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Abstract: Computer-aided diagnosis permits biopsy specimen analysis by creating quantitative
images of brain diseases which enable the pathologists to examine the data properly. It has been
observed from other image classification algorithms that the Extreme Learning Machine (ELM)
demonstrates superior performance in terms of computational efforts. In this study, to classify the
brain Magnetic Resonance Images as either normal or diseased, a hybridized Salp Swarm Algorithm-
based ELM (ELM-SSA) is proposed. The SSA is employed to optimize the parameters associated with
ELM model, whereas the Discrete Wavelet Transformation and Principal Component Analysis have
been used for the feature extraction and reduction, respectively. The performance of the proposed
“ELM-SSA” is evaluated through simulation study and compared with the standard classifiers such
as Back-Propagation Neural Network, Functional Link Artificial Neural Network, and Radial Basis
Function Network. All experimental validations have been carried out using two different brain
disease datasets: Alzheimer’s and Hemorrhage. The simulation results demonstrate that the “ELM-
SSA” is potentially superior to other hybrid methods in terms of ROC, AUC, and accuracy. To achieve
better performance, reduce randomness, and overfitting, each algorithm has been run multiple times
and a k-fold stratified cross-validation strategy has been used.

Keywords: MRI classification; Salp Swarm Algorithm; Extreme Learning Machine; hybridized
ML lassifiers

1. Introduction

To facilitate doctors for diagnosis of brain disease, proper analysis and classification
of various types of brain images are required. The conventional images used for this
purpose are Computed Tomography, Positron Emanation Tomography, Ultrasonography,
X-radiation, and Magnetic Resonance Imaging (MRI). Out of these techniques, the MRI
serves as a better source of information for brain study and it helps to recognize tissues
with a higher spatial resolution. However, its analysis is complex and time-consuming.
Consequently, a computerized framework needs to be developed for automatic diagnosis
using appropriate Computer-Aided Diagnosis (CAD) arrangement.

The MRI is a useful asset for imaging of the human cerebrum which uses radiology
waves and magnetic fields. For biomedical research and clinical examination, it provides
adequate data of the delicate mind tissues [1]. The MRI gives a better quality contrast for
various cerebrum tissues and creates fewer antiquities [2–4] compared to other imaging
processes. The CAD-based analysis from MR pictures has gained increasing importance
among researchers [5]. For appropriate classification of MR pictures, the extracted features
play an important role.
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The Extreme Learning Machine (ELM) is chosen for the classification of brain im-
ages as it processes faster. In ELM architecture, the weights and biases are initialized
randomly, and the proper weights of the model are obtained using Moore–Penrose (MP)
generalized inverse. The ELM model has proven to be useful and reliable classifier for
many applications [6]. To further improve the performance of the ELM network, its associ-
ated conventional weights have been optimized using bioinspired Salp Swarm Algorithm
(SSA) [7]. The major challenge lies is extraction of required features from MR images and
subsequent reduction of less important features which assist in reducing the classifica-
tion complexity.

To achieve better final weights of various Artificial Neural Network (ANN) struc-
tures during the training phase, different evolutionary computing techniques have been
employed [8–10]. The single hidden layer feedforward hidden layer network is a standard
ANN structure that trained by the back-propagation (BP) learning utilizing gradient de-
scent strategy which minimizes the cost function. However, BP-based learning is sensitive
to initial weights and convergence rate is slower. To improve the learning rate, momentum
and step size variation have been introduced [11–14]. The ELM is a faster model proposed
by Huang et al. [15], which used arbitrary initial weights and biases, and final weights are
obtained using MP generalized inverse.

