
An Approach to Data Mining Inside PostgreSQL Based
on Parallel Implementation of UDFs

© Timofey Rechkalov © Mikhail Zymbler
South Ural State University,

Chelyabinsk, Russia
trechkalov@yandex.ru mzym@susu.ru

Abstract. Relational DBMSs remain the most popular tool for data processing. However, most of
stand-alone data mining packages process flat files outside a DBMS. In-database data mining avoids export-
import data/results bottleneck as opposed to use stand-alone mining packages and keeps all the benefits
provided by DBMS. The paper describes an approach to data mining inside PostgreSQL based on parallel
implementation of user-defined functions (UDFs) for modern Intel many-core platforms. The UDF
performs a single mining task on data from the specified table and produces a resulting table. The UDF is
organized as a wrapper of an appropriate mining algorithm, which is implemented in C language and is
parallelized based on OpenMP technology and thread-level parallelism. The library of such UDFs supports
a cache of precomputed mining structures to reduce costs of computations. We compare performance of our
approach with R data mining package, and experiments show efficiency of the proposed approach.

Keywords: data mining, in-database analytics, PostgreSQL, thread-level parallelism, OpenMP.

1 Introduction
Currently relational DBMSs remain the most popular
facility for storing, updating and querying structured
data. At the same time, most of data mining algorithms
suppose processing of flat file(s) outside a DBMS.
However, exporting data sets and importing of mining
results impede analysis of large databases outside a
DBMS [18]. In addition to avoiding export-import bot-
tleneck, an approach to data mining inside a DBMS
provides many benefits for the end-user like query op-
timization, data consistency and security, etc.

Existing approaches to integrating data mining with
relational DBMSs include special data mining lan-
guages and SQL extensions, implementation of mining
algorithms in plain SQL and user-defined functions
(UDFs) implemented in high-level language like C++.
The latter approach could serve as a subject of applying
parallel processing on modern many-core platforms.

In this paper, we present an approach to data mining
inside PostgreSQL open-source DBMS exploiting ca-
pabilities of modern Intel MIC (Many Integrated
Core) [2] platform. Our approach supposes a library of
UDFs where each one of them performs a single mining
task on data from the specified table and produces a
resulting table. The UDF is organized as a wrapper of
an appropriate mining algorithm, which is implemented
in C language and is parallelized for Intel MIC platform
by OpenMP technology and thread-level parallelism.

The paper is structured as follows. We describe the
proposed approach in the Section 2. The results of ex-

perimental evaluation of our approach are given in Sec-
tion 3. Section 4 briefly discusses related works. Sec-
tion 5 contains summarizing comments and directions
for future research.

2 Embedding of data mining functions into
PostgreSQL

2.1 Motivation example

Our approach is aimed to provide a database application
programmer with the library of data mining functions,
which could be run inside DBMS as it shown in Fig. 1.

Figure 1 An example of using data mining function
inside PostgreSQL

In this example the mining function performs clus-
tering by Partitioning Around Medoids (PAM) [8] algo-
rithm for the data points from the specified input table
and saves results in output table (with respect to the
specified number of the input table's columns, number
of clusters and accuracy). An application programmer is
not obliged to export data to be mined from DBMS and
import mining results back. At the same time here PAM

Proceedings of the XIX International Conference
“Data Analytics and Management in Data Intensive
Domains” (DAMDID/RCDL’2017), Moscow, Russia,
October 10–13, 2017

114

mailto:first@author.email
mailto:second@author.email

encapsulates parallel implementation [24] based on
OpenMP technology and thread-level parallelism.

2.2 Component structure

Fig. 2 depicts the component structure of our approach.
The pgMining is a library of data mining functions each
one of them is to be run inside PostgreSQL. The
mcMining is a library that exports data mining func-
tions, which are parallelized for modern many-core
platforms and are subject of wrapping by the respective
functions from pgMining library. Implementation of
pgMining library uses PostgreSQL's SPI (Server Pro-
gramming Interface), which provides low level func-
tions for data access.

