)

Check for
updates

Integrating DBMS and Parallel Data Mining
Algorithms for Modern Many-Core Processors

Timofey Rechkalov and Mikhail Zymbler(g)

South Ural State University, Chelyabinsk, Russia
trechkalov@yandex. ru, mzym@susu. ru

Abstract. Relational DBMSs (RDBMSs) remain the most popular tool for
processing structured data in data intensive domains. However, most of stand-
alone data mining packages process flat files outside a RDBMS. In-database
data mining avoids export-import data/results bottleneck as opposed to use
stand-alone mining packages and keeps all the benefits provided by a RDBMS.
The paper presents an approach to data mining inside a RDBMS based on a
parallel implementation of user-defined functions (UDFs). Such an approach is
implemented for PostgreSQL and modern Intel MIC (Many Integrated Core)
architecture. The UDF performs a single mining task on data from the specified
table and produces a resulting table. The UDF is organized as a wrapper of an
appropriate mining algorithm, which is implemented in C language and is
parallelized by the OpenMP technology and thread-level parallelism. The
heavy-weight parts of the algorithm are additionally parallelized by intrinsic
functions for MIC platforms to reach the optimal loop vectorization manually.
The library of such UDFs supports a cache of precomputed mining structures to
reduce costs of further computations. In the experiments, the proposed approach
shows good scalability and overtakes R data mining package.

Keywords: Data mining * In-database analytics - PostgreSQL
Clustering -+ Partition Around Medoids (PAM) - Thread-level parallelism
OpenMP - Intel Xeon Phi

1 Introduction

Nowadays relational DBMSs (RDBMSs) remain the most widely used tool for pro-
cessing structured data in data intensive domains (e.g. finance, medicine, physics, etc.).
Meanwhile, most of data mining algorithms deal with flat files. In data intensive
domains, exporting of data sets and importing of mining results inhibit analysis of large
databases outside a RDBMS [18]. Data mining inside a RDBMS avoids export-import
bottleneck and provides the end-user with all the built-in RDBMS’s services (query
optimization, data consistency and security, etc.).

Approaches to integrating data mining with RDBMSs include special data mining
languages and SQL extensions, SQL implementation of mining algorithms and user-
defined functions (UDFs) implemented in high-level programming language. In order
to increase performance of data analysis, the latter could serve as a subject of applying
parallel processing on modern many-core platforms.

© Springer International Publishing AG, part of Springer Nature 2018
L. Kalinichenko et al. (Eds.): DAMDID/RCDL 2017, CCIS 822, pp. 230-245, 2018.
https://doi.org/10.1007/978-3-319-96553-6_17

http://orcid.org/0000-0001-7491-8656
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96553-6_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96553-6_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96553-6_17&domain=pdf

Integrating DBMS and Parallel Data Mining Algorithms 231

In [25], we presented an approach to data mining inside the PostgreSQL open-
source DBMS exploiting capabilities of modern Intel MIC (Many Integrated Core) [1]
platform. The mining UDF is organized as a wrapper of an appropriate algorithm,
which is implemented in C language and is parallelized for Intel MIC platform by
OpenMP technology and thread-level parallelism. We took Partition Around Medoids
(PAM) clustering algorithm [9] and wrapped its parallel implementation for Intel MIC
proposed in [24]. Our experiments on the platforms of Intel Xeon CPU and Intel Xeon
Phi, Knights Corner (KNC) generation, showed an efficiency of the proposed approach.

In this paper, we give a more detailed description of our approach and extend the
study mentioned above as follows. We enhance parallel PAM by accelerating its step of
distance matrix computation and conduct additional experiments on Intel Xeon Phi,
Knights Landing (KNL), which is the second-generation MIC architecture product
from Intel.

The rest of the paper is organized as follows. In Sect. 2, we discuss related works.
The proposed approach is described in Sect. 3. We give the results of experimental
evaluation of our approach in Sect. 4. Section 5 concludes the paper.

2 Related Work

The problem of integrating data analytics with relational DBMSs has been studied
since data mining research originates. Early developments considered data mining
query languages [5, 7] and implementation of data mining functionality in SQL, e.g.
clustering algorithms [15, 17], association rules [23, 27], classification [20, 26], and
graph mining [4, 21].

In [18], authors proposed integration of correlation, linear regression, PCA and
clustering into the Teradata DBMS based on UDFs. In [19], it was shown that UDFs
implementing common vector operations are as efficient as automatically generated
SQL queries with arithmetic expressions, and queries calling scalar UDFs are signif-
icantly more efficient than equivalent queries using SQL aggregations. In [8], a tech-
nique for execution of aggregate UDFs based on data parallelism was proposed, which
will be embodied later in Teradata DBMS.

The MADIib library [6] provides many methods for supervised learning, unsu-
pervised learning and descriptive statistics for PostgreSQL. The MADIib exploits
UDAs, UDFs, and a sparse matrix C library to provide efficient representations on disk
and in memory. Since many statistical methods are iterative, authors wrote a driver
UDF in Python to control iteration in such a way that all large data movement is done
within the database engine and its buffer pool.

