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Abstract—The Partition Around Medoids (PAM) is a variation
of well known k-Means clustering algorithm where center of each
cluster should be chosen as an object of clustered set of objects.
PAM is used in a wide spectrum of applications, e.g. text analysis,
bioinformatics, intelligent transportation systems, etc. There are
approaches to speed up k-Means and PAM algorithms by means
of graphic accelerators but there none for accelerators based on
the Intel Many Integrated Core architecture. This paper presents
a parallel version of PAM for the Intel Xeon Phi many-core
coprocessor. Parallelization is based on the OpenMP technology.
Loop operations are adapted to provide vectorization. Distance
matrix is precomputed and stored in the coprocessor’s memory.
Experimental results are presented and confirm the efficiency of
the algorithm.

Index Terms—data mining, clustering, k-Means, Partition
Around Medoids, parallel computing, OpenMP, Intel Many
Integrated Core architecture, Intel Xeon Phi coprocessor.

I. INTRODUCTION

Clustering is one of the basic problems of data mining
aimed to organizing a set of data objects into subsets (clusters)
such that objects in a cluster are similar to one another, yet
dissimilar to objects in other clusters. Similarity is commonly
defined in terms of how close the objects are, and is based on
a specified distance metric [1].

The most fundamental method of clustering is partitioning,
which organizes the objects of a set into several exclusive
groups. More formally, given a set of n objects, a partitioning
algorithm constructs k partitions of the data, where each
partition represents a cluster and & < n. The algorithm divides
the data objects into k clusters such that each cluster contains
at least one object and each object is in the only cluster. An
object is assigned to a closest cluster based on the distance
measure between the object and the cluster center. Then
algorithm iteratively improves the within-cluster variation by
computing the new cluster center using the objects assigned
to the cluster in the previous iteration. All the objects are
then reassigned using the updated means as the new cluster
centers. The iterations continue until the assignment is stable,
that is, the clusters formed in the current round are the same
as those formed in the previous round. Partitioning clustering
algorithms differ in a way of calculation cluster centers, e.g. k-
Means [2] and k-Modes [3] algorithms uses mean and mode
values of clustered objects respectively, whereas k-Medoids
algorithm uses an object of clustered data set (called medoid).
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The Partition Around Medoids (PAM) [4] is a variation of
k-Means, which is used in a wide spectrum of applications,
e.g. text analysis [5], bioinformatics [6], intelligent transport
systems [7], etc. The complexity of each iteration in the PAM
algorithm is O(k(n — k)?). For large values of n and k
computations are very costly. That is why there are approaches
to speed up k-Means and PAM algorithms by means of graphic
accelerators, e.g. [8], [9]. At the same time there none for
modern accelerators based on the Intel Many Integrated Core
(MIC) [10] architecture. In this paper we present a parallel
version of PAM for MIC accelerators (what was done for the
first time, to the best of our knowledge).

The remaining part of the paper is organized as follows.
Section II gives an overview of serial PAM algorithm and
briefly considers the Intel Xeon Phi many-core coproces-
sor’s architecture and programming model. In section III we
describe parallelization of PAM adapted for the Intel MIC
architecture. The results of the experiments evaluating the
algorithm are presented in section IV. Section V discusses
related work. Section VI contains concluding remarks and
directions for future research.

II. BACKGROUND OF THE RESEARCH
A. Serial PAM Algorithm

To provide formal description of the PAM [11] algorithm
we will use the following notation. Let O = {01,02,...,0,}
is a set of objects to be clustered where each object is a tuple
consisting of p real-valued attributes. Let £ is the number of
clusters, k < n, and C' = {¢1, ¢, ..., ¢} is a set of medoids,
CCO, and p: O x C — R is a distance metric.

