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Abstract—Currently, in a wide spectrum of applications, to avoid the processing and analysis of
incomplete time series, end-users need efficient and accurate approaches to online imputation of
missing values. In the article, we introduce a novel method called SANNI (snippet and artificial
neural network-based imputation) for the recovery of missing values in multivariate time series
coming online. SANNI leverages behavioral patterns (called snippets) that are subsequences
representing an actor’s typical activities, which are reflected by the time series. Preprocessing is
performed for each series of a representative fragment of the input data, where we normalize all the
subsequences with non-NaN values and discover snippets. To impute, our method employs two
deep learning models: Recognizer and Reconstructor. Given a multivariate subsequence ended
by a missing value, Recognizer outputs a snippet to which the subsequence of the series is the
most similar. Reconstructor, for each series, imputes missing values using the snippet discovered
previously and results taken from Recognizer. In the extensive experiments, SANNI on average
outperforms state-of-the-art competitors over time series from diverse subject domains related to
an actor with predefined activities as well as under the blackout scenario.
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INTRODUCTION

Currently, there is a wide spectrum of applications, where time series need to be efficiently processed
online: Internet of Things [1], digital twins [2], smart control [3], and so on. In such domains, software
and hardware failures or human factors lead to missing values, which should be imputed as long as they
are encountered to avoid the processing and analysis of incomplete time series. Thus, the development
of efficient and accurate approaches to online imputation of missing values in time series is a topical
issue [4]. At the moment, in reply to the challenge above, numerous both unsupervised approaches [4,
5] and deep learning models [6, 7] are proposed.

In this study, we address the problem of online imputation of multivariate time series tackling the
following challenges. First, we treat time series imputation as an actor activity prediction [8] task in the
case when data with activity labels do not exist beforehand. Second, among the different scenarios of
multiple incomplete series, we focus on the most severe one, blackout [5], where all sensors go quiet
simultaneously, causing widespread and aligned missing blocks. In summary, the main contributions of
this article are as follows:
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• We introduce a novel method called SANNI (Snippet and Artificial Neural Network-based
Imputation) for recovery of missing values in multivariate time series coming online. SANNI
exploits behavioral patterns (called snippets [9]), which are discovered as a part of data prepro-
cessing. Our method employs two deep learning models, Recognizer and Reconstructor, that
are based on recurrent neural networks and together impute missing values. Recognizer takes
a current multivariate subsequence ended by a missing value, and for each series, it outputs a
snippet to which the current subsequence of the series is the most similar. Reconstructor, for
each series, imputes missing values using the results taken from Recognizer.

• We carry out extensive experiments to evaluate our method against state-of-the-art both un-
supervised approaches and deep learning models over time series from diverse subject domains
for various scenarios. In the experiments, on average, SANNI outperforms the rivals in terms
of accuracy for both the target data category and imputation scenario, namely, time series from
subject domains related to an actor with several predefined activities and blackout, respectively.
In addition, we establish a repository [10], which contains the source code, data, plots, etc. to
facilitate the reproducibility of our study.

The remainder of the article is organized as follows. In Section 1, we briefly discuss related works.
Section 2 describes the notation and formal definitions our approach is based on. Section 3 introduces
the method for imputation of missing values in multivariate time series. In Section 4, we discuss the
results of the experimental evaluation of our method. Finally, in Conclusions, we summarize the results
obtained and suggest directions for further research.

1. RELATED WORK

Currently, in subject domains related to time series processing, the development of accurate, efficient,
and parameterizable approaches to the imputation of missing data blocks remains a topical issue [5]. At
the moment, the research community has proposed a wide spectrum of both unsupervised approaches
and deep learning models for the imputation of missing values in time series. The following unsupervised
algorithms are worth noting as state-of-the-art [4, 5]: CDRec [11], DynaMMo [12], ORBITS [4],
ROSL [13], GROUSE [14], SoftImpute [15], SVDImpute [16], SVT [17], and TeNMF [18]. Modern
deep learning-based imputation methods employ a wide range of neural network architectures [6, 7]:
generative-adversarial networks (e.g., E2GAN [19], BRNN-GAN [20]), transformers (e.g., SAITS [21],
STING [22]), autoencoders (e.g., NAOMI [23], GP-VAE [24]), recurrent neural networks (e.g.,
BRITS [25], M-RNN [26]), and so on. In our brief overview of related works, we consider only the above-
mentioned BRITS and M-RNN (yet do not avoid comparison with all approaches in the experiments)
since they are typical representatives of approaches based on recurrent neural networks, which are
closest to our study.

The BRITS (Bidirectional Recurrent Imputation for Time Series) model [25] imputes multidimen-
sional time series through two layers consisting of recurrent neurons. The first and second layers
process, respectively, the input subsequence and its copy, where the points are taken in reverse order.
In each above layer, the number of neurons equals to the input subsequence length, and each neuron
predicts the subsequence’s next point, taking into account all the preceding points. If the ith point
is missed, then it is imputed as the average of the predictions of the (i− 1)th points from both layers
above. Then, the ith point serves as an input of the (i+ 1)th neuron. For the learning, BRITS
prescribes to randomly insert “synthetic” missing values in addition to “natural-born” ones, and
involves subsequences with missing values, where at least one of them is “synthetic”. Learning over
a subsequence, BRITS predicts all its points (i.e., non-NaN and NaN ones). During the learning, the
loss function is calculated only over the “synthetic” missing values. However, in the end, BRITS is
able to achieve high imputation accuracy since accumulation of error due to the prediction of “natural-
born” missing values significantly affects the calculation of the loss function. We can point out
two following limitations of BRITS. First, since such an approach employs RNN (Recurrent Neural
Network) neurons, not GRU (Gated Recurrent Units) [27] or LSTM (Long Short-term Memory) [28]
ones, it may cause the vanishing gradient problem [29]. Second, for long time series, the accuracy of
BRITS deteriorates since it does not take into account long-period dependencies both inside and across
the series.
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The M-RNN (Multi-directional Recurrent Neural Network) model [26] employs two blocks of
neurons, which are trained simultaneously using the same predefined subsequence length. The first
block is based on the Bi-RNN (Bi-directional Recurrent Neural Network) architecture [30] and performs
interpolation of missing values in each series separately from the other ones. The second block employs
fully connected layers and imputes each interpolated multivariate point above through extraction of the
dependencies across the series. Since the interpolation block processes only missing points, not the
subsequences containing them, it leads to small-sized models. However, such an approach suffers from
relatively low accuracy since it does not take into account long-period dependencies across series.