In a recent work [3], the Support Vector Machine (SVM) classifier employs Two-
Dimensional Discrete Wavelet Transformation (2D-DWT)-based features of MR image
and is reported to provide 4% more accuracy than the Self-Organizing Map model. In
another study, El-Dahshan et al. [16] have used 2D-DWT and PCA for feature extraction
and reduction, and K-Nearest Neighbor (KNN) and Back-Propagation Neural Network
(BPNN) for classification of MR images. From the simulation study, it is observed that
the average performance of KNN is superior to the BPNN. To improve the accuracy,
swarm intelligence techniques are used to tune the model parameters [17,18]. The authors
of [19,20] have suggested an ELM training using Differential Evolution (DE) and Particle
Swarm Optimization (PSO) optimization. For classification task, the BPNN model have
used different filters for preprocessing the images and Feedback Pulse Coupled Neural
Network has been used for segmentation technique, and both 2D-DWT and PCA for
extraction and reduction of features respectively [21]. Dehuri, S. et al. [22] have proposed an
improved particle swarm optimization technique to train Functional Link Artificial Neural
Network (FLANN) architecture for classification of brain tumor MRI images as malignant
or benign. As the FLANN is a single-layered structure, it requires fewer parameters to be
tuned. In this article, the authors have optimized FLANN weights and have achieved good
classification accuracy as compared to FLANN with gradient descent learning and SVM
model with radial basis function kernel. In another communication, Chao Ma. et al. [23]
have applied the Artificial Bee Colony optimization technique to adjust the parameters
of the ELM architecture and obtained a better generalization performance in terms of
classification accuracy. Eusuff et al. [24] have suggested a Shuffled Frog Leaping Algorithm
approach to tune ELM parameters [25]. The authors of [26] have employed the Salp Swarm
Algorithm (SSA) [27] in SVM + RBF hybridized model for classification of MR images.
They have reported an accuracy of 0.9833, sensitivity of 1, and specificity of 0.9818 which
are better than those obtained from SVM classifier.

Different variations of 2D-DWT have been used for feature extraction in classification
task, however for obtaining higher accuracy, the authors have used a smaller dataset. The
motivation and objective of this work is as follows:

(i) To develop an automatic biomedical image classification model offering satisfactory
and reliable performance using large MR image datasets.

(ii) To further improve the performance, hybridized models are proposed for tuning the
parameters of the models using bioinspired optimization techniques.

(iii) The lack of salp inspired algorithms in literature is a main motivation of this paper.

In this study, the classification task is carried out using ELM [28–30], FLANN, RBFN,
and BPNN machine learning models. The SSA, PSO, and DE optimization methods have
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been utilized for achieving best possible parameters of the models. The main contributions
of this paper are listed below.

(i) Which activation function of ELM network has yielded faster convergence dur-
ing training?

(ii) Which bioinspired technique optimized the ELM parameters in a better way?
(iii) How much performance improvement was achieved using proper classification models?
(iv) ELM-SSA exhibits superior performance over FLANN, RBFN, and BPNN models

hybridized with PSO, DE as well as SSA schemes.
(v) On average, the ELM-SSA model yields lower execution time compared to other models.
(vi) In general, the proposed ELM-SSA model outperforms other hybridized classification

models such as FLANN-SSA with an improvement in accuracy of 5.31% and 1.02%
for Alzheimer’s and Hemorrhage datasets, respectively.

(vii) The ELM-SSA model has produced 8.79% and 2.06% better accuracy as compared to
RBFN-SSA for two datasets.

(viii) ELM-SSA has also shown 7.6% and 1.02% higher accuracy for the two datasets,
respectively, as compared to BPNN-SSA.

The proposed ELM-SSA utilizes the Contrast-Limited Adaptive Histogram Equal-
ization (CLAHE) [31,32] for preprocessing purpose, in addition, the 2D-DWT and PCA
are chosen for extraction and reduction of features respectively. A 5 × 5 fold stratified
cross-validation scheme is used to preserve the imbalanced class distribution. From the
simulation of different datasets, it is observed that the proposed approach demonstrates
better accuracy in contrast to other hybridized classifiers.