The algorithm takes the form of a steepest ascent hill
climber, using a simple swap neighbourhood operation. In
each iteration medoid object ¢; and non-medoid object o;
are selected that produce the best clustering when their roles
are switched. The objective function used is the sum of the
distances from each object to the closest medoid:

n

E= E min p(c¢;,0;).
: 11S1'Skp( i ])
Ji=

Algorithm 1 depicts PAM pseudocode. PAM consists of
two phases, namely BUILD and SWAP. In the first phase
an initial clustering is obtained by the successive selection
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Algorithm 1 PAM
Input: Set of objects O, number of clusters %
Output: Set of £ clusters
Init C' {BUILD phase}
repeat {SWAP phase}
Calculate T},ip
Swap Cmin and Omin
until 7,,,;, <0

of representative objects until k£ objects have been found. The
first object c; is the one for which the sum of the distances
to all other objects is as small as possible:

n
¢ = arg minz p(on, 05). )
1<h<n ‘=
j=1

Object c¢; is the most centrally located in O set. Sub-
sequently, at each step another object is selected, which
decreases the objective function as much as possible. This
object is the one for which the minimal distance to all selected
medoids and distance to this object is as small as possible:

co = argmin
1<h<n

min(p(c1,05), p(on,05)),  (3)

i=1
n
¢3 = argmin » min( min (p(c,05)), plon,05)), (4
1<h<n T4 1<i<2
n
cp = arg mianin( min (p(ci,05)), plon,05)).  (5)

1<h<n G 1<i<k—1

This process is continued until £ objects have been found.

In the second phase of the algorithm, it is attempted to
improve C' (i.e. set of medoids) and therefore also to improve
the clustering yielded by this set. Algorithm searches for a
pair of objects (Cpin, Omin), Which minimizes the objective
function. This is done by considering all pairs of objects
(ciyon) where ¢; is a medoid and op is not a medoid.
It is determined what effect is obtained on the objective
function when a swap is carried out, i.e., when object ¢; is
no longer selected as a medoid but object oy, is. Let denote
this effect as 7j;,, then minimum value of 7;,,;, is achieved
with (¢min, Omin) pair. If Ty, > 0 then C' set can not be
improved so the algorithm stops.

Let us consider calculation of the Tj, effect using the
following notation. Let D = {dy,da,...,d,} is a set of
distances from each object to the closest medoid. Let S =
{s1,82,...,8,} is a set of distances from each object to
second closest medoid. Let C};;, is a contribution of non
selected object o; to the effect Tj;, of a swap between ¢; and
op, on the objective function. In this case Tj;, is the sum of
the contributions Cj;p,:

Algorithm 2 [11] depicts pseudocode of calculating Cj;p,.

Algorithm 2 Calculating Cj;p,

Input: o;,c¢;.0p,d;. 55
Output: Cj;p,
if p(0j,¢;) > d; and p(o;,0p) > d; then
Cjin <0
else if p(0;,c;) = d; then
if p(0j,0n) < s; then
Cjih — p(()j,()h) — dj
else
Cjih S5 — dj
end if
else if p(o;,0,) < d; then
Cjin < ploj,on) — d;
end if

B. The Intel Xeon Phi Architecture and Programming Model

The Intel Xeon Phi coprocessor is an x86 many-core co-
processor of 61 cores, connected by a high-performance on-
die bidirectional interconnect where each core supports 4x
hyperthreading and contains 512-bit wide vector processor unit
(VPU). Each core has two levels of cache memory: a 32 Kb L1
data cache, a 32 Kb L1 instruction cache, and a core-private
512 Kb unified L2 cache. The Intel Xeon Phi coprocessor
is to be connected to a host computer via a PCI Express
system interface. Being based on Intel x86 architecture, the
Intel Xeon Phi coprocessor supports the same programming
tools and models as a regular Intel Xeon processor.

There are three programming modes to deal with the Intel
Xeon Phi coprocessor: native, offload and symmetric. In native
mode the application runs independently, on the coprocessor
only. In offload mode the application is running on the host
and offloads computationally intensive part of work to the
coprocessor. The symmetric mode allows the coprocessor to
communicate with other devices by means of Message Passing
Interface (MPI).

III. PARALLEL PAM ALGORITHM
FOR MIC ACCELERATORS

In this section we describe an approach to implementation
of PAM algorithm for the Intel Xeon Phi coprocessor. The
approach is based on the following principles.

