
An Approach to Data Mining Inside PostgreSQL Based 
on Parallel Implementation of UDFs 

© Timofey Rechkalov                                              © Mikhail Zymbler 
South Ural State University,  

Chelyabinsk, Russia 
trechkalov@yandex.ru              mzym@susu.ru 

Abstract. Relational DBMSs remain the most popular tool for data processing. However, most of 
stand-alone data mining packages process flat files outside a DBMS. In-database data mining avoids export-
import data/results bottleneck as opposed to use stand-alone mining packages and keeps all the benefits 
provided by DBMS. The paper describes an approach to data mining inside PostgreSQL based on parallel 
implementation of user-defined functions (UDFs) for modern Intel many-core platforms. The UDF 
performs a single mining task on data from the specified table and produces a resulting table. The UDF is 
organized as a wrapper of an appropriate mining algorithm, which is implemented in C language and is 
parallelized based on OpenMP technology and thread-level parallelism. The library of such UDFs supports 
a cache of precomputed mining structures to reduce costs of computations. We compare performance of our 
approach with R data mining package, and experiments show efficiency of the proposed approach. 
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1 Introduction 
Currently relational DBMSs remain the most popular 
facility for storing, updating and querying structured 
data. At the same time, most of data mining algorithms 
suppose processing of flat file(s) outside a DBMS. 
However, exporting data sets and importing of mining 
results impede analysis of large databases outside a 
DBMS [18]. In addition to avoiding export-import bot-
tleneck, an approach to data mining inside a DBMS 
provides many benefits for the end-user like query op-
timization, data consistency and security, etc. 

Existing approaches to integrating data mining with 
relational DBMSs include special data mining lan-
guages and SQL extensions, implementation of mining 
algorithms in plain SQL and user-defined functions 
(UDFs) implemented in high-level language like C++. 
The latter approach could serve as a subject of applying 
parallel processing on modern many-core platforms. 

In this paper, we present an approach to data mining 
inside PostgreSQL open-source DBMS exploiting ca-
pabilities of modern Intel MIC (Many Integrated 
Core) [2] platform. Our approach supposes a library of 
UDFs where each one of them performs a single mining 
task on data from the specified table and produces a 
resulting table. The UDF is organized as a wrapper of 
an appropriate mining algorithm, which is implemented 
in C language and is parallelized for Intel MIC platform 
by OpenMP technology and thread-level parallelism. 

The paper is structured as follows. We describe the 
proposed approach in the Section 2. The results of ex-

perimental evaluation of our approach are given in Sec-
tion 3. Section 4 briefly discusses related works. Sec-
tion 5 contains summarizing comments and directions 
for future research. 

2 Embedding of data mining functions into 
PostgreSQL 

2.1 Motivation example 

Our approach is aimed to provide a database application 
programmer with the library of data mining functions, 
which could be run inside DBMS as it shown in Fig. 1. 

 
Figure 1 An example of using data mining function 
inside PostgreSQL 

In this example the mining function performs clus-
tering by Partitioning Around Medoids (PAM) [8] algo-
rithm for the data points from the specified input table 
and saves results in output table (with respect to the 
specified number of the input table's columns, number 
of clusters and accuracy). An application programmer is 
not obliged to export data to be mined from DBMS and 
import mining results back. At the same time here PAM 
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encapsulates parallel implementation [24] based on 
OpenMP technology and thread-level parallelism. 

2.2 Component structure 

Fig. 2 depicts the component structure of our approach. 
The pgMining is a library of data mining functions each 
one of them is to be run inside PostgreSQL. The 
mcMining is a library that exports data mining func-
tions, which are parallelized for modern many-core 
platforms and are subject of wrapping by the respective 
functions from pgMining library. Implementation of 
pgMining library uses PostgreSQL's SPI (Server Pro-
gramming Interface), which provides low level func-
tions for data access. 

 
Figure 2 Component structure of the proposed 
approach 

The pgMining library consists of two following sub-
systems, namely Frontend and Backend, where the for-
mer provides presentation layer and the latter – data 
access layer of concerns for an application programmer.  

The Frontend provides a set of functions for mining 
inside PostgreSQL. Each function performs a single 
mining task (e.g. clustering, classification, search pat-
terns, etc.) and produces a resulting table. 

