani, A.: MSQL: a query language for database mining.
Data Min. Knowl. Discov. 3(4), 373–408 (1999). https://doi.org/10.1023/A:
1009816913055

11. Kostenetskiy, P., Semenikhina, P.: SUSU supercomputer resources for industry
and fundamental science. In: 2018 Global Smart Industry Conference (GloSIC),
Chelyabinsk, Russia, 13–15 November 2018, p. 8570068 (2018). https://doi.org/
10.1109/GloSIC.2018.8570068

12. Ludwig, S.A.: MapReduce-based fuzzy c-means clustering algorithm: implementa-
tion and scalability. Int. J. Mach. Learn. Cybern. 6(6), 923–934 (2015). https://
doi.org/10.1007/s13042-015-0367-0

13. Mahajan, D., Kim, J.K., Sacks, J., Ardalan, A., Kumar, A., Esmaeilzadeh, H.: In-
RDBMS hardware acceleration of advanced analytics. PVLDB 11(11), 1317–1331
(2018). https://doi.org/10.14778/3236187.3236188

14. McCaffrey, J.D.: A hybrid system for analyzing very large graphs. In: 9th Interna-
tional Conference on Information Technology: New Generations, ITNG 2012, Las
Vegas, Nevada, USA, 16–18 April 2012, pp. 253–257 (2012). https://doi.org/10.
1109/ITNG.2012.43

15. Meo, R., Psaila, G., Ceri, S.: A new SQL-like operator for mining association rules.
In: Proceedings of 22th International Conference on Very Large Data Bases, VLDB
1996, 3–6 September 1996, Mumbai, India, pp. 122–133 (1996). http://www.vldb.
org/conf/1996/P122.PDF

16. Miniakhmetov, R., Zymbler, M.: Integration of the fuzzy c-means algorithm into
PostgreSQL. Numer. Methods Program. 13, 46–52 (2012). https://num-meth.srcc.
msu.ru/english/zhurnal/tom 2012/v13r207.html

17. Ordonez, C.: Integrating k-means clustering with a relational DBMS using SQL.
IEEE Trans. Knowl. Data Eng. 18(2), 188–201 (2006) https://doi.org/10.1109/
TKDE.2006.31

https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1007/978-1-4757-0450-1
https://doi.org/10.1145/129888.129894
https://doi.org/10.1145/129888.129894
https://doi.org/10.1145/2213836.2213874
https://doi.org/10.1016/j.future.2017.06.010
https://doi.org/10.1016/j.future.2017.06.010
http://www.aaai.org/Library/KDD/1996/kdd96-041.php
http://www.aaai.org/Library/KDD/1996/kdd96-041.php
https://doi.org/10.14778/2367502.2367510
https://doi.org/10.1016/j.fss.2017.11.003
https://doi.org/10.1016/j.fss.2017.11.003
https://doi.org/10.1023/A:1009816913055
https://doi.org/10.1023/A:1009816913055
https://doi.org/10.1109/GloSIC.2018.8570068
https://doi.org/10.1109/GloSIC.2018.8570068
https://doi.org/10.1007/s13042-015-0367-0
https://doi.org/10.1007/s13042-015-0367-0
https://doi.org/10.14778/3236187.3236188
https://doi.org/10.1109/ITNG.2012.43
https://doi.org/10.1109/ITNG.2012.43
http://www.vldb.org/conf/1996/P122.PDF
http://www.vldb.org/conf/1996/P122.PDF
https://num-meth.srcc.msu.ru/english/zhurnal/tom_2012/v13r207.html
https://num-meth.srcc.msu.ru/english/zhurnal/tom_2012/v13r207.html
https://doi.org/10.1109/TKDE.2006.31
https://doi.org/10.1109/TKDE.2006.31

222 M. Zymbler et al.

18. Ordonez, C.: Can we analyze big data inside a DBMS? In: Proceedings of the
16th International Workshop on Data warehousing and OLAP, DOLAP 2013, San
Francisco, CA, USA, 28 October 2013, pp. 85–92 (2013). https://doi.org/10.1145/
2513190.2513198

19. Ordonez, C., Pitchaimalai, S.K.: Bayesian classifiers programmed in SQL. IEEE
Trans. Knowl. Data Eng. 22(1), 139–144 (2010). https://doi.org/10.1109/TKDE.
2009.127

20. Pan, C.S., Zymbler, M.L.: Taming elephants, or how to embed parallelism into
PostgreSQL. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.)
DEXA 2013. LNCS, vol. 8055, pp. 153–164. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40285-2 15

21. Pan, C.S., Zymbler, M.L.: Very large graph partitioning by means of parallel
DBMS. In: Catania, B., Guerrini, G., Pokorný, J. (eds.) ADBIS 2013. LNCS,
vol. 8133, pp. 388–399. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40683-6 29