Figure 2 Component structure of the proposed
approach

The pgMining library consists of two following sub-
systems, namely Frontend and Backend, where the for-
mer provides presentation layer and the latter – data
access layer of concerns for an application programmer.

The Frontend provides a set of functions for mining
inside PostgreSQL. Each function performs a single
mining task (e.g. clustering, classification, search pat-
terns, etc.) and produces a resulting table.

The Backend consists of two modules, namely
Wrapper and Cache manager. The Wrapper provides
functions that serve as envelopes for the respective min-
ing functions from mcMining library. The Cache man-
ager supports cache of precomputed mining structures
to reduce costs of computations.

The mcMining library provides a set of functions to
solve various data mining tasks in main memory and
exploits capabilities of Intel many-core platforms.

2.3 Frontend

An example of Frontend's function is given in Fig. 3.
Such a function connects to PostgreSQL, carries out
some mining task and returns exit code (0 in case of
success, otherwise negative error code). As a side ef-
fect, the function creates a table with mining results.
The function's mandatory parameters are ID of Post-
greSQL connection, name of the input table, name of
the output table and number of first left columns in in-

put table containing data to be mined. The rest parame-
ters are specific to the task (e.g. number of clusters,
accuracy, etc.).

Figure 3 Interface and implementation schema of func-
tion from Frontend

In fact, Frontend's function wraps the respective
UDF from Backend, which is loaded into PostgreSQL
and executed as “INSERT INTO … SELECT …” query to
save mining results in the specified table.

2.4 Backend

Fig. 4 depicts an example of Wrapper's function. Such a
function is an UDF, which wraps a parallelized mining
function from mcMining and performs as follows. First-
ly, the function parses its input to form parameters to
call mcMining function with. After that, the function
checks if input table and/or auxiliary mining structures
are in the cache maintained by Cache manager and then
load them if not. Finally, call of mcMining function
with appropriate parameters is performed.

Figure 4 Interface and implementation schema of
function from Backend

The Cache manager provides buffer pool to store
precomputed mining structures. Distance matrix is a

115

typical example of mining structure to be saved in
cache. Indeed, distance matrix A=(aij) stores distances
between each pair of ai and aj elements in input data set.
Being precomputed once, distance matrix could be used
many times to perform clustering or kNN-based classi-
fication with various parameters (e.g. number of clus-
ters, number of neighbors, accuracy, etc.).

Figure 5 Interface of Cache manager module

The Cache manager exports the following two basic
functions depicted in Fig. 5. The putObject function
loads a mining structure specified by its ID, buffer
pointer and size into cache. The getObject searches in
cache for an object with the given ID. An ID of mining
structure is a string, which is made as concatenation of
input table's name and object's informational string (e.g.
“_distMatrix”).

2.5 Library of parallel many-core algorithms

Fig. 6 gives an example of function from mcMining
library. Such a function encapsulates parallel implemen-
tation through OpenMP technology and thread-level
parallelism for Intel many-core platforms.

Figure 6 Interface of function from mcMining library

In this example, we use Partition Around Medoids
(PAM) [8] clustering algorithm, which is used in a wide
spectrum of applications where minimal sensitivity to
noise data is required. The PAM provides such a prop-
erty since it represents cluster centers by points of input
data set (medoids).

The PAM firstly calculates distance matrix for the
given data points. Then in the BUILD phase, an initial
clustering is obtained by the successive selection of
medoids until the required number of clusters have been
found. Next, in the SWAP phase the algorithm attempts
to improve clustering in accordance with an objective
function. However, for large and high-dimensional da-
tasets PAM's computations are very costly.

In our previous research [24], we parallelize PAM
for Intel Xeon CPU and Intel Xeon Phi coprocessor. In
order to perform best on Intel many-core platforms the
PAM's parallel version exploits modifications of loops
to provide vectorization of calculations and chunk-by-
chunk data processing to decrease number of cache

misses.

3 Experimental evaluation

3.1 Hardware, datasets and goals of experiments

To evaluate the developed approach, we performed ex-
periments on the Tornado SUSU supercomputer [9]
whose node provides two different platforms, namely
Intel Xeon CPU and Intel Xeon Phi coprocessor (cf.
Tab. 1 for the specifications).