Data parallelism and vectorization. Using OpenMP tech-
nology we perform simultaneous execution on multiple cores
of the same function across the elements of a dataset. Most
loops of the original PAM algorithm with arithmetic operations
were implemented to provide conversion of such operations
from scalar form to vector form to be effectively computed
by the coprocessor’s VPUs.

Our implementation strives to provide data locality as much
as possible, i.e. the program uses data close to recently

n
Ty, = Z Cin. (6) accessed locations. Since the coprocessor loads a chunlf of
= memory around an accessed location into the cache, locations
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close to recently accessed locations are also likely to be in the
cache so finally it increases algorithm’s performance.

Algorithm 3 depicts PAM pseudocode adapted for use on
the Intel Xeon Phi many-core coprocessor.

Algorithm 3 Parallel PAM for Intel Xeon Phi coprocessor
Input: Set of objects O, number of clusters k
Qutput: Set of k clusters
Offload O, k from CPU to coprocessor
M <+ PrepareDistance Matriz(O)
C <« BuildMedoids(M) {BUILD phase}
repeat {SWAP phase}
Tonin < FindBestSwap(M, C')
SWﬂP Cmin and Omin
until Trin <0
Offload C' from coprocessor to CPU

The summary of parallel PAM subalgorithms is presented
in Tab. I.

Table T
SUMMARY OF PARALLEL PAM SUBALGORITHMS

Name Complexity Parallelizing technique(s)
PrepareDistanceMatrix O(pn?) OpenMP, vectorization
BuildMedoids O(kn?) OpenMP, vectorization
FindBestSwap O(k(n — k)2) OpenMP

To improve performance we use precomputing technique
calculating distances between all objects of O set in advance.
There is no need for repeated calculation of distances at each
iteration, since distances simply can be looked up in M matrix.

The PAM algorithm deals with a lot of data arrays which
are not fit into Intel Xeon Phi L2 memory cache. We process
data by chunks of L bytes to satisfy data locality requirement.
It is recommended [10] to set L to 16 and try multiplying or
dividing by 2 and use n divisible by L. In our work we use
L =32.

The PrepareDistanceMatrix subalgorithm initializes dis-
tance matrix (see Algorithm 4). Unlike in [11] we store matrix
in full form (not in upper triangular form) to provide better
data locality for the rest of subalgorithms. To achieve better
performance of this subalgorithm we use tiling technique [10].

The BuildMedoids subalgorithm implements BUILD phase
(see Algorithm 5) according to formulas (2)—(5).

The FindBestSwap subalgorithm implements SWAP phase
(see Algorithm 6). It checks all pairs of (c;, o) objects where
¢; is a medoid and oy, is not a medoid, calculates the effect
for each T};, swapping and returns the minimal one.

IV. EXPERIMENTAL EVALUATION

To evaluate the developed algorithm we performed exper-
iments on the Tornado SUSU! supercomputer’s node (see
Tab. II for its specifications). Experiments were performed
on single precision data, the coprocessor was used in offload
mode. We measured PAM runtime while varying number of

Thttp://supercomputer.susu.ru/en/computers/tornado/
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Algorithm 4 Prepare Distance Matrix
Input: Set of objects O
Output: Distance matrix M
allocate M
parallel for o; such that 1 <i <n do
for j =1 to n step L do
for k=1 to p do
for [ such that j <1 < j+ L do {vectorized}
{access to o; is tiled}
mi < mi + (0;[k] — oy[k])?
end for
end for
for [ such that j <[ < j+ L do {vectorized}
Mgy 4 /Ml
end for
end for
end for

Algorithm 5 Build Medoids

Input: Distance matrix M

Output: Set of medoids C
parall,?l for i =1 to n do

if 3 m,; is minimal then {sum is vectorized}
j=1
C1 < 04

end if
end for
Init D distances to nearest medoid
for [ =2to k do
parallel for i =1 to n do
{sum is vectorized}
n
if > min(d;,m;;) is minimal then
JCL_1<— 0;
end if
end for