22. Pan, C.S., Zymbler, M.L.: Encapsulation of partitioned parallelism into open-
source database management systems. Program. Comput. Softw. 41(6), 350–360
(2015). https://doi.org/10.1134/S0361768815060067

23. Rechkalov, T., Zymbler, M.: An approach to data mining inside PostgreSQL based
on parallel implementation of UDFs. In: Selected Papers of the XIX International
Conference on Data Analytics and Management in Data Intensive Domains (DAM-
DID/RCDL 2017), Moscow, Russia, 9–13 October 2017, vol. 2022, pp. 114–121
(2017). http://ceur-ws.org/Vol-2022/paper20.pdf

24. Rechkalov, T., Zymbler, M.: Integrating DBMS and parallel data mining algo-
rithms for modern many-core processors. In: Kalinichenko, L., Manolopoulos, Y.,
Malkov, O., Skvortsov, N., Stupnikov, S., Sukhomlin, V. (eds.) DAMDID/RCDL
2017. CCIS, vol. 822, pp. 230–245. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96553-6 17

25. Sattler, K., Dunemann, O.: SQL database primitives for decision tree classifiers.
In: Proceedings of the 2001 ACM CIKM International Conference on Information
and Knowledge Management, Atlanta, Georgia, USA, 5–10 November 2001, pp.
379–386 (2001). https://doi.org/10.1145/502585.502650

26. Shang, X., Sattler, K.-U., Geist, I.: SQL based frequent pattern mining with FP-
growth. In: Seipel, D., Hanus, M., Geske, U., Bartenstein, O. (eds.) INAP/WLP
-2004. LNCS (LNAI), vol. 3392, pp. 32–46. Springer, Heidelberg (2005). https://
doi.org/10.1007/11415763 3

27. Sidló, C.I., Lukács, A.: Shaping SQL-based frequent pattern mining algorithms.
In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 188–201.
Springer, Heidelberg (2006). https://doi.org/10.1007/11733492 11

28. Sokolinsky, L.B.: Organization of parallel query processing in multiprocessor
database machines with hierarchical architecture. Program. Comput. Softw. 27(6),
297–308 (2001). https://doi.org/10.1023/A:1012706401123

29. Sun, P., Huang, Y., Zhang, C.: Cluster-by: an efficient clustering operator in emer-
gency management database systems. In: Gao, Y., et al. (eds.) WAIM 2013. LNCS,
vol. 7901, pp. 152–164. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39527-7 17

https://doi.org/10.1145/2513190.2513198
https://doi.org/10.1145/2513190.2513198
https://doi.org/10.1109/TKDE.2009.127
https://doi.org/10.1109/TKDE.2009.127
https://doi.org/10.1007/978-3-642-40285-2_15
https://doi.org/10.1007/978-3-642-40285-2_15
https://doi.org/10.1007/978-3-642-40683-6_29
https://doi.org/10.1007/978-3-642-40683-6_29
https://doi.org/10.1134/S0361768815060067
http://ceur-ws.org/Vol-2022/paper20.pdf
https://doi.org/10.1007/978-3-319-96553-6_17
https://doi.org/10.1007/978-3-319-96553-6_17
https://doi.org/10.1145/502585.502650
https://doi.org/10.1007/11415763_3
https://doi.org/10.1007/11415763_3
https://doi.org/10.1007/11733492_11
https://doi.org/10.1023/A:1012706401123
https://doi.org/10.1007/978-3-642-39527-7_17
https://doi.org/10.1007/978-3-642-39527-7_17

An Approach to Fuzzy Clustering of Big Data Inside a Parallel DBMS 223

30. Xhafa, F., Bogza, A., Caballé, S., Barolli, L.: Apache Mahout’s k-Means vs Fuzzy
k-Means performance evaluation. In: 2016 International Conference on Intelligent
Networking and Collaborative Systems, INCoS 2016, Ostrawva, Czech Republic,
7–9 September 2016, pp. 110–116 (2016). https://doi.org/10.1109/INCoS.2016.103

31. Zymbler, M., Kumar, S., Kraeva, Y., Grents, A., Perkova, A.: Big data processing
and analytics inside DBMS. In: Selected Papers of the XXI International Con-
ference on Data Analytics and Management in Data Intensive Domains (DAM-
DID/RCDL 2019), Kazan, Russia, 15–18 October 2019, p. 21 (2019). http://ceur-
ws.org/Vol-2523/invited04.pdf

https://doi.org/10.1109/INCoS.2016.103
http://ceur-ws.org/Vol-2523/invited04.pdf
http://ceur-ws.org/Vol-2523/invited04.pdf