Table 1 Specifications of hardware

Specifications CPU Coprocessor
Model, Intel Xeon X5680 Phi SE10X
Cores 2×6 61
Frequency, GHz 3.33 1.1
Threads per core 2 4
Peak performance, TFLOPS 0.371 1.076
Memory, Gb 24 18
Cache, Mb 12 30.5

In the experiments, we used datasets with the char-
acteristics depicted in Tab. 2.

Table 2 Summary of datasets used in experiments

Dataset dimen-
sion

clusters

data

points,
×210

FCS Human [3] 423 10 18
MixSim [13] 5 10 35
US Census [12] 67 10 35
Power Consumption [10] 3 10 35

In the experiments, we studied the following aspects

of the developed approach. Firstly, we investigated the
speedup of mcPAM function to understand its scalabil-
ity on both platforms depending on number of threads
employed. Secondly, we evaluated the runtime of
mcPAM function to understand how the performance on
both platforms depends on number of data points and
what benefits could we derive from precomputations of
the distance matrix. Finally, we compared the perfor-
mance of pgPAM function with implementation of
PAM algorithm from R data mining package [13].

3.2 Results of experiments

The results of the first series of experiments on mcPAM
speedup are depicted in Fig. 7. On both platforms,
mcPAM’s speedup is close to linear, when the number
of threads matches the number of physical cores the
algorithm is running on (i.e. 12 cores for Intel Xeon and
60 cores for Intel Xeon Phi, respectively).

Speedup becomes sub-linear when the algorithm us-
es more than one thread per physical core. The mcPAM
achieves up to 15× and 120× speedup on Intel Xeon and
Intel Xeon Phi, respectively. Summing up, mcPAM
demonstrates good scalability on both platforms.

116

(a) Intel Xeon CPU (b) Intel Xeon Phi coprocessor

Figure 7 Speedup of the mcPAM function

(a) FCS Human dataset (b) MixSim dataset

(c) US Census dataset (d) Power Consumption dataset

Figure 8 Performance of the mcPAM function

117

(a) FCS Human dataset (b) MixSim dataset

(c) US Census dataset (d) Power Consumption dataset

Figure 9 Performance of the pgPAM function (on Intel Xeon)

Fig. 8 shows the results of the second series of ex-
periments on mcPAM performance. As was seen,
PAM's SWAP phase is performed better on Intel Xeon
while BUILD phase performance is equal for both plat-
forms.

Overall performance is better on Intel Xeon Phi than
Intel Xeon when the algorithm deals with big dimen-
sionality dataset due to possibility of intensive vectori-
zation in calculations of distance matrix. Since calcula-
tions of distance matrix take from 15 to 80 percent of
overall runtime, we can derive substantial benefits from
caching of the distance matrix.

The results of the third series of experiments on
comparison performance of pgPAM and PAM from R
data mining package are illustrated in Fig. 9. We carried
out these series of experiments on Intel Xeon platform
only due to the following reason. Running PostgreSQL
on Intel MIC platform demands Intel Xeon Phi Knights
Landing (KNL), which is the next generation product
from Intel and is bootable device. However, Intel Xeon
Phi KNL is not available yet at Tornado SUSU super-

computer. We plan to perform this study as further re-
search.

We can see that pgPAM significantly overtakes R's
PAM in both cases when one thread or the maximum
number of threads are employed. Caching of distance
matrix improves the performance up to 80 percent of
overall runtime (in case of high-dimensional dataset).