Update D
end for

Algorithm 6 Find Best Swap
Input: Distance matrix M, set of medoids C'
Output: 75

Init 7" array of swap effects

parallel for o;, such that 1 < h < n and oy, is not a medoid

do

for [ =1 ton step L do
f0ri=1t0kdloL

+
Tin < Tin+ > Ciin
i=t

end for
end for
end for

Trin — min

in T
1<h<n,1<i<k
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Figure 1. PAM performance on FCS Human dataset

clustered objects and investigated the influence of dataset
properties on runtime of PAM subalgorithms.

Table II
SPECIFICATIONS OF TORNADO SUSU SUPERCOMPUTER NODE
Specifications Processor Coprocessor
Model Xeon X5680  Xeon Phi SE10X
Cores 6 61
Frequency, GHz 3.33 1.1
Threads per core 2 4
Peak performance, TFLOPS 0.371 1.076

Datasets used in experiments are summarized in Tab. III.

Table III
DATASETS SUMMARY
; 10
Dataset p k L
min  max
FCS Human [12] 423 10 2 18

Corel Image Histogram [13] 32 120 5 35

Experimental results for FCS Human dataset are introduced
in figure 1. FCS Human dataset has large dimension so
the most time is taken by calculation of distance matrix.
Calculation of distance matrix on the Intel Xeon Phi is two
times faster then on the Intel Xeon.

Experimental results for Corel Image Histogram dataset are
introduced in figure 2. Data dimension is small so preparing
distance matrix does not require much time. The PAM algo-
rithm is two times slower on the Intel Xeon than on the Intel
Xeon Phi.

Experiments show that PAM performance depends on clus-
tered data nature. The most complex thing for large dimension
data is calculation of distance matrix. In case of small dimen-
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Figure 2. PAM performance on Corel Image Histogram dataset

sion data the rest of the PAM subalgorithms take significantly
larger part of runtime than distance matrix calculation.

V. RELATED WORK

A significant amount of work has been done in the area of
cluster analysis. The classical k-Means and k-Medoids algo-
rithms was suggested in [2], [3]. The original PAM algorithm
was proposed in [11].

The research devoted to accelerating clustering algorithms
using parallel hardware includes the following. In  [14]
FPGA and GPU implementations of k-Means are compared.
Authors of [15] describe improvements of k-Means reducing
data transfers between CPU and GPU. In [16] a technique
improving data distribution among GPU threads in k-Means
is suggested. k-Means implementation for Hadoop framework
with GPUs is described in [17]. In [8] several clustering
methods on GPU including k-Medoids are implemented. A
GPU-based framework for clustering genetic data using k-
Medoids is described in [9] .

In our opinion currently the potential of the Intel MIC ac-
celerators for cluster analysis is underestimated. To the best of
our knowledge there is only paper [18] devoted to adaptation
the DBSCAN density-based clustering algorithm for the Intel
MIC architecture. The contribution of this paper is technique
of acceleration of the Partitioning Around Medoids clustering
algorithm with the Intel Xeon Phi many-core coprocessor.

VI. CONCLUSION

The paper has described a parallel version of Partitioning
Around Medoids clustering algorithm for the Intel Xeon Phi
many-core coprocessor. Parallelizing is based on OpenMP
technology. Loop operations are adapted for vectorization.
Algorithm uses a distance matrix calculated in advance and
stored in the coprocessor’s memory. Algorithm stores data in
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continuous arrays and process data by chunks to achieve data
locality for better performance.

Experimental results show effectiveness of suggested ap-
proach. Experiments show that PAM performance depends
on clustered data nature. The most complex thing for large
dimension data is calculation of distance matrix. In case of
small dimension data the rest of the PAM subalgorithms
take significantly larger part of runtime than distance matrix
calculation.

As future work we plan to extend our research in the
following directions: implement our algorithm for the cases
of several coprocessors and cluster system based on nodes
equipped with the Intel Xeon Phi coprocessor(s).
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