2. PRELIMINARIES

Prior to detailing the proposed approach for imputation of missing values in multivariate time series,
below, in Sections 2.1, 2.2, and 2.3, respectively, we introduce basic notation and brief description of the
snippet concept [9] and the MPdist distance measure [31] our development is based on.

2.1. Basic Notation

A univariate time series is a chronologically ordered sequence of real-valued numbers:

T = {ti}ni=1, ti ∈ R. (1)

The length of a time series, n, is denoted by |T |.
A subsequence Ti,m of a univariate time series T is its subset of m successive elements that starts

at the ith position

Ti,m = {tk}i+m−1
k=i , 1 ≤ i ≤ n−m+ 1, 3 ≤ m � n. (2)

A multivariate time series is an ordered sequence of several equal-length univariate time series that
are semantically associated and synchronized by time with each other. Let us denote a dimension of the
multivariate time series as the positive integer d (d > 1). Similarly to the univariate case, we denote a
multivariate time series, its subsequence, and its point as T, Ti,m, and ti, respectively, and define them
as below:

T = [{T (k)}dk=1]
ᵀ, (3)

Ti,m = [{T (k)
i,m}dk=1]

ᵀ, (4)

ti = [{t(k)i }dk=1]
ᵀ. (5)

Hereinafter, NaN denotes a missed value.

2.2. Snippets

Informally speaking, for the given univariate time series that measures some actor’s behavior, its
snippets are subsequences that represent typical activities of the actor. The snippet concept and the
Snippet-Finder algorithm to discover time series snippets are proposed in [9]. In our study, we employ
the PSF (Parallel Snippet-Finder) algorithm [32] that accelerates snippet discovery on GPU. Snippets
are formally defined as follows.

For the given subsequence length m, let us split the given time series T into a set of segments, i.e.,
non-overlapping subsequences of T . Since m � n, then without loss of generality, we suppose that n
is a multiple of m, and the set of segments, Sm

T is defined as below

Sm
T = {Si}n/mi=1 , Si = Tm·(i−1)+1, m. (6)

Snippets of T are to be selected from Sm
T , and we introduce the positive integer K (1 ≤ K ≤ n/m),

the number of snippets (i.e., typical activities of the actor above) we are interested in. Next, we define the
set of m-length snippets Cm

T as below:

Cm
T = {Ci}Ki=1, Ci ∈ Sm

T . (7)
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Fig. 1. An example of a univariate time series and its snippets. (a) accelerometer data collected during an individual’s
walking and running; (b) two-color streak showing the time series labeling as a result of the snippet discovery;
(c) snippets discovered and a diagram of their fraction.

A snippet is associated with the following attributes: an index, a set of nearest neighbors, and a
fraction. For the given snippet Ci ∈ Cm

T , we denote the above attributes as Ci.index, Ci.NN, and
Ci.frac, respectively.

The snippet’s index is a number of the segment that corresponds to the snippet:

Ci.index = j ⇔ Sj = Tm·(j−1)+1, m. (8)

The snippet’s nearest neighbors are a set of subsequences that are the most similar to the corre-
sponding segment

Ci.NN = {Tj,m | SCi.index = arg min
1≤s≤n/m

MPdist(Tj,m, Ss), 1 ≤ j ≤ n−m+ 1}, (9)

where MPdist(·, ·) is the Euclidean distance-based similarity measure proposed in [31] and briefly
described below in Section 2.3.

The snippet’s fraction is a ratio of the number of the snippet’s nearest neighbors to the total number
of m-length subsequences in the time series

Ci.frac =
|Ci.NN|

n−m+ 1
. (10)

Finally, in the Cm
T set, snippets are ordered in descending order of their fraction

∀Ci, Cj ∈ Cm
T : i < j ⇔ Ci.frac ≥ Cj.frac. (11)

Figure 1 illustrates the snippet concept for a time series from the PAMAP2 dataset [33], which is
collected by an accelerometer worn on an individual during walking and running.

Finally, for the multivariate time series T, let us call the set Cm
T , which combines snippets across all

the series, a snippet dictionary

Cm
T =

d⋃

k=1

Cm
T (k) . (12)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 11 2024



5952 YURTIN, ZYMBLER

2.3. The MPdist Measure

Informally speaking, two equal-length time series are as close to each other w.r.t. MPdist as many of
their smaller equal-length subsequences are close to each other w.r.t. the normalized Euclidean distance.
Despite the fact that MPdist does not meet the triangular inequality, it is robust w.r.t. spikes, warping,
linear trends, etc. [31].

Let us consider A and B, two m-length time series, and the subsequence length �, where �0.3m	 ≤
� ≤ �0.8m	. MPdist is formally defined as following three-step procedure.

At first, let us calculate the matrix profile for A and B w.r.t. the subsequence length � and denote
the result as PAB. The matrix profile concept proposed in [34] and defined as a time series, where its ith
element is the distance from the ith subsequence of the first time series to its nearest neighbor in the
second time series

PAB = {Dist(Ai, �, Bj, �)}m−�+1
i=1 , Bj, � = arg min

1≤q≤n/m
Dist(Ai, �, Bq, �), (13)

where Dist(·, ·) is a nonnegative symmetric function. Similarly, the matrix profile PBA is defined as below

PBA = {Dist(Bi, �, Aj, �)}m−�+1
i=1 , Aj, � = arg min

1≤q≤n/m
Dist(Bi, �, Aq, �). (14)

Secondly, let us concatenate PAB with PBA denoting the resulting time series as PABBA:

PABBA = PAB • PBA, |PABBA| = 2(m− �+ 1), (15)

where the symbol • denotes a concatenation of two operands.