4 Related work
The problem of integrating data analytics with relational
DBMSs has been studied since data mining research
originates.
Data mining query languages include DMQL [5],
MSQL [7], MINE RULE operator [14] and Microsoft's
DMX [28].
There are many SQL implementations of data mining
algorithms. SQL versions of classical clustering algo-
rithms include K-Means [16], EM [19], Fuzzy C-
Means [15]. SQL versions of association rule mining
algorithms include K-Way-Join, Three-Way-Join,

118

Subquery and Two-Group-Bys [25], Set-oriented Apri-
ori [29], Quiver [23], Propad [27]. Classification in-
cludes SQL implementations of decision trees [26],
kNN [31] and Bayesian classification [21]. SQL is also
successfully used in mining applications for data with
“non-relational” nature as graphs, for instance in search
for frequent graphs [4], detection of cycles in graph [1],
graph partitioning [11, 22], etc.

User-defined functions-based approach. Integration
of correlation, linear regression, PCA and clustering
into the Teradata DBMS based on UDFs is proposed
in [17]. There are two sets of UDFs that work in a sin-
gle table scan, that is an aggregate UDF to compute
summary matrices and a set of scalar UDFs to score
data sets. Experiments showed that UDFs are faster than
SQL queries and UDFs are more efficient than C++,
due to long export times. In [20] UDFs implementing
common vector operations were presented and it was
shown that UDFs are as efficient as automatically gen-
erated SQL queries with arithmetic expressions and
queries calling scalar UDFs are significantly more effi-
cient than equivalent queries using SQL aggregations.

In-database mining frameworks. The ATLAS [30] is
a framework for in-database analytics, which provides
SQL-like database language with user-defined aggre-
gates (UDAs) and table functions. The system's lan-
guage processor translates ATLAS programs into C++
code, which is then compiled and linked with the data-
base storage manager and user-defined external func-
tions. Authors presented ATLAS-based implementa-
tions of several data mining algorithms.

The MADlib [6] is an open source library of in-
database analytical algorithms for PostgreSQL. The
MADlib is implemented by a big team and provides
many methods for supervised learning, unsupervised
learning and descriptive statistics. The MADlib exploits
UDAs, UDFs, and a sparse matrix C library to provide
efficient representations on disk and in memory. As
many statistical methods are iterative (i.e. they make
many passes over a data set), authors wrote a driver
UDF in Python to control iteration in such a way that all
large data movement is done within the database engine
and its buffer pool.

Comparison. In this paper, we suggest an approach
to embedding data mining functions into PostgreSQL.
As some methods mentioned above our approach ex-
ploits UDFs. The difference from the previous works
includes the following. Our approach supposes parallel-
ization of UDFs for many-core platform that current
DBMS is running on. All the parallelization details are
encapsulated in implementation of the UDF and are
hided from the DBMS, so our approach could be ported
to some other open-source DBMS (with possible non-
trivial but mechanical software development effort). In
addition, our approach supposes a special module,
which provides a cache of precomputed mining struc-
tures and lets UDF know to reuse these structures to
reduce costs of computations.

5 Conclusion
In this paper, we touch upon the problem of organizing
data mining inside a DBMS. We present an approach to
implementation of in-database analytical functions for
PostgreSQL that exploits capabilities of modern Intel
many-core platforms.

Our approach supposes implementation of two li-
braries, namely pgMining and mcMining. The
pgMiningis a library of data mining functions each one
of them is to be run inside PostgreSQL. The mcMining
is a library that exports functions to solve various data
mining tasks, which are parallelized for Intel MIC plat-
forms.

The pgMining consists of Frontend and Backend
subsystems. The Frontend's function loads an UDF
from the Backend into PostgreSQL and executes it as
“INSERT INTO … SELECT …” query to save mining re-
sults in a table. The Backend consists of Wrapper and
Cache manager modules. The Wrapper provides func-
tions that serve as envelopes for the respective mcMin-
ing mining functions. The Cache manager supports
cache of precomputed mining structures to reduce costs
of computations.

Since our approach assumes hiding details of paral-
lel implementation from PostgreSQL, such an approach
could be ported to some other open-source DBMS (with
possible non-trivial but mechanical software develop-
ment effort).

We have evaluated our approach on previously im-
plemented parallel clustering algorithm of mcMining
library and four real datasets. Experiments showed good
speedup and performance of the algorithm as well as
our approach derive benefits from caching of precom-
puted mining structures and overtakes R data mining
package.