The Backend consists of two modules, namely 
Wrapper and Cache manager. The Wrapper provides 
functions that serve as envelopes for the respective min-
ing functions from mcMining library. The Cache man-
ager supports cache of precomputed mining structures 
to reduce costs of computations. 

The mcMining library provides a set of functions to 
solve various data mining tasks in main memory and 
exploits capabilities of Intel many-core platforms. 

2.3 Frontend 

An example of Frontend's function is given in Fig. 3. 
Such a function connects to PostgreSQL, carries out 
some mining task and returns exit code (0 in case of 
success, otherwise negative error code). As a side ef-
fect, the function creates a table with mining results. 
The function's mandatory parameters are ID of Post-
greSQL connection, name of the input table, name of 
the output table and number of first left columns in in-

put table containing data to be mined. The rest parame-
ters are specific to the task (e.g. number of clusters, 
accuracy, etc.). 

 
Figure 3 Interface and implementation schema of func-
tion from Frontend 

In fact, Frontend's function wraps the respective 
UDF from Backend, which is loaded into PostgreSQL 
and executed as “INSERT INTO … SELECT …” query to 
save mining results in the specified table. 

2.4 Backend 

Fig. 4 depicts an example of Wrapper's function. Such a 
function is an UDF, which wraps a parallelized mining 
function from mcMining and performs as follows. First-
ly, the function parses its input to form parameters to 
call mcMining function with. After that, the function 
checks if input table and/or auxiliary mining structures 
are in the cache maintained by Cache manager and then 
load them if not. Finally, call of mcMining function 
with appropriate parameters is performed. 

 
Figure 4 Interface and implementation schema of 
function from Backend 

The Cache manager provides buffer pool to store 
precomputed mining structures. Distance matrix is a 
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typical example of mining structure to be saved in 
cache. Indeed, distance matrix A=(aij) stores distances 
between each pair of ai and aj elements in input data set. 
Being precomputed once, distance matrix could be used 
many times to perform clustering or kNN-based classi-
fication with various parameters (e.g. number of clus-
ters, number of neighbors, accuracy, etc.). 

 
Figure 5 Interface of Cache manager module 

The Cache manager exports the following two basic 
functions depicted in Fig. 5. The putObject function 
loads a mining structure specified by its ID, buffer 
pointer and size into cache. The getObject searches in 
cache for an object with the given ID. An ID of mining 
structure is a string, which is made as concatenation of 
input table's name and object's informational string (e.g. 
“_distMatrix”). 

2.5 Library of parallel many-core algorithms 

Fig. 6 gives an example of function from mcMining 
library. Such a function encapsulates parallel implemen-
tation through OpenMP technology and thread-level 
parallelism for Intel many-core platforms. 

 
Figure 6 Interface of function from mcMining library 

In this example, we use Partition Around Medoids 
(PAM) [8] clustering algorithm, which is used in a wide 
spectrum of applications where minimal sensitivity to 
noise data is required. The PAM provides such a prop-
erty since it represents cluster centers by points of input 
data set (medoids).  

The PAM firstly calculates distance matrix for the 
given data points. Then in the BUILD phase, an initial 
clustering is obtained by the successive selection of 
medoids until the required number of clusters have been 
found. Next, in the SWAP phase the algorithm attempts 
to improve clustering in accordance with an objective 
function. However, for large and high-dimensional da-
tasets PAM's computations are very costly. 

In our previous research [24], we parallelize PAM 
for Intel Xeon CPU and Intel Xeon Phi coprocessor. In 
order to perform best on Intel many-core platforms the 
PAM's parallel version exploits modifications of loops 
to provide vectorization of calculations and chunk-by-
chunk data processing to decrease number of cache 

misses. 

3 Experimental evaluation 

3.1 Hardware, datasets and goals of experiments 

To evaluate the developed approach, we performed ex-
periments on the Tornado SUSU supercomputer [9] 
whose node provides two different platforms, namely 
Intel Xeon CPU and Intel Xeon Phi coprocessor (cf. 
Tab. 1 for the specifications). 