Finally, let us sort the elements of PABBA in ascending order and denote the result as sortedPABBA.
To calculate MPdist between A and B w.r.t. the subsequence length �, we choose the kth element
of sortedPABBA, where k is a predefined parameter with typical value k = �0.1m	, or the maximal
element of PABBA if the subsequence length � is close to the time series length m:

MPdist�(A,B) =

{
sortedPABBA(k), |PABBA| > k

sortedPABBA
(
2(m− �+ 1)

)
, otherwise.

(16)

In equations (13) and (14), as the Dist(·, ·) function, we use the z-normalized Euclidean distance
that is defined as below

EDnorm(X,Y ) = ED(X̂, Ŷ ) =

√√√√
�∑

i=1

(x̂i − ŷi)2,

x̂i =
xi − μx

σx
, μx =

1

�

�∑

i=1

xi, σx =

√√√√1

�

�∑

i=1

x2i − μ2
x. (17)

3. METHOD

At this point, we are ready to introduce our method for imputation of missing values in multivariate
streaming time series called SANNI (snippet and artificial neural network-based imputation). Below,
Section 3.1 presents the general architecture of our approach. In Section 3.2, we outline the data
preprocessing phase. Sections 3.3 and 3.4 describe Recognizer and Reconstructor, respectively, two
neural network models, which are included in our method.
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Fig. 2. General architecture of SANNI.

3.1. General Architecture

Figure 2 depicts the general architecture of SANNI. For processing, we take a previously stored
fragment of the time series and make the following assumptions about the data. We assume that such
a fragment contains measurements of all the actor’s basic activities that the time series represents. In
addition, we assume that a domain expert predefines a meaningful subsequence length (i.e., snippet
length). Moreover, for each series in the fragment, the number of subsequences with at least one NaN
value does not exceed 50 percent of the total number of subsequences.

In short, SANNI performs as follows. For each series in the fragment, Preprocessor normalizes
all the subsequences with non-NaN values, discovers their snippets, and creates the snippet dictionary.
Next, Preprocessor builds training sets for two deep learning models, Recognizer and Reconstructor,
that together impute missing values. Further, imputation is performed as follows. Recognizer takes a
current multivariate subsequence ended by a missing value, and for each series, it outputs a snippet to
which the current subsequence of the series is the most similar. Finally, for each series, Reconstructor
imputes missing values using the snippet dictionary and results taken from Recognizer.

3.2. Data Preprocessing

Hereinafter in this section, as T, we denote the above-mentioned fragment of the input multivariate
time series. For each series T (k) of T, to bring each point ti of the series (excluding NaNs) to the range
[0, 1], we perform min-max normalization as below

t̂
(k)
i =

t
(k)
i − min

1≤j≤n
t
(k)
j

max
1≤j≤n

t
(k)
j − min

1≤j≤n
t
(k)
j

, 1 ≤ k ≤ d. (18)

Next, we exclude from processing each subsequence Ti,m, which contains at least one NaN. Then, for
each series T (k) of T, we discover snippets by the PSF algorithm [32] and combine the results into the
snippet dictionary, Cm

T .
Further, we denote a training set as D = {〈X,Y〉}, where X and Y correspond to the input and output

attributes of the above tuple, respectively.
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As for the tuple of the Recognizer’s training set, as an input attribute, we take a multivariate
subsequence without NaNs in any series, where we exclude the last multivariate point. As an output
attribute, we take a column vector of integers, where its element corresponds to the number of the
snippet, which meets the following property: in the respective series, the univariate subsequence is
among the nearest neighbors of the above snippet. Formally speaking, DRecognizer is defined as below

DRecognizer = {〈X,Y〉 |X(k) = T
(k)
i,m−1, t

(k)
i �= NaN,

Y (k) = s, T
(k)
i,m ∈ C(k)

s .NN, 1 ≤ i ≤ n−m+ 1, 1 ≤ k ≤ d, 1 ≤ s ≤ K}. (19)

The Reconstructor’s input attribute of the training set tuple is formed similar to the Recognizer’s
one; it is a multivariate subsequence without NaN values in any series, where the last multivariate point is
changed to the special NIL point, which is simply a column vector of -1 values. The excluded multivariate
point is assumed as an output attribute. Thus, we define DReconstructor as below

DReconstructor = {〈X,Y〉 |X(k) = T
(k)
i,m−1 • NIL, NIL = −1,

Y (k) = t
(k)
i+m, 1 ≤ i ≤ n−m+ 1, 1 ≤ k ≤ d}. (20)

3.3. Recognizer

Figure 3 depicts the structure of Recognizer. The model consists of the following layers applied
one after another: three convolutional layers, one recurrent layer, and two fully connected layers. Each
convolutional layer provides 256 channels with the kernel size 5 to extract features from the input
subsequence. After each convolutional layer, we place the Max-pooling node with the window size 2
to create down-sampled feature maps and employ the ReLU activation function. The recurrent layer
includes GRUs (Gated Recurrent Units), each with an m/4-sized hidden state, to analyze the features
extracted by the previous layers, taking into account the chronology of features. This layer employs
Leaky ReLU as an activation function to avoid the dying ReLU problem [35].

The next two fully-connected layers are in charge of the final evaluation of the input subsequence,
where the former and the latter layers consist of, respectively, 32 ·m and d ·K neurons, and the latter
layer calculates the membership matrix. In such a matrix, a row represents the respective series and is
a vector of probabilities of the fact that the subsequence is the nearest neighbor of the respective snippet.
Let us denote the membership matrix for the given multivariate subsequence as PTi,m

, then its formal
definition is as follows

PTi,m
= [{P

T
(k)
i,m

}dk=1]
ᵀ : P (k)(j) = Pr(T (k)

i,m ∈ Cm
T (k)),

K∑

j=1

P (k)(j) = 1,

1 ≤ i ≤ n−m+ 1, 1 ≤ k ≤ d, 1 ≤ j ≤ K. (21)

3.4. Reconstructor

In Fig. 4, we show the structure of Reconstructor. Given a multivariate subsequence, where the last
NaNs are changed to NILs, Reconstructor imputes each series, where the last point is missed. We build a
three-dimensional tensor, which serves as an input for Reconstructor. In the tensor, for each time series
dimension, we keep the two-row layout matrix, at which the first row is an input subsequence, where
we substitute the last missing value by NIL, and the second row is the respective snippet taken from the
membership matrix produced by Recognizer. Let us denote the above-mentioned tensor as MTi,m