As future work, we plan to implement other mining
algorithms formcMining library and conduct experi-
ments on Intel Xeon Phi Knights Landing platform.

Acknowledgement
This work was financially supported by the Russian
Foundation for BasicResearch (grant No. 17-07-00463),
by Act 211 Government of the Russian Federation (con-
tract No. 02.A03.21.0011) and by the Ministry of edu-
cation and science of Russian Federation (government
order 2.7905.2017/8.9).

References
[1] Balachandran, R., Padmanabhan, S., Chakra-

varthy, S.: Enhanced DB-Subdue: Supporting Sub-
tle Aspects of Graph Mining Using a Relational
Approach. In: W.K. Ng, M. Kitsuregawa, J. Li, K.
Chang (eds.) Advances in Knowledge Discovery
and Data Mining, 10th Pacific-Asia Conf.,
PAKDD 2006, Singapore, April 9–12, 2006, Proc.,
Lecture Notes in Computer Science, 3918,

119

pp. 673-678. Springer (2006). doi:10.1007/
11731139 77

[2] Duran, A., Klemm, M.: The Intel Many Integrated
Core Architecture. In: W.W. Smari, V. Zeljkovic
(eds.) HPCS, pp. 365-366. IEEE (2012)

[3] Engreitz, J.M., Jr., B.J.D., Marshall, J.J., Alt-
man, R.B.: Independent Component Analysis:
Mining Microarray Data for Fundamental Human
Gene Expression Modules. J. of Biomedical In-
formatics. 43 (6), pp. 932-944 (2010)

[4] Garcia, W., Ordonez, C., Zhao, K., Chen, P.: Effi-
cient Algorithms Based on Relational Queries to
Mine Frequent Graphs. In: A. Nica, A.S. Varde
(eds.) Proc. of the Third Ph.D. Workshop on In-
formation and Knowledge Management, PIKM
2010, Toronto, Ontario, Canada, October 30,
2010, pp. 17-24. ACM (2010). doi:10.1145/
1871902.1871906

[5] Han, J., Fu, Y., Wang, W., Chiang, J., Gong, W.,
Koperski, K., Li, D., Lu, Y., Rajan, A., Stefanov-
ic, N., Xia, B., Zaiane, O.R.: Dbminer: A System
for Mining Knowledge in Large Relational Data-
bases. In: E. Simoudis, J. Han, U.M. Fayyad (eds.)
Proc. of the Second Int. Conf. on Knowledge Dis-
covery and Data Mining (KDD-96), Portland, Or-
egon, USA, pp. 250-255. AAAI Press (1996)

[6] Hellerstein, J.M., Re, C., Schoppmann, F.,
Wang, D.Z., Fratkin, E., Gorajek, A., Ng, K.S.,
Welton, C., Feng, X., Li, K., Kumar, A.: The
MADlib Analytics Library or MAD Skills, the
SQL. PVLDB 5(12), pp. 1700-1711 (2012)

[7] Imielinski, T., Virmani, A.: MSQL: A Query Lan-
guage for Database Mining. Data Min. Knowl.
Discov. 3 (4), pp. 373-408 (1999). doi:
10.1023/A:1009816913055

[8] Kaufman, L., Rousseeuw, P.J.: Finding Groups in
Data: An Introduction to Cluster Analysis. John
Wiley (1990)

[9] Kostenetskiy, P., Safonov, A.: SUSU Supercom-
puter Resources. In: L. Sokolinsky, I. Starodubov
(eds.) PCT'2016, Int. Scientific Conf. on Parallel
Computational Technologies, Arkhangelsk, Rus-
sia, March 29–31, 2016, pp. 561-573. CEUR
Workshop Proceedings. 1576 (2016)

[10] Lichman, M.: UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml/datasets/individual+
household+electric+power+consumption]. Irvine,
CA: University of California, School of Infor-
mation and Computer Science (2013)