Table 1 Specifications of hardware 

Specifications CPU Coprocessor 
Model, Intel Xeon X5680 Phi SE10X 
Cores 2×6 61 
Frequency, GHz 3.33 1.1 
Threads per core 2 4 
Peak performance, TFLOPS 0.371 1.076 
Memory, Gb 24 18 
Cache, Mb 12 30.5 
 

In the experiments, we used datasets with the char-
acteristics depicted in Tab. 2. 

Table 2 Summary of datasets used in experiments 

Dataset dimen-
sion 

# 
clusters 

# 
data 

points, 
×210 

FCS Human [3] 423 10 18 
MixSim [13] 5 10 35 
US Census [12] 67 10 35 
Power Consumption [10] 3 10 35 

 
In the experiments, we studied the following aspects 

of the developed approach. Firstly, we investigated the 
speedup of mcPAM function to understand its scalabil-
ity on both platforms depending on number of threads 
employed. Secondly, we evaluated the runtime of 
mcPAM function to understand how the performance on 
both platforms depends on number of data points and 
what benefits could we derive from precomputations of 
the distance matrix. Finally, we compared the perfor-
mance of pgPAM function with implementation of 
PAM algorithm from R data mining package [13]. 

3.2 Results of experiments 

The results of the first series of experiments on mcPAM 
speedup are depicted in Fig. 7. On both platforms, 
mcPAM’s speedup is close to linear, when the number 
of threads matches the number of physical cores the 
algorithm is running on (i.e. 12 cores for Intel Xeon and 
60 cores for Intel Xeon Phi, respectively). 

Speedup becomes sub-linear when the algorithm us-
es more than one thread per physical core. The mcPAM 
achieves up to 15× and 120× speedup on Intel Xeon and 
Intel Xeon Phi, respectively. Summing up, mcPAM 
demonstrates good scalability on both platforms. 
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(a) Intel Xeon CPU  (b) Intel Xeon Phi coprocessor 

Figure 7 Speedup of the mcPAM function 

 

 

 

(a) FCS Human dataset  (b) MixSim dataset 

 

 

 

(c) US Census dataset  (d) Power Consumption dataset 

Figure 8 Performance of the mcPAM function 
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(a) FCS Human dataset  (b) MixSim dataset 

 

 

 

(c) US Census dataset  (d) Power Consumption dataset 

Figure 9 Performance of the pgPAM function (on Intel Xeon) 

Fig. 8 shows the results of the second series of ex-
periments on mcPAM performance. As was seen, 
PAM's SWAP phase is performed better on Intel Xeon 
while BUILD phase performance is equal for both plat-
forms. 

Overall performance is better on Intel Xeon Phi than 
Intel Xeon when the algorithm deals with big dimen-
sionality dataset due to possibility of intensive vectori-
zation in calculations of distance matrix. Since calcula-
tions of distance matrix take from 15 to 80 percent of 
overall runtime, we can derive substantial benefits from 
caching of the distance matrix. 

The results of the third series of experiments on 
comparison performance of pgPAM and PAM from R 
data mining package are illustrated in Fig. 9. We carried 
out these series of experiments on Intel Xeon platform 
only due to the following reason. Running PostgreSQL 
on Intel MIC platform demands Intel Xeon Phi Knights 
Landing (KNL), which is the next generation product 
from Intel and is bootable device. However, Intel Xeon 
Phi KNL is not available yet at Tornado SUSU super-

computer. We plan to perform this study as further re-
search.  

We can see that pgPAM significantly overtakes R's 
PAM in both cases when one thread or the maximum 
number of threads are employed. Caching of distance 
matrix improves the performance up to 80 percent of 
overall runtime (in case of high-dimensional dataset). 

4 Related work 
The problem of integrating data analytics with relational 
DBMSs has been studied since data mining research 
originates. 
Data mining query languages include DMQL [5], 
MSQL [7], MINE RULE operator [14] and Microsoft's 
DMX [28]. 
There are many SQL implementations of data mining 
algorithms. SQL versions of classical clustering algo-
rithms include K-Means [16], EM [19], Fuzzy C-
Means [15]. SQL versions of association rule mining 
algorithms include K-Way-Join, Three-Way-Join, 
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Subquery and Two-Group-Bys [25], Set-oriented Apri-
ori [29], Quiver [23], Propad [27]. Classification in-
cludes SQL implementations of decision trees [26], 
kNN [31] and Bayesian classification [21]. SQL is also 
successfully used in mining applications for data with 
“non-relational” nature as graphs, for instance in search 
for frequent graphs [4], detection of cycles in graph [1], 
graph partitioning [11, 22], etc. 