, then
it is formally defined as follows

MTi,m
= {M

T
(k)
i, m

}dk=1, M
T

(k)
i,m

∈ R
2×m,

M
T

(k)
i,m

(1, ·) = T
(k)
i,m−1 • NIL, NIL = −1,

M
T

(k)
i,m

(2, ·) = Cm
T (k)

(
arg max

1≤j≤K
P
T

(k)
i,m

(j)

)
, 1 ≤ k ≤ d. (22)
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Fig. 3. The structure of Recognizer.
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Then, for each series, Reconstructor processes the respective layout matrix through three convolu-
tional layers (with kernel size 5 and 64, 128, and 256 feature maps, respectively), which extract features
related to the similarity of the subsequence and the snippet it is the most similar to. Further, for each
series, we place a single GRU with an m-sized hidden state and a linear layer of m neurons, which
together discover implicit time-related dependencies between the subsequence and its respective snippet
in the previously extracted features. For the two above layers, during the learning, we apply the dropout
operation to their neurons with the predefined probability p, where 0 < p < 1 and the typical value for
such a parameter is p = 0.2.

Next, we combine outputs from linear layers into the (d×m)-sized matrix and treat it as an input for
a single GRU with an m-sized hidden state that discovers implicit time-related dependencies across the
series. As before, we apply the dropout operation to the GRU above. Finally, d linear neurons represent
the model’s output.

To learn Reconstructor, we employ a training set produced by Recognizer since it is more likely
contains incorrectly classified samples than in the case when the training set is prepared through the
Snippet-Finder [9] or PSF algorithm [32]. By doing so, after the learning, we better adapt Reconstructor
for incorrect data produced by Recognizer.

4. EXPERIMENTAL EVALUATION
To evaluate the proposed method, we test SANNI over various real-world and synthetic time series

in comparison with state-of-the-art analogs. We designed the experiments to be easily reproducible
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Table 1. Datasets employed in the experiments

No. Dataset
Length,

n× 103

Dimension,

d
Subject domain

Category A: Actor with activities

1. Electricity 5 9 Power demand of households in EU

2. Madrid 25 10 Automatic vehicle registration in Madrid

3. NREL 8.7 9 Power demand of a research laboratory in USA

4. PAMAP 50 10
Wearable sensors during an adult’s activities

5. WalkRun 37 11

Category B: Seasonality and/or cyclicity

6. BAFU 50 10 Water discharge in Swiss rivers

7. Climate 5 10 Weather in North America

8. MAREL 50 10 Seawater in the English Channel

9. MeteoSwiss 10 10 Weather in Switzerland

10. Saaleaue 23 14 Weather in Germany

Category C: Stochasticity

11. BTC 2.5 12 Trading characteristics of cryptocurrencies

12. Soccer 500 10 Wearable sensors during football players’ activities

with our repository [10], which contains the source code and all the datasets used in this work. Below,
Section 4.1 describes the hardware and time series employed in the experiments, and Section 4.2
presents the experimental results and discussion.

4.1. The Experimental Setup

Datasets. For the experiments, we employed the datasets summarized in Table 1. In datasets,
we distinguish three categories of multivariate time series that can informally be described as follows.
Category A includes time series in such domains, where it is possible to point out one or more actors
that together demonstrate several predefined activities. In Category B, we collect seasonal and cyclic
time series, where fluctuations are of known and non-fixed periods, respectively. Finally, Category C
represents stochastic time series that reflect an actor’s non-deterministic behavior without seasonality
or cyclicity. It is worth noting that Category A is the target one for our study.

In the experiments, we evaluate SANNI over the following datasets of Category A. The Electricity
dataset [36] contains measurements of total electric power consumption during 2011–2014 in several
households located in the European Union. The Madrid dataset [37] contains time series from automatic
vehicle registration (AVR) devices installed on city roads and motorways in Madrid during 2014–
2016. The NREL dataset [38] introduces hourly power demand data of various engineering systems
in the National Renewable Energy Laboratory, USA, during 2011. The PAMAP dataset is our excerpt
from the well-known PAMAP2 [33] dataset with various physical activity monitoring data on several
subjects, where we choose a time series on an individual with six activities. The WalkRun dataset is
our collection of the accelerometer, gyroscope, and magnetometer measurements during an individual’s
alternation of running and walking with wearable sensors. For the Electricity, NREL, and Madrid
datasets, respectively, households, staff, and AVR devices exhibit different activities in working days
and holidays. For the PAMAP and WalkRun datasets, an actor and its activities are obvious.

Next, Category B comprises the following datasets. The BAFU dataset [39] consists of time series
showing water discharge in different Swiss rivers. The Climate dataset [40] presents monthly aggregated
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(a) Blackout (b) MCAR (c) Disjoint (d) Overlap

Fig. 5. Scenarios of the experiments (the missing values are represented by hatching).

climate data collected from weather stations in various locations of North America in 1990–2002. The
MAREL dataset [41] presents data on diverse chemical and biological characteristics of seawater in the
English Channel. The MeteoSwiss dataset [42] provides various weather measurements in Switzerland:
air temperature, precipitation, wind, etc. The Saaleaue dataset [43] is gathered in 2009–2016 by the
meteostation at the Max Planck Institute for Biogeochemistry, Germany, and includes various weather
measurements: air temperature, humidity, CO2 concentration, etc.

Finally, the following datasets represent Category C. The BTC dataset [44] provides historical data
on Bitcoin, Ethereum, and Monero cryptocurrencies, including the opening price, high price, low price,
and closing price. The Soccer dataset [45] is collected during a football match, where sensors are located
near the players’ boots. This dataset is the longest since the sensors of 200 Hz frequency generate 15K
position events per second.