[11] McCaffrey, J.D.: A Hybrid System for Analyzing
Very Large Graphs. In: S. Latifi (ed.) Ninth Int.
Conf. on Information Technology: New Genera-
tions, ITNG 2012, Las Vegas, Nevada, USA, 16–
18 April, 2012, pp. 253-257. IEEE Computer So-
ciety (2012). doi:10.1109/ITNG.2012.43

[12] Meek, C., Thiesson, B., Heckerman, D.: The
Learning-curve Sampling Method Applied to
Model-based Clustering. J. of Machine Learning
Research. 2, pp. 397-418 (2002)

[13] Melnykov, V., Chen, W.C., Maitra, R.: Mixsim:
An R Package for Simulating Data to Study Per-
formance of Clustering Algorithms. J. of Statisti-
cal Software, Articles 51 (12), pp. 1-25 (2012).
doi:10.18637/jss.v051.i12

[14] Meo, R., Psaila, G., Ceri, S.: A New SQL-like Op-
erator for Mining Association Rules. In:
T.M. Vijayaraman, A.P. Buchmann, C. Mohan,
N.L. Sarda (eds.) VLDB'96, Proc. of 22th Int.
Conf. on Very Large Data Bases, September 3–6,
1996, Mumbai (Bombay), India, pp. 122-133.
Morgan Kaufmann (1996)

[15] Miniakhmetov, R., Zymbler, M.: Integration of
Fuzzy c-means Clustering Algorithm with Post-
greSQL Database Management System. Numeri-
cal Methods and Programming 13 (2(26)), pp. 46-
52 (2012) (in Russian)

[16] Ordonez, C.: Integrating k-means Clustering with
a Relational DBMS Using SQL. IEEE Trans.
Knowl. Data Eng. 18 (2), pp. 188-201 (2006).
doi:10.1109/TKDE.2006.31

[17] Ordonez, C.: Building Statistical Models and Scor-
ing with UDFs. In: C.Y. Chan, B.C. Ooi, A. Zhou
(eds.) Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, Beijing, China, June 12–14,
2007, pp. 1005-1016. ACM (2007).
doi:10.1145/1247480.1247599

[18] Ordonez, C.: Statistical Model Computation with
UDFs. IEEE Trans. Knowl. Data Eng. 22 (12),
pp. 1752-1765 (2010).
doi:10.1109/TKDE.2010.44

[19] Ordonez, C., Cereghini, P.: SQLEM: Fast Cluster-
ing in SQL Using the EM Algorithm. In: W. Chen,
J.F. Naughton, P.A. Bernstein (eds.) Proc. of the
2000 ACM SIGMOD Int. Conf. on Management
of Data, May 16–18, 2000, Dallas, Texas, USA,
pp. 559-570. ACM (2000). doi: 10.1145/
342009.335468

[20] Ordonez, C., Garcia-Garcia, J.: Vector and Matrix
Operations Programmed with UDFs in a Relation-
al DBMS. In: P.S. Yu, V.J. Tsotras, E.A. Fox,
B. Liu (eds.). Proc. of the 2006 ACM CIKM Int.
Conf. on Information and Knowledge Manage-
ment, Arlington, Virginia, USA, November 6–11,
2006, pp. 503-512. ACM (2006). doi:10.1145/
1183614.1183687

[21] Ordonez, C., Pitchaimalai, S.K.: Bayesian Classi-
fiers Programmed in SQL. IEEE Trans. Knowl.
Data Eng. 22 (1), pp. 139-144 (2010). doi:
10.1109/TKDE.2009.127

[22] Pan, C., Zymbler, M.: Very Large Graph Partition-
ing by Means of Parallel DBMS. In: B. Catania,
G. Guerrini, J. Pokorny (eds.) Advances in Data-
bases and Information Systems – 17th East Euro-
pean Conf., ADBIS 2013, Genoa, Italy, September
1–4, 2013. Proc., Lecture Notes in Computer Sci-
ence, 8133, pp. 388-399. Springer (2013). doi:
10.1007/978-3-642-40683-6 29