The rest of the article is organized as follows. Section 2 describe with different
methodologies adopted in this work. Concise presentation of various sub-block of the
hybrid model is presented in Section 3. Section 4 provides the detail simulation based
experiment of the model and finally in Section 5, the conclusion and findings of this work
are summarized.

2. Materials and Methods

This section provides a detailed description of the data set and the methodologies
adopted in this study. The methodology comprises of five substages: (1) level-3 2D-DWT
for extraction of features, (2) feature reduction employ using PCA, (3) overfitting control
using stratified k-fold cross-validation, (4) development of ELM classifier, and (5) use of
SSA to adjust the parameters of ELM.

2.1. 2D-DWT for Feature Extraction

The CLAHE [32] preprocessing method based on histogram equalization is used
to retain the sharpness of the images and to enhance the edges, the Wavelet Transform
(WT) has the potentiality to retain time frequency information and thus is better suited for
extracting the features.

The WT of a continuous function like f (x), related to a wavelet function ϕ(x) is
described using Equations (1) and (2).

Wϕ(s, t) =
∫ +∞

−∞
f (x)ϕs,t(x)dx (1)

ϕs,t(x) =
1√

s
ϕ

(
x− s

t

)
; s ∈ R+, t ∈ R+ (2)

ϕs,t(x) is built from the parent wavelet ϕ(x) by utilizing the dilation factor S and translation
parameter t. Preventing the parameters s and t with s = 2J and t = 2jk. The discrete
version of Equation (1) has been mentioned in Equation (3).

DWTf (n) =

{
Pj,k(n) = ∑n f (n)Gj ×

(
n− 2jk

)
Qj,k(n) = ∑n f (n)Hj ×

(
n− 2jk

) (3)
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where Pj,k(n) and Qj,k(n) refer to the approximate and detail components, respectively.
The parameters j and k represent wavelet scale and translation factors, respectively. The
functions G(n) and H(n) represent the low-pass and high-pass filters, respectively. It
combines these High-Pass and Low-Pass filters and then downsamplers (DS) by a factor of
two. The filter bank approach DWT when applied to MR image, the sub-bands obtained
after two stages is shown in Figure 1. Four different sub-bands are AA for (LOW–LOW),
AB for (LOW–HIGH), BA for (HIGH–LOW), and BB for (HIGH–HIGH), and they are
obtained as shown in Figure 1.

Figure 1. Filter bank approach of 2D-DWT for MR image synthesis.

As the Haar wavelet is symmetric and performs better with noisy data, it is chosen
in this case. The wavelet coefficients are arranged as a feature vector (FV). If there are
M images and N features per image, a Feature Matrix (FM) of size M× N is generated.
Algorithm 1 represents the steps required to obtain the FM.

Algorithm 1 Extraction of Feature Matrix (FM)
Input: M: Total number of pictures having size C× C.
Output: FM having size [1 : M, 1 : N]: The coefficients of the L-3 Haar wavelet is calculated
by waveAppCoe f f ().
Step 1: Initialize, i = 1, N ←

(
C
8

)
×
(

C
8

)
(Amount of extracted features)

Step 2: Generate an empty matrix EM[1 :
(

C
8

)
, 1 :

(
C
8

)
] and empty vector EV[1, 1 : N]

Step 3: for n = 1 to M do
Step 4: Obtain MRIn − nth MR image
Step 5: EMn

[
1 :
(

C
8

)
,
(

C
8

)]
← waveAppCoe f f ()

Step 6: while i ≤ N do
Step 7: for s =

(
1− C

8

)
do

Step 8: for t =
(

1− C
8

)
do

Step 9: FVn[1, i]← EMn[s, t]
Step 10: i = i + 1
Step 11: end for
Step 12: end for
Step 13: end while
Step 14: FM[n, (1 : N)]← FVn[1, (1 : N)]
Step 15: end for

Before reducing the features by the PCA, the FM needs to be normalized by Z-score
normalization which is calculated by subtracting the mean from observed feature value
and then dividing the standard deviation

2.2. Principal Component Analysis (PCA) for Reducing Features

Independent component analysis (ICA) and PCA are well-known methods for trans-
forming the higher dimension feature vector into a lower dimension FV [33]. In contrast to
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ICA, PCA involves less computational complexity and very less complexity also, so most
researchers widely used this methodology. The algorithmic steps of PCA are explained in
Algorithm 2.