Competitors. In the experiments, we compare SANNI with the following state-of-the-art deep
learning methods: NAOMI [23], BRITS [25], GP-VAE [24], M-RNN [26], SAITS [21], and Trans-
former [21], where we exploit their original implementations. In addition, we involve the following state-
of-the-art unsupervised time series imputation algorithms: CDRec [11], DynaMMo [12], ORBITS [4],
ROSL [13], GROUSE [14], SoftImpute [15], SVDImpute [16], SVT [17], and TeNMF [18], which are
implemented in the ORBITS framework [4].

For each above-mentioned deep learning or unsupervised rival, we set its hyperparameters as
recommended, respectively, by the authors of the approach, or in the ORBITS framework [4], to provide
the highest possible imputation accuracy. At the same time, to provide a fair comparison, in the
experiments, we set the domain-dependent parameter, the subsequence length, to be the same for all
deep learning approaches.

Scenarios. In the experiments, we employ four scenarios proposed in [5] when several series have
missing blocks: Blackout, MCAR, Disjoint, and Overlap (see Fig. 5). In the Blackout scenario,
100 points are missed at the end of each series. The Blackout scenario poses an accuracy challenge [5]
and is the target one for our study. The MCAR (Missing Completely at Random) scenario labels random
10-point blocks in a randomly chosen series until 10 percent of the input time series are marked as
missing. For all competitors, we use a random number generator with a fixed seed to ensure identical
conditions for the experiment. In the Disjoint scenario, for each series, �n/d	-length missing block
is established, where for ith series the block starts from the i�n/d	th position. The Overlap scenario
is similar to Disjoint with the difference that the missing block length is two times longer, and its
starting position is two times larger. It is worth noting that some imputation algorithms, namely,
GROUSE, ORBITS, SoftImpute, SVDImpute, SVT, and TeNMF, cannot be evaluated under the
Blackout scenario, since they require at least one non-NaN value in a missed multivariate point.

In the experiments, the missing data obtained according to the above scenarios represent the test
set. To establish the training set and validation set, we take, respectively, 75 and 25 percent of the
multivariate subsequences chosen randomly in the input time series (including those ones with NaN
values). As before, for all deep learning competitors, we use a random number generator with a fixed
seed to ensure identical conditions for the experiment.

Metrics. To evaluate the imputation accuracy, we use RMSE (Root Mean Square Error) since it is
the most commonly used measure in this field [8], which is defined as below

RMSE =

√√√√1

h

h∑

i=1

(ti − t̃i)2, (23)

where ti is a real point to be imputed, t̃i is a point synthesized for imputation, and h is a number of
imputed points.
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Table 2. Hardware platform of the experiments

Specifications CPU GPU

Brand and product line Intel Xeon NVIDIA Ampere

Model E5-2687W v2 A100

Number of cores 8 6 912

Core frequency, GHz 3.40 1.41

Memory, Gb 16 80

Peak performance (double precision), TFLOPS 0.157 9.7

Table 3. Hyperparameters of SANNI

Hyperparameter Value

Snippet length, m 200

Number of activities, K 2

Optimizer Adam

Initial learning rate 0.0005

Batch size 128

No. of epochs for Recognizer 100

No. of epochs for Reconstructor 1000

Dropout factor, p 0.2

In addition, for each deep learning method involved in the experiments, we measured its performance
in terms of running time spent on both learning and imputation. We exclude unsupervised approaches
from the comparison because, obviously, in terms of performance, they are significantly ahead of deep
learning methods since they do not require learning. We used the Overlap scenario because it has the
most missing points and could show the big picture of things without losing generality. Finally, we
evaluated the performance of rivals over just the Madrid dataset, since its cardinality is the closest to the
average among all the datasets involved in the experiments.

Hardware and hyperparameters. We conducted our experiments using the hardware of the HPC
center of the South Ural State University [46], summarized in Table 2.

In Table 3, we show hyperparameters of our experiments. Let us remind that in the evaluation, for
each deep learning competitor, we exploit the same subsequence length equals to 200.

4.2. Results and Discussion

Accuracy. In Fig. 6, we show average imputation accuracy among all the datasets involved in the
experiments under all the scenarios grouped by the dataset category (the complete tabular massive of
results is presented in Appendix). As can be seen, our approach outperforms all the rivals over time
series in the target category (an actor with some predefined activities) under all the scenarios. Over
the seasonal/cyclic time series, SANNI relatively succeeds under the Blackout and MCAR scenarios
(where it is in the top-4 and top-3 positions, respectively), whereas under the Disjoint and Overlap
scenarios it is near the bottom of the rank list. As for the stochastic time series, we can observe a
similar picture: our approach performs its best under the Blackout scenario, keeps the top-4 position
under MCAR, and is near the bottom under the rest scenarios. In Fig. 7, we illustrate the results above
showing 100-point excerpts of ground truth series and imputed ones performed by the top-5 approaches
in terms of accuracy over the datasets Madrid, BAFU, and BTC (which represent, respectively, the A,
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Fig. 6. Average imputation accuracy among all the datasets involved under all the scenarios grouped by the dataset
category, RMSE ×10−3 and average rank (lower values are better).

B, and C categories) under all the scenarios. Summing up, we conclude that SANNI succeeds both in
the target category of time series and under the target imputation scenario.

Performance. Figure 8 depicts the experimental results of the performance of deep learning
competitors. As for performance of learning, it can be seen that SAITS and Transformer are far ahead of
the rest of their rivals. The reasons are that the above models, first, do not employ recurrent layers, and
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Fig. 7. Examples of imputation under all the scenarios grouped by the dataset category (100-point excerpts of top-5
approaches in terms of accuracy).

second, exploit the self-attention [47] mechanism. SANNI demonstrates a pretty modest performance
in learning since, as opposed to its rivals, it includes the overheads on snippet discovery and learning the
Recognizer model. Further, GP-VAE, which does not employ recurrent layers as above, demonstrates
the best performance on imputation of both a single and all points. SANNI outruns just the rest of the
recurrent models, BRITS and M-RNN, being inferior to the rest of their rivals. Thus, our approach
would not be only of theoretical interest if it were suitable for imputation of time series coming online.