120

[23] Rantzau, R.: Frequent Itemset Discovery with
SQL Using Universal Quantification. In: R. Meo,
P.L. Lanzi, M. Klemettinen (eds.) Database Sup-
port for Data Mining Applications: Discovering
Knowledge with Inductive Queries, Lecture Notes
in Computer Science, 2682, pp. 194-213. Springer
(2004). doi: 10.1007/ 978-3-540-44497-8 10

[24] Rechkalov, T., Zymbler, M.: Accelerating Me-
doids-based Clustering with the Intel Many Inte-
grated Core Architecture. In: 9th Int. Conf. on Ap-
plication of Information and Communication
Technologies, AICT 2015, October 14–16, 2015,
Rostov-on-Don, Russia. Proceedings, pp. 413-417
(IEEE, 2015). doi:10.1109/ICAICT.2015.
7338591

[25] Sarawagi, S., Thomas, S., Agrawal, R.: Integrating
Association Rule Mining with Relational Database
systems: Alternatives and Implications. Data Min.
Knowl. Discov. 4 (2/3), pp. 89-125 (2000).
doi:10.1023/A:1009887712954

[26] Sattler, K., Dunemann, O.: SQL Database Primi-
tives for Decision Tree Classifiers. In: Proc. of the
2001 ACM CIKM Int. Conf. on Information and
Knowledge Management, Atlanta, Georgia, USA,
November 5–10, 2001, pp. 379-386. ACM (2001).
doi:10.1145/502585.502650

[27] Shang, X., Sattler, K., Geist, I.: SQL Based Fre-
quent Pattern Mining with FPGrowth. In:
D. Seipel, M. Hanus, U. Geske, O. Bartenstein
(eds.) Applications of Declarative Programming
and Knowledge Management, 15th Int. Conf. on
Applications of Declarative Programming and

Knowledge Management, INAP 2004, and 18th
Workshop on Logic Programming, WLP 2004,
Potsdam, Germany, March 4–6, 2004, Revised Se-
lected Papers, Lecture Notes in Computer Science,
3392, pp. 32-46. Springer (2004). doi:
10.1007/11415763 3

[28] Tang, Z., Maclennan, J., Kim, P.P.: Building Data
Mining Solutions with OLE DB for DM and XML
for Analysis. SIGMOD Record, 34 (2), pp. 80-85
(2005). doi:10.1145/1083784.1083805

[29] Thomas, S., Chakravarthy, S.: Performance Evalu-
ation and Optimization of Join Queries for Associ-
ation Rule Mining. In: M.K. Mohania, A.M. Tjoa
(eds.) Data Warehousing and Knowledge Discov-
ery, First Int. Conf., DaWaK '99, Florence, Italy,
August 30 – September 1, 1999, Proc., Lecture
Notes in Computer Science, 1676, pp. 241-250.
Springer (1999). doi:10.1007/ 3-540-48298-9 26

[30] Wang, H., Zaniolo, C., Luo, C.: ATLAS: A Small
but Complete SQL Extension for Data Mining and
Data Streams. In: VLDB, pp. 1113-1116 (2003)

[31] Yao, B., Li, F., Kumar, P.: K Nearest Neighbor
Queries and kNN-joins in Large Relational Data-
bases (almost) for Free. In: F. Li, M.M. Moro,
S. Ghandeharizadeh, J.R. Haritsa, G. Weikum,
M.J. Carey, F. Casati, E.Y. Chang, I. Manolescu,
S. Mehrotra, U. Dayal, V.J. Tsotras (eds.) Proc. of
the 26th Int. Conf. on Data Engineering, ICDE
2010, March 1–6, 2010, Long Beach, California,
USA, pp. 4-15. IEEE Computer Society (2010).
doi:10.1109/ICDE.2010.5447837

121

	1 Introduction
	2 Embedding of data mining functions into PostgreSQL
	2.1 Motivation example
	2.2 Component structure
	2.3 Frontend
	2.4 Backend
	2.5 Library of parallel many-core algorithms
	3 Experimental evaluation
	3.1 Hardware, datasets and goals of experiments
	3.2 Results of experiments
	4 Related work
	5 Conclusion
	Acknowledgement
	References