The Bismarck system [3] provides a unified architecture for in-database analytics,
facilitating UDFs as a convenient interface for the analyst to describe their desired ana-
lytics models. This development is based on incremental gradient descent (IGD), which is
a general technique to solve a large class of analytical models expressed as convex
optimization problem (e.g. logistic regression, support vector machines, etc.). Authors
showed that IGD has a data access pattern identical to the UDA access pattern and
provided a UDA-based implementation for the analytical problems mentioned above.

232 T. Rechkalov and M. Zymbler

The DAnA [12] system automatically maps a high-level specification of in-
database analytics queries to the FPGA accelerator. The accelerator implementation is
generated from an UDF, expressed as part of a SQL query in a Python-embedded
Domain-Specific Language. In order to implement efficient in-database integration,
DAnA-generated accelerators contain a special hardware structure, Striders, that
directly interface with the buffer pool of the database. The Striders extract, cleanse, and
process the training data tuples, which are consumed by a multi-threaded FPGA engine
that executes the analytics algorithm.

In this paper, we suggest an approach to embedding data mining functions into
PostgreSQL. As methods mentioned above, our approach exploits UDFs. The imple-
mentation of those systems, however, involves a combination of SQL, UDFs, and
driver programs written in other languages, so the systems could become obscure and
relatively difficult to maintain. Our approach assumes parallelization of UDFs for Intel
many-core platform that current RDBMS is running on and hiding the parallelization
details from the RDBMS. This make it possible to port our approach to some other
open-source RDBMS with possible non-trivial but mechanical software development
effort. Additionally, there is a special module in our approach, which provides a cache
of precomputed mining structures and allows UDF to reuse these structures in order to
reduce costs of computations.

3 Data Mining Inside PostgreSQL Using Intel MIC

3.1 Key Ideas

The goal of our approach is to provide a database application programmer with the
library of data mining functions, which could be run inside a DBMS as it is shown in
Fig. 1. In this example, the pgPAM function applies the Partition Around Medoids
(PAM) clustering algorithm [9] to data points from the specified input table and saves
results in the output table (for the specified number of the input table columns and
number of clusters). An application programmer is not obliged to export input data

#include <libpg-fe.h> // API of PostgreSQL
#include "pgmining.h" // API of pgMining library

void main (void)

{

char * inpTab = "points";
char * outTab = "clusters";
int dim = 3;

int k = 5;

char * conninfo="user=postgres port=5432 host=localhost";

PGconn * conn = PQconnectdb (conninfo) ;

PgPAM (conn, inpTab, dim, k, outTab);

PQexec (conn, strcat ("SELECT * FROM ", outTab));
PQfinish (conn) ;

Fig. 1. An example of using data mining function inside PostgreSQL

Integrating DBMS and Parallel Data Mining Algorithms 233

from PostgreSQL and import mining results back. At the same time, PAM encapsulates
parallel implementation [24] based on OpenMP and thread-level parallelism.

Implementation of such an approach is based on the following ideas. A data mining
algorithm is implemented with C language and parallelized for Intel MIC by OpenMP
technology. Next, we cover the parallel mining function by two wrappers, namely a
system-level wrapper and a user-level wrapper. The user-level wrapper registers the
system-level wrapper in the database schema, connects to the database server and calls
system-level wrapper. The system-level wrapper is an UDF, which parses parameters of
the user-level wrapper, calls the parallel mining function and saves the results in the
table(s).

3.2 Component Structure

Figure 2 depicts the component structure of our approach being applied to PostgreSQL.

—
pgMining
| |
Frontend Backend
| |
Wrapper || Cache mgr
— . — ¢
PostgreSQL mcMining
i |]]
Clustering || Classification || Patterns
1 Vv * PAM * kNN « Apriori
SP' :f(:Means

Fig. 2. Component structure of the proposed approach

The pgMining is a library of functions for data mining inside PostgreSQL. The
mcMining is a library that exports data mining functions, which are parallelized for
Intel MIC systems and are subject of wrapping by the respective functions from
pgMining library. Implementation of the pgMining library uses the PostgreSQL SPI
(Server Programming Interface), which provides the low-level functions for data
access. The pgMining library consists of two following subsystems, namely Frontend
and Backend, where the former provides presentation layer and the latter provides data
access layer of concerns for an application programmer.

234 T. Rechkalov and M. Zymbler

3.3 Frontend

The Frontend implements a user-level wrapper. A Frontend function wraps the
respective UDF from Backend, which is loaded into PostgreSQL and executed as
“INSERT INTO ... SELECT ...” query to save mining results in the specified table.
An example of the Frontend function is given in Fig. 3.