Let us confirm that our approach fits online imputation. In Building Automation (BA) and Process
Automation (PA), the typical update rate of sensors is 10 s and 100 ms, respectively [48]. BA includes
diverse control operations applied within buildings: fire control, lighting, heating, water supply, air-
conditioner, etc. [49]. PA is common in chemical, pharmaceuticals, mining, oil and gas, metallurgic
processes, etc. [50]. Since SANNI imputes one point in 38 ms (see Fig. 8), obviously, our approach can
be used to impute sensor data in the above broad classes of subject domains.

CONCLUSIONS

In the article, we addressed a topical problem of the imputation of missing values in time series.
We introduced a novel deep learning method called SANNI to recover multivariate time series coming
online. Our method leverages behavioral patterns (called snippets), which represent an actor’s typical
activities, the time series undergoing processing exhibit. A snippet [9] is the given-length subsequence,
which is similar to many other subsequences w.r.t. MPdist [31], a bespoke distance measure that is
based on the normalized Euclidean metric.
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Fig. 8. Performance of deep learning approaches.

SANNI prescribes to predefine a meaningful snippet length and store a representative time series
fragment, which includes measurements of all the actor’s basic activities that the time series represents.
As a preprocessing step, for each series of the fragment above, we normalize all the subsequences with
non-NaN values, discover snippets, form the snippet dictionary, and build training sets for the two deep
learning models that make up the essence of our method: Recognizer and Reconstructor.

Recognizer takes a current multivariate subsequence ended by a missing value, and for each series, it
outputs a snippet to which the current subsequence of the series is the most similar. The model consists
of the following layers applied one after another: three convolutional layers, one recurrent layer, and two
fully connected layers. Each convolutional layer extracts features from the input subsequence. After each
convolutional layer, we place Max-pooling and employ ReLU as an activation function. The recurrent
layer includes GRUs (Gated Recurrent Units) to analyze the features extracted by the previous layers.
This layer employs the Leaky ReLU activation function. The two next fully-connected layers calculate
the membership matrix, where a row represents the respective series and is a vector of probabilities of
the fact that the subsequence is the nearest neighbor of the respective snippet.

Reconstructor, for each series, imputes missing values using the snippet dictionary and results taken
from Recognizer. As an input, Reconstructor takes a bespoke three-dimensional tensor. In such a
tensor, for each time series dimension, we keep the two-row layout matrix, in which the first row is a
subsequence undergoing imputation, where we substitute the last missing value by -1, and the second
row is the respective snippet taken from the membership matrix produced by Recognizer. Then, for each
series, Reconstructor processes the respective layout matrix through three convolutional layers, which
extract features related to the similarity of the subsequence and the snippet it is the most similar to.
Further, for each series, we place a single GRU and a linear layer, which together discover implicit time-
related dependencies between the subsequence and its respective snippet in the previously extracted
features. For the two above layers, during the learning, we apply the dropout operation. Next, we
combine outputs from linear layers into the matrix, which serves as an input for a single GRU to discover
implicit time-related dependencies across the series. As before, we apply the dropout operation to the
GRU above. Finally, linear neurons represent the model’s output. To learn Reconstructor, we employ
a training set produced by Recognizer to better prepare Reconstructor for incorrectly classified samples
produced by Recognizer.

To evaluate the proposed method, we test SANNI against state-of-the-art unsupervised algorithms
and deep learning models over time series from diverse subject domains for various scenarios. Experi-
mental results on imputation accuracy showed that on average, SANNI outperforms the rivals a) over
time series from subject domains related to an actor with several predefined activities, and b) under the
blackout imputation scenario, which both are the target aspects of our study. As for the performance
of imputation, in terms of average time to impute a single data point, SANNI is not among the best
deep learning approaches. Nonetheless, we pointed out subject domains where the performance our
approach achieves is enough for online imputation. Finally, to facilitate the reproducibility of our study,
we establish a repository [10] that contains the source code, data, plots, etc.

In further research, we plan to elaborate our approach, considering motifs and other time series data
mining primitives under various distance measures [51, 52] as behavioral patterns.
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APPENDIX
Imputation accuracy over all the datasets involved in the experiments under all the scenarios grouped by the
dataset category, RMSE ×10−3 and rank (lower values are better)

Method
Dataset

Category A: Actor with activities Category B: Seasonality and/or cyclicity Category C: Stochasticity
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Blackout
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v. CDRec 253 (6) 213 (6) 118 (6) 194 (5) 91 (5) 174 (5) 78 (3) 194 (8) 130 (3) 92 (1) 124 (2) 4 (1-3) 59 (6) 32 (3)

DynaMMO 349 (9) 286 (9) 252 (10) 378 (9-10) 305 (10) 314 (10) 230 (10) 332 (10) 299 (8) 502 (9) 341 (10) 4 (1-3) 78 (7) 41 (5)

ROSL 266 (7) 215 (7) 122 (8) 195 (6) 110 (6) 182 (6) 74 (2) 191 (7) 110 (2) 99 (3) 118 (1) 4 (1-3) 53 (4) 28 (2)

D
ee

p
le

ar
ni

ng

BRITS 305 (8) 232 (8) 120 (7) 253 (8) 178 (8) 218 (7) 172 (8) 239 (9) 380 (9) 263 (8) 264 (8) 17 (6) 130 (8) 74 (8)

GP-VAE 447 (10) 129 (3) 102 (3) 378 (9-10) 112 (7) 234 (9) 67 (1) 174 (3) 444 (10) 578 (10) 316 (9) 9 (4) 240 (9) 124 (9)

M-RNN 231 (5) 294 (10) 145 (9) 241 (7) 245 (9) 231 (8) 184 (9) 171 (2) 227 (7) 182 (7) 191 (7) 155 (10) 324 (10) 240 (10)

NAOMI 142 (2) 37 (2) 111 (4-5) 138 (1) 84 (1-4) 102 (2) 155 (7) 170 (1) 87 (1) 94 (2) 126 (3) 61 (9) 27 (1) 44 (6)

SAITS 169 (4) 164 (4-5) 96 (1-2) 144 (3-4) 84 (1-4) 131 (4) 99 (5-6) 189 (5-6) 164 (5-6) 120 (4-5) 143 (5-6) 35 (7-8) 45 (3) 40 (4)