Algorithm 2 Feature reduction using PCA [34]
Input: Primary feature vector.
Output: Reduced feature vector. Let X be an input data set of N points and each having p
dimensions, which is represented by Equation (4) .

X =

 X1,1 · · · X1,p
...

. . .
...

XN,1 · · · XN,p

 (4)

Step1: Compute the mean of X(X̄ :) which is represented by Equation (5)

X̄ =
1
N

N

∑
i=1

Xi (5)

Step 2: Find out the deviation from mean: Q = X− X̄
Step 3: Calculate the covariance matrix

(
CQ
)

which is mentioned in Equation (6)

CQ =
∑N

i=1
(
Xi − Xi

)T ×
(
Xi − Xi

)
N − 1

(6)

where the correlation between these two dimensions such as i and j are represented by
Equation (7):

CQ(i, j) = CQ(j, i) =
∑N

k=1(Q(k, i)×Q(k, j))
N − 1

(7)

If CQ(i, j) > 0, then both (i, j) are similar. if CQ(i, j) = 0, then both (i, j) are independent. if
CQ(i, j) ≤ 0, then i and j are opposite.
Step 4: Compute the Eigen Vectors and Eigen Values of CQ.
Step 5: Rearrange the Eigen Vectors and Eigen Values: λ1 ≥ 22 ≥ . . . .λn
Step 6: The Eigenvectors having the biggest Eigenvalues come to a new space which
consists of the essential coefficients, is represented through Equation (8).

Feature Vector = (eg1, eg2, . . . , egn) (8)

2.3. k-Fold Cross-Validation

During the training of the classifier, the overfitting problem may occur by generating
less error value but while testing with new data, the error produced is high. Therefore,
to avoid such overfitting problem k-fold cross-validation scheme is used. In this scheme,
the whole dataset is divided randomly into a k-fold partition where one fold is required
for testing and the remaining folds are used for training. Finally, the mean of the error
generated in all sets are calculated. This process is repeated until each fold data is tested.

2.4. Classification Using ELM

The ELM-SSA classifier is employed in the brain MR images for binary classifica-
tion. The ELM is one of the best learning frameworks which was proposed by Huang in
2006 [15]. It has a good generalization performance along with a faster learning rate as
compared to traditional learning techniques such as the SVM, Back-Propagation, ANN,
Least Square-SVM, etc. It contains only one hidden layer of which the weights and bias
values are adjusted. Instead of gradient descent based back propagation learning, it uses
MP generalized inverse technique to find output weights. Figure 2 represents the schematic
diagram of the ELM model.
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Figure 2. Schematic structure of ELM model.

The expression of actual output of the above schematic structure is represented by
Equation (9).

Oj =
L

∑
i=1

βig
(
wi · xj + bi

)
, i = 1, 2, . . . L, j = 1, 2, . . . m (9)

where x and y are input and output vectors, respectively; bi is a bias of ith hidden neurons;
the weight vector between input and hidden layer is represented by wi = [wi1, wi2]; and
m and L denote the number of the training sample and hidden nodes, respectively. Oj
represents the output vector of the jth input vector. The output weight matrix (β) joins ith
hidden nodes with output neurons and g(x) is an activation function.