// PAM clustering inside PostgreSQL
// Returns 0 in case of success or negative error code.
int pgPAM (
PGconn * conn, // ID of PostgreSQL connection
char * inpTab, // Name of input table
int dim, // Number of coordinates in data point
int k, // Number of clusters
char * outTab) // Name of output table

PQexec (conn, "CREATE FUNCTION
wrap pgPAM(text, integer, integer, real) RETURNS text AS
'pgmining', 'wrap pgPAM' LANGUAGE C STRICT;");
PQexec (conn, "CREATE %s TABLE (data text)", outTab);
return PQexec (conn, "INSERT INTO %s
SELECT wrap_ pgPAM(%s, %d, %d);", outTab, inpTab, dim, k);

Fig. 3. Interface and implementation schema of function from Frontend

Such a function connects to PostgreSQL, carries out some mining task and returns
exit code. The function mandatory parameters are PostgreSQL connection ID, names of
input and output tables, and a number of first left columns in the input table containing
data to be mined. The rest parameters are specific to the mining task. As a side effect,
the function creates a table with mining results, which are stored as a text in JSON
format. Notation of such a text allows to define various results specific to the mining
algorithm, e.g. for a clustering algorithm this text could describe output data points
with associated numbers of clusters, centroids of resulting clusters, etc. Application
programmer is then in charge of parse and extract the results, and save it in relation
table(s) if necessary.

3.4 Backend

The Wrapper of the Backend implements a system-level wrapper. Figure 4 depicts an
example of Wrapper’s function. Such a function is an UDF, which wraps a parallelized
mining function from mcMining and performs as follows. Firstly, the function parses its
input to form the parameters to call the mcMining function. After that, the function
checks if input table(s) and/or supplementary mining structure(s) are in the cache
maintained by Cache manager and then loads them if not. Finally, a call of the
mcMining function with appropriate parameters is performed. The Cache manager
provides buffer pool to store precomputed mining structures.

Integrating DBMS and Parallel Data Mining Algorithms 235

// Wrapper for PAM clustering inside PostgreSQL
// Returns clustering result as JSON string.
Datum wrap pgPAM (PG _FUNCTION ARGS)
{
// Extract parameters of the algorithm
char * inpTab = text to cstring (PG _GETARG TEXT P(0));
int dim = PG GETARG INT32(1);
int k = PG _GETARG INT32(2);
int N;
// Check 1if mining structure is in the cache
void * distMatr = cache getObject (
strcat (inpTab, " distMatr"));
if (distMatr == NULL) {
// Check if input table is in the cache
void * inpData = cache getObject (inpTab) ;

if (inpData == NULL) {
// Allocate memory and load input table to the cache
inpData = (float *) malloc(dim * N *sizeof (float));

wrap tabRead(inpData, inpTab, dim, &N);
cache putObject (inpTab, inpData, sizeof (inpData));
}
distMatr = mcCalcMatrix (inpData, dim, N);
cache putObject (strcat (inpTab, " distMatr"),
distMatr, sizeof (distMatr));
}
// Perform clustering and save results to the output ta-
ble
mcPAM res * outData = mcPAM resCreate();
mcPAM (N, k, outData, distMatr);
PG _RETURN TEXT (data2String(outData));
}

Fig. 4. Interface and implementation schema of function from Backend

Distance matrix d; = dist (ai,a_i) stores distances between each pair of ¢; and a;
elements of input data set and is a typical example of mining structure to be cached.
Being precomputed once, distance matrix could be used many times for clustering or
kNN-based classification with various parameters (e.g. the number of clusters, the
number of neighbors, etc.).

The Cache manager exports two basic functions depicted in Fig. 5. The putObject
function loads a mining structure specified by its ID, buffer pointer and size into the
cache. The getObject searches in the cache for an object with the given ID. An ID of
mining structure is a string, which is made as a concatenation of an input table name
and object informational string (e.g. “_distMatr”). In order to handle a situation when
there is not enough space in the buffer pool to put a new object, Cache manager
implements one of the replacement strategies, e.g. LRU-K [16], LFU-K [28], etc.

236 T. Rechkalov and M. Zymbler

// Load an object to the cache.
// Returns 0 in case of success or negative error code.
int cache putObject (
char * objID,// An object's ID
void * data, // Pointer to data buffer
int size); // Data size
// Search for an object by the given ID in cache.
// Returns pointer to the object in case of success or NULL.
void * cache getObject (char * objID);

Fig. 5. Interface of Cache manager module

3.5 Library of Parallel Algorithms for Intel MIC

Figure 6 gives an example of the mcMining library function. Such a function encap-
sulates parallel implementation for Intel many-core systems based on OpenMP. In this
example, we use Partition Around Medoids (PAM) [9] clustering algorithm, which is
applicable when minimal sensitivity to noise data is required. The PAM provides such
a property since it represents cluster centers by points of the input data set (medoids).
Firstly, PAM computes distance matrix for the given data points. Then, the algorithm
carries out an initial clustering by the successive selection of medoids until the required
number of clusters have been found. Finally, the algorithm iteratively improves clus-
tering in accordance with an objective function.