Transformer 156 (3) 164 (4-5) 96 (1-2) 144 (3-4) 84 (1-4) 129 (3) 99 (5-6) 189 (5-6) 164 (5-6) 120 (4-5) 143 (5-6) 35 (7-8) 57 (5) 46 (7)

SANNI 84 (1) 34 (1) 111 (4-5) 142 (2) 84 (1-4) 91 (1) 88 (4) 179 (4) 147 (4) 151 (6) 141 (4) 10 (5) 42 (2) 26 (1)

MCAR

U
ns

up
er

vi
se

d

CDRec 106 (12) 103 (14) 137 (14) 120 (9) 177 (15) 129 (13) 75 (12) 358 (16) 78 (7-9) 119 (13) 158 (15) 60 (7-8) 125 (12) 92 (12)

DynaMMO 100 (7) 71 (6) 57 (6) 111 (5) 127 (7) 93 (5) 39 (4) 147 (5) 73 (4) 85 (5) 86 (4) 60 (7-8) 79 (5) 70 (5)

GROUSE 131 (15) 427 (16) 551 (16) 512 (16) 303 (16) 385 (16) 362 (16) 241 (15) 199 (16) 149 (16) 238 (16) 146 (16) 183 (16) 164 (16)

ORBITS 105 (10-11) 90 (10) 82 (11) 114 (6-7) 174 (14) 113 (11) 109 (15) 192 (11) 85 (11) 104 (9) 122 (12) 67 (11-13) 113 (10-11) 90 (11)

ROSL 110 (13) 91 (11) 72 (9-10) 141 (12) 144 (8) 112 (10) 59 (8) 169 (8) 78 (7-9) 88 (7) 98 (6) 76 (14) 96 (6) 86 (10)

SoftImp. 103 (8) 76 (7) 70 (8) 116 (8) 156 (10) 104 (7) 65 (10) 188 (10) 80 (10) 100 (8) 108 (9) 61 (9) 106 (7) 84 (8)

SVDImp. 105 (10-11) 80 (8-9) 101 (12) 123 (10) 161 (11) 114 (12) 62 (9) 216 (14) 77 (5-6) 107 (11-12) 116 (11) 58 (6) 110 (9) 84 (9)

SVT 95 (6) 80 (8-9) 72 (9-10) 87 (4) 154 (9) 98 (6) 74 (11) 180 (9) 78 (7-9) 75 (4) 102 (8) 57 (5) 108 (8) 82 (7)

TeNMF 104 (9) 93 (12) 386 (15) 131 (11) 166 (13) 176 (15) 52 (7) 214 (13) 77 (5-6) 105 (10) 112 (10) 43 (2) 113 (10-11) 78 (6)

D
ee

p
le

ar
ni

ng

BRITS 116 (14) 96 (13) 35 (2) 182 (14) 120 (6) 110 (9) 86 (14) 201 (12) 168 (15) 74 (3) 132 (14) 67 (11-13) 139 (13) 103 (13)

GP-VAE 91 (5) 68 (5) 61 (7) 225 (15) 78 (4) 105 (8) 41 (5-6) 155 (6-7) 114 (13) 86 (6) 99 (7) 67 (11-13) 149 (14) 108 (14)

M-RNN 167 (16) 105 (15) 129 (13) 168 (13) 165 (12) 147 (14) 77 (13) 155 (6-7) 132 (14) 134 (15) 124 (13) 137 (15) 164 (15) 150 (15)

NAOMI 76 (2-3) 49 (4) 49 (5) 114 (6-7) 80 (5) 74 (4) 41 (5-6) 128 (4) 86 (12) 107 (11-12) 90 (5) 65 (10) 9 (1) 37 (3)

SAITS 79 (4) 45 (2-3) 45 (3-4) 54 (1-2) 61 (1-2) 57 (3) 24 (1-2) 101 (1-3) 72 (2-3) 63 (1-2) 65 (1-2) 53 (3-4) 17 (2) 35 (1)

Transformer 76 (2-3) 45 (2-3) 45 (3-4) 54 (1-2) 61 (1-2) 56 (2) 24 (1-2) 101 (1-3) 72 (2-3) 63 (1-2) 65 (1-2) 53 (3-4) 18 (3) 36 (2)

SANNI 56 (1) 29 (1) 33 (1) 71 (3) 76 (3) 53 (1) 25 (3) 101 (1-3) 63 (1) 125 (14) 78 (3) 39 (1) 76 (4) 58 (4)

Overlap

U
ns

up
er

vi
se

d

CDRec 104 (8) 99 (9) 96 (9) 150 (6-7) 163 (12-13) 122 (6) 56 (5-6) 248 (12) 50 (7) 94 (10) 112 (8) 15 (2) 147 (8) 81 (4)

DynaMMO 117 (11-12) 82 (2) 88 (8) 140 (4) 140 (8) 113 (4) 48 (2-3) 313 (16) 47 (3) 83 (5) 123 (10) 31 (7) 133 (7) 82 (5)

GROUSE 112 (10) 317 (14) 254 (13) 447 (16) 284 (16) 283 (16) 225 (15) 243 (9) 268 (15) 147 (14) 221 (14) 137 (15) 173 (10) 155 (13)

ORBITS 96 (5) 89 (4) 401 (14) 162 (9) 168 (14) 183 (13) 56 (5-6) 209 (5) 76 (11) 97 (11) 110 (6) 77 (12) 125 (3) 101 (9)

ROSL 110 (9) 96 (6-7) 65 (4) 150 (6-7) 102 (5) 105 (2) 58 (7) 220 (6) 72 (10) 67 (4) 104 (5) 39 (9) 129 (5-6) 84 (6)

SoftImp. 100 (6) 83 (3) 84 (6) 151 (8) 150 (9) 114 (5) 46 (1) 222 (7) 55 (8) 93 (9) 104 (4) 28 (6) 117 (1) 72 (2)

SVDImp. 103 (7) 96 (6-7) 170 (12) 149 (5) 157 (10) 135 (10) 48 (2-3) 252 (13) 49 (5-6) 91 (8) 110 (7) 47 (10) 129 (5-6) 88 (7)