User-defined functions-based approach. Integration 
of correlation, linear regression, PCA and clustering 
into the Teradata DBMS based on UDFs is proposed 
in [17]. There are two sets of UDFs that work in a sin-
gle table scan, that is an aggregate UDF to compute 
summary matrices and a set of scalar UDFs to score 
data sets. Experiments showed that UDFs are faster than 
SQL queries and UDFs are more efficient than C++, 
due to long export times. In [20] UDFs implementing 
common vector operations were presented and it was 
shown that UDFs are as efficient as automatically gen-
erated SQL queries with arithmetic expressions and 
queries calling scalar UDFs are significantly more effi-
cient than equivalent queries using SQL aggregations. 

In-database mining frameworks. The ATLAS [30] is 
a framework for in-database analytics, which provides 
SQL-like database language with user-defined aggre-
gates (UDAs) and table functions. The system's lan-
guage processor translates ATLAS programs into C++ 
code, which is then compiled and linked with the data-
base storage manager and user-defined external func-
tions. Authors presented ATLAS-based implementa-
tions of several data mining algorithms. 

The MADlib [6] is an open source library of in-
database analytical algorithms for PostgreSQL. The 
MADlib is implemented by a big team and provides 
many methods for supervised learning, unsupervised 
learning and descriptive statistics. The MADlib exploits 
UDAs, UDFs, and a sparse matrix C library to provide 
efficient representations on disk and in memory. As 
many statistical methods are iterative (i.e. they make 
many passes over a data set), authors wrote a driver 
UDF in Python to control iteration in such a way that all 
large data movement is done within the database engine 
and its buffer pool. 

Comparison. In this paper, we suggest an approach 
to embedding data mining functions into PostgreSQL. 
As some methods mentioned above our approach ex-
ploits UDFs. The difference from the previous works 
includes the following. Our approach supposes parallel-
ization of UDFs for many-core platform that current 
DBMS is running on. All the parallelization details are 
encapsulated in implementation of the UDF and are 
hided from the DBMS, so our approach could be ported 
to some other open-source DBMS (with possible non-
trivial but mechanical software development effort). In 
addition, our approach supposes a special module, 
which provides a cache of precomputed mining struc-
tures and lets UDF know to reuse these structures to 
reduce costs of computations. 

5 Conclusion 
In this paper, we touch upon the problem of organizing 
data mining inside a DBMS. We present an approach to 
implementation of in-database analytical functions for 
PostgreSQL that exploits capabilities of modern Intel 
many-core platforms. 

Our approach supposes implementation of two li-
braries, namely pgMining and mcMining. The 
pgMiningis a library of data mining functions each one 
of them is to be run inside PostgreSQL. The mcMining 
is a library that exports functions to solve various data 
mining tasks, which are parallelized for Intel MIC plat-
forms.  

The pgMining consists of Frontend and Backend 
subsystems. The Frontend's function loads an UDF 
from the Backend into PostgreSQL and executes it as 
“INSERT INTO … SELECT …” query to save mining re-
sults in a table. The Backend consists of Wrapper and 
Cache manager modules. The Wrapper provides func-
tions that serve as envelopes for the respective mcMin-
ing mining functions. The Cache manager supports 
cache of precomputed mining structures to reduce costs 
of computations.  

Since our approach assumes hiding details of paral-
lel implementation from PostgreSQL, such an approach 
could be ported to some other open-source DBMS (with 
possible non-trivial but mechanical software develop-
ment effort). 

We have evaluated our approach on previously im-
plemented parallel clustering algorithm of mcMining 
library and four real datasets. Experiments showed good 
speedup and performance of the algorithm as well as 
our approach derive benefits from caching of precom-
puted mining structures and overtakes R data mining 
package. 

As future work, we plan to implement other mining 
algorithms formcMining library and conduct experi-
ments on Intel Xeon Phi Knights Landing platform. 
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