// PAM clustering parallelized for Intel MIC platform.
// Returns 0 in case of success or negative error code.
int mcPAM (

int N, // Number of data points
int k, // Number of clusters
void * outData, // Array of output centroids

void * distMatr); // Precomputed distance matrix

Fig. 6. Interface of function from mcMining library

In our previous work [24], a parallel version of the PAM algorithm exploits auto-
vectorization of distance matrix computation. Auto-vectorization relies on a compiler’s
ability to transform the loops into sequences of vector operations and utilize vector
processor units. Thus, auto-vectorization does not guarantee the optimal vectorization
and, in turn, the best performance.

3.6 Advanced Vectorization of Parallel Algorithms for Intel MIC

In this study, we take a step forward and accelerate parallel PAM by speeding up its
first phase, keeping in mind that according to experiments in our previous work,
distance matrix computation takes up to 80% of overall runtime.

We implemented distance matrix computation phase by intrinsics instead of auto-
vectorization. Intrinsics are assembly-coded functions that wrap processor specific
instruction sets and allow us to use the C function calls and variables in place of
assembly instructions. Intrinsics are expanded inline eliminating function call

Integrating DBMS and Parallel Data Mining Algorithms 237

overhead. Thus, intrinsics allow make it possible to reach the optimal vectorization
manually, at the expense of a programmer efforts and the code maintainability.

Moreover, we implemented sophisticated SoAoS (Structure of Arrays of Struc-
tures) data layout [22] to organize data points in memory as follows. Suppose, there are
N data points where each point comprises of dim float coordinates and there is a
platform-dependent parameter, namely size,...,,~ Then, data points are represented by
an array comprising of N div size,..,, elements. Each element of the array is a structure
comprising of dim attributes where each attribute is an array of size,..,, float coor-
dinates. The size, ..., parameter is chosen with respect to a number of floats that could
be processed in one vector operation for the given platform’s instruction set (e.g. for
Intel Xeon and its SSE instruction set we took size,...,,= 4, and for Intel Xeon Phi and
its AVX-512 instruction set we took size, ;o= 16).

Figure 7 depicts implementation scheme of Euclidean distance matrix computation
for Intel MIC platform based on intrinsics and the SoAoS data layout. The algorithm
performs as follows.

// Computation of FEuclidean distance matrix.
// Returns pointer to the matrix.
float * mcCalcMatrix (float * inpData, int dim, int N)
{
const int vecSize = 16;
float * distMatr = ALLOC ALIGNED FLOAT ARRAY (N*N);
float * SoAoS = ALLOC ALIGNED FLOAT ARRAY (dim*N);
SoAoS permute (inpData, SoAoS, N, dim, vecSize);
#pragma omp parallel for
for (int i=0; 1i<N; i++) {
for (int k=0; k<N; k+=vecSize) {
VECTOR res = GET ZERO _VEC ();
for (int j=0; j < dim; J++) |
VECTOR pl = FILL VEC (inpData + i*dim + J);
VECTOR p2 = LOAD VEC (SoAoS + k*dim + j* vecSize);
VECTOR diff = SUB VEC (pl, p2);
res = FMADD VEC (diff, diff, res);
}
STORE VEC (distMatr + i*N + k, res);
}
}
free (SoA0S) ;
return distMatr;

Fig. 7. Parallel implementation of Euclidean distance matrix computation

Before the computation, we permute an array of input data points to represent them
as a SoAoS layout. Computation is organized as three nested loops where the outer
loop runs along the input data points and parallelized by the OpenMP #pragma
compiler directive. The second inner loop runs along the SoAoS blocks of data points
and initializes a vector register in order to store temporary results. The innermost loop
runs along the coordinates of a data point and carries out the following actions by
intrinsic functions. Vector register is filled by the j-th coordinate of an input data point.

238 T. Rechkalov and M. Zymbler

Then, we read j-th coordinates of the sixteen data points from a SoAoS block. Next, we
calculate the difference of the vectors mentioned above, square the difference and add
the result to the vector register. At the end of the second loop, data from the vector
register are moved to the resulting matrix. In the end, resulting matrix will comprise of
squared Euclidean distances.

4 Experimental Evaluation

4.1 Background of the Experiments

In the experiments, we firstly evaluated how intrinsics and new data layout affect the
performance of distance matrix computation. We also investigated the scalability of the
modified mcPAM version on Intel MIC platforms depending on the number of threads
employed. Here, we mean speedup and parallel efficiency as basic characteristics of a
parallel algorithm, which are defined as follows. Speedup and parallel efficiency of a
parallel algorithm being ran on k threads are calculated as

s(k) e(k) = kt—l 100%

o - Ik

where ¢; and #; are run times of the algorithm on one and k threads, respectively.
A parallel algorithm with speedup closer to one and parallel efficiency at least 50% is
considered to have good scalability.