SVT 94 (4) 91 (5) 86 (7) 164 (11) 90 (4) 105 (3) 52 (4) 227 (8) 48 (4) 62 (3) 97 (3) 11 (1) 118 (2) 64 (1)

TeNMF 117 (11-12) 174 (12) 591 (15) 166 (12) 158 (11) 241 (14) 658 (16) 245 (11) 49 (5-6) 85 (6-7) 259 (16) 36 (8) 214 (11) 125 (10)

D
ee
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ng

BRITS 139 (13) 141 (11) 102 (10) 163 (10) 103 (6) 130 (7) 96 (13) 291 (15) 180 (14) 105 (12) 168 (13) 70 (11) 223 (12) 146 (12)

GP-VAE 283 (16) 97 (8) 75 (5) 267 (15) 176 (15) 180 (12) 93 (12) 186 (2) 90 (12) 85 (6-7) 114 (9) 90 (13) 249 (14) 170 (14)

M-RNN 199 (15) 136 (10) 105 (11) 225 (13) 108 (7) 155 (11) 70 (11) 177 (1) 156 (13) 203 (15) 152 (12) 131 (14) 259 (15) 195 (15)

NAOMI 143 (14) 198 (13) 603 (16) 236 (14) 163 (12-13) 269 (15) 139 (14) 244 (10) 311 (16) 204 (16) 224 (15) 180 (16) 676 (16) 428 (16)

SAITS 86 (3) 365 (15-16) 61 (2-3) 112 (2-3) 37 (1-2) 132 (9) 64 (8-9) 200 (3-4) 43 (1-2) 56 (1-2) 91 (1-2) 26 (4-5) 128 (4) 77 (3)

Transformer 83 (2) 365 (15-16) 61 (2-3) 112 (2-3) 37 (1-2) 132 (8) 64 (8-9) 200 (3-4) 43 (1-2) 56 (1-2) 91 (1-2) 26 (4-5) 167 (9) 96 (8)

SANNI 81 (1) 68 (1) 59 (1) 67 (1) 62 (3) 67 (1) 65 (10) 258 (14) 62 (9) 122 (13) 127 (11) 23 (3) 244 (13) 134 (11)
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Method
Dataset

Category A: Actor with activities Category B: Seasonality and/or cyclicity Category C: Stochasticity
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CDRec 93 (4) 89 (9) 159 (12) 146 (9-10) 127 (13) 123 (9) 53 (6) 538 (16) 52 (5-7) 96 (11) 185 (14) 12 (2) 140 (9) 76 (7)

DynaMMO 116 (12) 84 (5-6) 97 (9) 127 (4) 113 (9) 107 (7) 46 (4) 227 (7) 50 (3-4) 71 (6) 98 (5) 13 (3) 129 (7) 71 (4)

GROUSE 112 (11) 353 (16) 171 (14) 442 (16) 270 (16) 270 (15) 210 (16) 230 (9) 271 (16) 149 (15) 215 (16) 127 (16) 155 (11) 141 (12-13)

ORBITS 96 (6) 90 (10) 287 (15) 148 (11) 129 (14) 150 (13) 56 (7-9) 211 (6) 71 (11) 101 (13) 110 (8) 45 (12) 122 (5) 84 (9)

ROSL 111 (10) 91 (11) 72 (5) 141 (6-7) 85 (5-6) 100 (5) 91 (12) 238 (10) 60 (10) 59 (4) 112 (10) 14 (4) 112 (2) 63 (1-2)

SoftImp. 99 (7) 85 (7) 77 (7) 141 (6-7) 118 (10) 104 (6) 45 (2-3) 229 (8) 57 (9) 92 (10) 106 (6) 16 (5) 117 (3-4) 66 (3)

SVDImp. 102 (8) 86 (8) 161 (13) 146 (9-10) 122 (11) 123 (10) 47 (5) 255 (11) 52 (5-7) 91 (9) 111 (9) 18 (7) 128 (6) 73 (6)

SVT 95 (5) 84 (5-6) 74 (6) 145 (8) 47 (3) 89 (4) 43 (1) 206 (3) 55 (8) 55 (3) 90 (1) 9 (1) 117 (3-4) 63 (1-2)

TeNMF 104 (9) 96 (12) 115 (10) 163 (12) 125 (12) 121 (8) 45 (2-3) 259 (12) 52 (5-7) 76 (7) 108 (7) 30 (9) 134 (8) 82 (8)
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BRITS 121 (13) 125 (13) 144 (11) 136 (5) 106 (8) 126 (11) 96 (13) 361 (15) 170 (14) 81 (8) 177 (13) 27 (8) 364 (16) 196 (16)

GP-VAE 228 (16) 78 (4) 69 (4) 252 (15) 171 (15) 160 (14) 179 (15) 305 (14) 94 (13) 98 (12) 169 (12) 67 (14) 269 (15) 168 (15)

M-RNN 127 (14) 144 (14) 92 (8) 197 (13) 85 (5-6) 129 (12) 63 (11) 172 (1) 87 (12) 60 (5) 96 (4) 99 (15) 183 (13) 141 (12-13)

NAOMI 178 (15) 255 (15) 310 (16) 238 (14) 86 (7) 213 (16) 152 (14) 201 (2) 206 (15) 182 (16) 185 (15) 56 (13) 241 (14) 148 (14)

SAITS 90 (2) 60 (2-3) 55 (2-3) 115 (2-3) 30 (1-2) 70 (2-3) 56 (7-9) 210 (4-5) 47 (1-2) 51 (1-2) 91 (2-3) 35 (10-11) 109 (1) 72 (5)

Transformer 92 (3) 60 (2-3) 55 (2-3) 115 (2-3) 30 (1-2) 70 (2-3) 56 (7-9) 210 (4-5) 47 (1-2) 51 (1-2) 91 (2-3) 35 (10-11) 144 (10) 90 (11)

SANNI 68 (1) 50 (1) 49 (1) 65 (1) 51 (4) 57 (1) 58 (10) 281 (13) 50 (3-4) 142 (14) 133 (11) 17 (6) 160 (12) 88 (10)
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