We took the pgPAM function with the modified mcPAM function and compared the
pgPAM performance with the PAM from the R package [14] as well.

We performed the evaluation on the Tornado SUSU supercomputer [10] and the
RSC' cluster node. The former provides a node with two Intel MIC platforms, namely
Intel Xeon and Intel Xeon Phi (KNC generation) and the latter provides a node with
Intel Xeon Phi (KNL generation) platform (cf. Table 1 for the specifications).

Table 1. Specifications of hardware

Specifications Host CPU | Coprocessor CPU system
Model, Intel Xeon 2 x X5680 | Phi (KNC), SE10X | Phi (KNL), 7250
Physical cores 2x6 61 68

Hyper threading factor 2 4 4

Logical cores 24 244 272

Frequency, GHz 3.33 1.1 1.4

Vector processing unit size, bit | 128 512 512

Boot ability Yes No Yes

Peak performance, TFLOPS 0.371 1.076 3.046

! http://www.rscgroup.ru/en/.

http://www.rscgroup.ru/en/

Integrating DBMS and Parallel Data Mining Algorithms 239

In the experiments, we used the datasets depicted in Table 2.

Table 2. Datasets used in experiments

Dataset dim | # # points, Semantic

clusters x210
FCS 423 10 18 Aggregated human gene information [2]
Human
MixSim 5 10 35 Generator of synthetic datasets for evaluation of

clustering algorithms [14]

Census 67 10 35 US Census Bureau population surveys [13]
Power 3 10 35 Household electricity consumption [11]

4.2 Results and Discussion

Figure 7 shows the results of the first series of experiments. We can see that auto-
vectorization provides at least 1.5x and 5x faster run time of distance matrix com-
putation for the Intel Xeon and Intel MIC platform, respectively, in comparison with
scalar version. The use of intrinsics, in turn, provides up to 2x faster run time in
comparison with auto-vectorization. Thus, we can conclude that intrinsics combined
with proper data layout significantly increase performance of the most heavy-weight
part of the parallel PAM algorithm.

The results of the experiments on the mcPAM scalability are depicted in Fig. 8.
Both speedup and parallel efficiency are closer to linear when the number of threads
matches the number of physical cores the algorithm is running on, for all the platforms
(i.e. 12 cores for Intel Xeon, 60 cores for Intel Xeon Phi KNC and 68 cores for Intel
Xeon Phi KNL, respectively). Speedup and parallel efficiency become sub-linear when
the algorithm uses more than one thread per physical core. We can conclude that after
acceleration of the phase of distance matrix computation, the algorithm still demon-
strates good scalability for all the considered Intel MIC platforms.

Figure 9 shows the results of the experiments on the pgPAM performance on
different datasets. We compared serial PAM from the R package with our both serial
and parallel pgPAM where a distance matrix was precomputed or not. Parallel versions
ran on the following Intel platforms, namely 2x Xeon CPU (24 threads), Xeon
Phi KNC (240 threads), and Xeon Phi KNL (272 threads). We can see that the parallel
and serial pgPAM versions outperform the R PAM for the given platforms and datasets.
Next, caching the precomputed distance matrix, we improve the performance, espe-
cially in case of high-dimensional data. By using the scalable mcPAM algorithm, the
pgPAM shows the better results on the Intel Xeon MIC systems than on the Intel
Xeon CPU and performs best on Intel Xeon Phi KNL (Fig. 10).

240

T. Rechkalov and M. Zymbler

B No vectorization

B No vectorization

%7 S Auto vectorization 12 1 Auto vectorization
Intrinsics — Intrinsics
20 1 —y 101 =
s | = -
] — Bos{ =
g 151 = s | =
£ = £ =
g | = Eaa—
S = =] =
¥ 10 4 = 14 = %
= % U1 N\ =
1= \ 02{ = N ,
=\ B¢ - 7
=) 00 LEEW/1 =\7 M=~
2xXeon KNC KNL 2xXeol KNC
Platform Platform
(a) FCS Human dataset (b) MixSim dataset
14 - B No vectorization B No vectorization
Auto vectorization 08 Auto vectorization
Intrinsics
12
s 10 06
@ @
(2] (2]
o))
£ E
€ N e =
=) =)
14 14

» NI

7

\ 7 W \\ ‘7 ZA .

Platform
(c) Census dataset

o
N

A

0.0 -

KNC
Platform

(d) Power dataset

Fig. 8. Impact of vectorization to performance

Integrating DBMS and Parallel Data Mining Algorithms
15 | 100 + &
—e— Census <Q§f
—&— Mixsim .
—6- Power o
—A— FCS Human S 7 80
~ 7
o’
) w0l \A o\o
=] = 60 7
3 g
] 3
® & 40 -
5 / w
o 20 - —*- ans.us
/ —&— Mixsim
K —e- Power
—A— FCS Human
0 04
T T T T T T T T T T T T
1 3 6 12 18 24 1 3 6 12 18 24
threads # threads
(a) Host CPU (2xIntel Xeon)
100 - & —
120 | —®— Census ,/‘f wf“
—A— Mixsim =
‘/
-e- Power ¢/
100 | —— FCS Human-~ 801 4
a \
80 BN 3
% >"‘60 7 AT
5 [9) R
@ c b4
@ 60 | 9]
=3 ©
7] & 40 |
w
40 -
o 20 -| - Census
20 —&— Mixsim
-e—- Power
—A—
04 0 FCS Human
T T T T T T T T T T T T
1 30 60 120 180 240 1 30 60 120 180 240
threads # threads
(b) Intel Xeon Phi (Knights Corner)
A 100 — &,
100 | —®- Census A/,e \QF‘O
—&— Mixsim =" A N
-6—- Power el \
80 A
o
=X % 60
=
el [$)
@ c
I} [}
5 5
| = 40
40 E
&
20 20 - —®— Census
—A— Mixsim
-6- Power
0 04 —A— FCS Human
T T T T T T T T T T T T
1 34 68 136 204 272 1 34 68 136 204 272
threads # threads

(c) Intel Xeon Phi (Knights Landing)

Fig. 9. Speedup and parallel efficiency of mcPAM

241

242 T. Rechkalov and M. Zymbler

100 - £ R 1000
g A—
A
) 4
(—“100
o
7]
o
kel
- 10 +
-
S
o]
7]
c
S
£
~+- Serial R PAM z -+- Serial R PAM
—a— Serial pgPAM (2xXeon, 1 thr) = —A— Serial pgPAM (2xXeon, 1 thr)
—e&- Par. pgPAM (2xXeon, 24 thr) @ 0.1 —e- Par. pgPAM (2xXeon, 24 thr)
-~ Par. pgPAM (2xXeon, 24 thr) + cache - Par. pgPAM (2xXeon, 24 thr) + cache
--&- Par. pgPAM (KNC, 240 thr) + cache ~-&- Par. pgPAM (KNC, 240 thr) + cache
-@- Par. pgPAM (KNL, 272 thr) + cache -@ Par. pgPAM (KNL, 272 thr) + cache
0.001 0.01
T T T T T T T T T T T T T T T T
2 4 6 8 10 12 14 16 18 5 10 15 20 25 30 35
data points, x1024 # data points, x1024
(a) FCS Human dataset (b) MixSim dataset
1000 et 1000
) i) 4
E100 = 100
&) 4]
7] 7]
o o
o o
— 10 — 10
8] 3]
Q]
7] 7]
c c
< 1 = 1
) .)
£) £ p
'-g --+- Serial R PAM ‘E - Serial R PAM
= —A— Serial pgPAM (2xXeon, 1 thr) =1 Serial pgPAM (2xXeon, 1 thr)
0.1 4 —e- Par. pgPAM (2xXeon, 24 thr) o 0.1 Par. pgPAM (2xXeon, 24 thr)
~&- Par. pgPAM (2xXeon, 24 thr) + cache - Par. pgPAM (2xXeon, 24 thr) + cache
--@- Par. pgPAM (KNC, 240 thr) + cache - Par. pgPAM (KNC, 240 thr) + cache
0.01 4 -@ Par. pgPAM (KNL, 272 thr) + cache 0.01 Par. pgPAM (KNL, 272 thr) + cache
T T T T T T T T T T T T T T
5 10 15 20 25 30 35 5 10 15 20 25 30 35
data points, x1024 # data points, x1024
(c) Census dataset (d) Power dataset

Fig. 10. Performance of pgPAM

5 Conclusion

In this paper, we touch upon the problem of integrating data mining algorithms and a
relational DBMS in data intensive domains. We presented an approach to implemen-
tation of in-database analytics that exploits capabilities of modern many-core platforms
to improve performance of analytics. We implemented such an approach for Post-
greSQL and Intel Many Integrated Core (MIC) architecture.

Our approach exploits the following key ideas. A data mining algorithm is
implemented with C language and parallelized by the OpenMP technology for
Intel MIC platforms. The parallel mining function is covered by two wrappers, namely
a system-level wrapper and a user-level wrapper. The user-level wrapper registers the
system-level wrapper in the database schema, connects to the database server and calls
system-level wrapper. The system-level wrapper is an UDF, which parses parameters

Integrating DBMS and Parallel Data Mining Algorithms 243

of the user-level wrapper, calls the parallel mining function and saves results in the
table(s). The system-level wrapper is accompanied by a cache of precomputed mining
structures (e.g. distance matrix) to reduce costs of computations. Since our approach
assumes encapsulation of parallel implementation from PostgreSQL, it could be ported
to some other open-source RDBMS, with possible non-trivial but mechanical software
development effort.

In this study, in order to increase performance of in-database clustering, we addi-
tionally implemented distance matrix computation (which is the heaviest part of the
clustering algorithm) using advanced data layout and intrinsic functions for MIC
platforms. We evaluated our approach on modern Intel MIC platforms (Intel Xeon and
Intel Xeon Phi with both Knights Corner and Knights Landing generations) using real
datasets where our solution showed good scalability and performance and overtook the
R data mining package.

Acknowledgments. This work was financially supported by the Russian Foundation for Basic
Research (grant No. 17-07-00463), by Act 211 Government of the Russian Federation (contract
No. 02.A03.21.0011) and by the Ministry of education and science of Russian Federation
(government order 2.7905.2017/8.9). Authors thank RSC Group (Moscow, Russia) for the
provided computational resources.

References

1. Duran, A., Klemm, M.: The Intel Many Integrated Core architecture. In: Smari, W.W.,
Zeljkovic, V. (eds.) HPCS, pp. 365-366. IEEE (2012)

2. Engreitz, J.M., Daigle Jr., B.J., Marshall, J.J., Altman, R.B.: Independent component
analysis: mining microarray data for fundamental human gene expression modules.
J. Biomed. Inform. 43(6), 932-944 (2010)

3. Feng, X., Kumar, A., Recht, B., Re, C.: Towards a unified architecture for in-RDBMS
analytics. In: Candan, K.S., Chen, Y., Snodgrass, R.T., Gravano, L., Fuxman, A. (eds.)
Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2012, Scottsdale, AZ, USA, 20-24 May 2012, pp. 325-336. ACM (2012)

4. Garcia, W., Ordonez, C., Zhao, K., Chen, P.: Efficient algorithms based on relational queries
to mine frequent graphs. In: Nica, A., Varde, A.S. (eds.) Proceedings of the Third Ph.D.
Workshop on Information and Knowledge Management, PIKM 2010, Toronto, Ontario,
Canada, pp. 17-24. ACM, 30 October 2010

5. Han, J., Fu, Y., Wang, W., Chiang, J., Gong, W., Koperski, K., Li, D., Lu, Y., Rajan, A.,
Stefanovic, N., Xia, B., Zaiane, O.R.: Dbminer: a system for mining knowledge in large
relational databases. In: Simoudis, E., Han, J., Fayyad, U.M. (eds.) Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining (KDD-96),
Portland, Oregon, USA, pp. 250-255. AAAI Press (1996)

6. Hellerstein, J.M., Re, C., Schoppmann, F., Wang, D.Z., Fratkin, E., Gorajek, A., Ng, K.S.,
Welton, C., Feng, X., Li, K., Kumar, A.: The MADIib analytics library or MAD skills, the
SQL. PVLDB 5(12), 1700-1711 (2012)

7. Imielinski, T., Virmani, A.: MSQL: a query language for database mining. Data Min.
Knowl. Discov. 3(4), 373—408 (1999)

244

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

T. Rechkalov and M. Zymbler

Jaedicke, M., Mitschang, B.: On parallel processing of aggregate and scalar functions in
object-relational DBMS. In: Haas, L.M., Tiwary, A. (eds.) SIGMOD 1998, Proceedings of
the ACM SIGMOD International Conference on Management of Data, 2—4 June, 1998,
Seattle, Washington, USA, pp. 379-389. ACM Press (1998)

. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis.

Wiley, New York (1990)

Kostenetskiy, P., Safonov, A.: SUSU supercomputer resources. In: Sokolinsky, L.,
Starodubov, 1. (eds.) PCT 2016, International Scientific Conference on Parallel Computa-
tional Technologies, Arkhangelsk, Russia, 29-31 March 2016, CEUR Workshop Proceed-
ings, vol. 1576, pp. 561-573. CEUR-WS.org (2016)

Lichman, M.: UCI machine learning repository. Irvine, CA: University of California, School
of Information and Computer Science (2013). http://archive.ics.uci.edu/ml/datasets/
individual+household+electric+power+consumption

Mabhajan, D., Kim, J.K., Sacks, J., Ardalan, A., Kumar, A., Esmaeilzadeh, H.: In-RDBMS
Hardware Acceleration of Advanced Analytics. CoRR abs/1801.06027 (2018)

Meek, C., Thiesson, B., Heckerman, D.: The learning-curve sampling method applied to
model-based clustering. J. Mach. Learn. Res. 2, 397-418 (2002)

Melnykov, V., Chen, W.C., Maitra, R.: MixSim: an R package for simulating data to study
performance of clustering algorithms. J. Stat. Softw. Artic. 51(12), 1-25 (2012)
Miniakhmetov, R., Zymbler, M.: Integration of fuzzy c-means clustering algorithm with
PostgreSQL database management system. Numer. Methods Programm. 13(2(26)), 4652
(2012)

O’Neil, EJ., O’Neil, P.E., Weikum, G.: The LRU-K page replacement algorithm for
database disk buffering. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, Washington, D.C., 26—
28 May 1993, pp. 297-306. ACM Press (1993)

Ordonez, C.: Integrating k-means clustering with a relational DBMS using SQL. IEEE
Trans. Knowl. Data Eng. 18(2), 188-201 (2006)

Ordonez, C.: Building statistical models and scoring with UDFs. In: Chan, C.Y., Ooi, B.C.,
Zhou, A. (eds.) Proceedings of the ACM SIGMOD International Conference on
Management of Data, Beijing, China, 12—14 June 2007, pp. 1005-1016. ACM (2007)
Ordonez, C., Garcia-Garcia, J.: Vector and matrix operations programmed with UDFs in a
relational DBMS. In: Yu, P.S., Tsotras, V.J., Fox, E.A., Liu, B. (eds.) Proceedings of the
2006 ACM CIKM International Conference on Information and Knowledge Management,
Arlington, Virginia, USA, 6-11 November 2006, pp. 503-512. ACM (2006)

Ordonez, C., Pitchaimalai, S.K.: Bayesian classifiers programmed in SQL. IEEE Trans.
Knowl. Data Eng. 22(1), 139-144 (2010)

Pan, C.S., Zymbler, M.L.: Very large graph partitioning by means of parallel DBMS. In:
Catania, B., Guerrini, G., Pokorny, J. (eds.) ADBIS 2013. LNCS, vol. 8133, pp. 388-399.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40683-6_29

Peng, Y., Grossman, M., Sarkar, V.: Static cost estimation for data layout selection on GPUs.
In: 7th International Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems, PMBS@SC 2016, Salt Lake, UT, USA, 14
November 2016, pp. 76-86. IEEE (2016)

Rantzau, R.: Frequent itemset discovery with SQL using universal quantification. In: Meo,
R., Lanzi, P.L., Klemettinen, M. (eds.) Database Support for Data Mining Applications.
LNCS (LNAI), vol. 2682, pp. 194-213. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-44497-8_10

http://archive.ics.uci.edu/ml/datasets/individual%2bhousehold%2belectric%2bpower%2bconsumption
http://archive.ics.uci.edu/ml/datasets/individual%2bhousehold%2belectric%2bpower%2bconsumption
http://dx.doi.org/10.1007/978-3-642-40683-6_29
http://dx.doi.org/10.1007/978-3-540-44497-8_10
http://dx.doi.org/10.1007/978-3-540-44497-8_10

24.

25.

26.

217.

28.

Integrating DBMS and Parallel Data Mining Algorithms 245

Rechkalov, T., Zymbler, M.: Accelerating medoids-based clustering with the Intel Many
Integrated Core architecture. In: 9th International Conference on Application of Information
and Communication Technologies, AICT 2015, 14-16 October 2015, Rostov-on-Don,
Russia - Proceedings, pp. 413—417 (2015)

Rechkalov, T., Zymbler, M.: An approach to data mining inside PostgreSQL based on
parallel implementation of UDFs. In: Kalinichenko, L.A., Manolopoulos, Y., Kuznetsov, S.
0. (eds.) Selected Papers of the XIX International Conference on Data Analytics and
Management in Data Intensive Domains (DAMDID/RCDL 2017), Moscow, Russia, 9-13
October 2017, CEUR Workshop Proceedings, vol. 2022, pp. 114-121. CEUR-WS.org
(2017)

Sattler, K., Dunemann, O.: SQL database primitives for decision tree classifiers. In:
Proceedings of the 2001 ACM CIKM International Conference on Information and
Knowledge Management, Atlanta, Georgia, USA, 5-10 November 2001, pp. 379-386.
ACM (2001)

Shang, X., Sattler, K.-U., Geist, I.: SQL Based Frequent Pattern Mining with FP-Growth. In:
Seipel, D., Hanus, M., Geske, U., Bartenstein, O. (eds.) INAP/WLP -2004. LNCS (LNAI),
vol. 3392, pp. 32-46. Springer, Heidelberg (2005). https://doi.org/10.1007/11415763_3
Sokolinsky, L.B.: LFU-K: an effective buffer management replacement algorithm. In: Lee,
Y., Li, J.,, Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 670-681.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24571-1_60

http://dx.doi.org/10.1007/11415763_3
http://dx.doi.org/10.1007/978-3-540-24571-1_60

	Integrating DBMS and Parallel Data Mining Algorithms for Modern Many-Core Processors
	Abstract
	1 Introduction
	2 Related Work
	3 Data Mining Inside PostgreSQL Using Intel MIC
	3.1 Key Ideas
	3.2 Component Structure
	3.3 Frontend
	3.4 Backend
	3.5 Library of Parallel Algorithms for Intel MIC
	3.6 Advanced Vectorization of Parallel Algorithms for Intel MIC

	4 Experimental Evaluation
	4.1 Background of the Experiments
	4.2 Results and Discussion

	5 Conclusion
	Acknowledgments
	References