The ELM starts with arbitrary m distinct samples with zero error, which is represented
through Equation (10).

m

∑
j=1

∥∥Oj − yj
∥∥ = 0 (10)

Given a training set as (xj, yj), here xj = [xi1, xi2, . . . xiN ]
T , yj =

[
y1, y2, . . . yQ

]T , where
Q and N are target values and number of variables, respectively. The relationship between
Hidden layer output matrix (H), output weight (β), and target training matrix (Y) is
expressed by Equation (11). The target training matrix (Y) and output weight (β) matrix is
represented by Equation (12).

H × β = Y (11)

β =


β1

T

β2
T

...
βT

L


L×Q

, Y =


YT

1
YT

2
...

YT
m


m×Q

(12)

H(w1, . . . , wm, b1, . . . , bL, x1, . . . xm) =

 g(w1 · x1 + b1) · · · g(wm · x1 + bL)
...

. . .
...

g(w1 · xm + b1) · · · g(wm · xm + bL)


m×L

(13)

where Equation (13) represents the hidden layer output matrix H and β can be calculated
using MP generalized inverse of H which is represented by Equation (14).

β = H+T (14)

where H+ denotes MP generalized inverse of H.
As the input weights and biases of ELM are randomly selected, two issues may arise:

(i) During the testing phase, it responds slowly, and (ii) in the presence of maximum hidden
neurons, it produces a poor generalization performance. Therefore, nature and bioinspired
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learning strategies are better candidates to tackle these issues. Thus, SSA is chosen for
optimizing the weights and bias values of the ELM model.

2.5. Salp Swarm Algorithm (SSA)

Recently, Mirjalili et al. [7] have proposed the SSA in 2017 which is based on the
swarming behavior of salps in the ocean. The position vectors of salps are considered
as the weights and bias vector. Each salp updates its position vector including leader
and followers.

Let X represents salp population dimension of N× d, where N denotes the number of
salps with d-dimensions. It is expressed as a matrix, which is shown in Equation (15).

Xi =

 x1
1 · · · x1

d

...
. . .

...
xN

1 · · · xN
d


N×d

(15)

The leader’s position (X1
j ) is calculated as

X1
j =

{ [
Fj + C1

((
Uj − Lj

)
C2 + lbj

)]
, C3 ≥ 0.5[

Fj − C1
((

Uj − Lj
)
C2 + lbj

)]
, C3 < 0.5

(16)

where
Fj: position vector of food source in jth dimension.
U and L: superior and inferior limit, respectively.
C2, C3: are random numbers between 0 and 1.
C1 is expressed as

C1 = 2.e−(
4M
M )

2

(17)

where M is the highest value of iterations and C1 value decreases as iteration count
increases. Thus, it figures out how to put more underscore on the expansion tendency in
the beginning stages. The locations of followers are updated as

xi
j =

xi
j + xi−1

j

2
where (i ≥ 2) (18)

where Xi
j represents the position of ith follower at jth direction. Algorithm 3 represents the

pseudocode of SSA.

Algorithm 3 Salp Swarm Algorithm pseudocode
Set the population of salp and their upper and lower bound.
While (not equal terminate condition) do
Calculate the RMSE for every salp
Consider Leader (F) salp having lowest RMSE
Randomly initialize C2 and C3 between [0, 1]
Update C1 by Equation (17)
For (each salp (xi)) do
if (i == 1) then
Leader salp location updated by Equation (16)
else
Follower salp location updated by Equation (18)
Use upper and lower limit of variables to update the population
Return F
end for loop
end while loop
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2.6. Data Set Description

In this study, two standard MR image datasets, i.e., Alzheimer’s and Hemorrhage,
having 100 and 200 images, respectively, have been used. Each image on the two data
sets has a resolution of 256× 256. The Kaggle website is the source of images which are
of two categories, i.e., normal brain images and abnormal brain images. Table 1 provides
the details of the datasets. Each of the dataset contains 1296 number of features and two
class labels.

Table 1. Datasets specification.

Dataset No. of
Instances

Image
Format Image Size Classes Sample Type No. of

Attribute
Attributes
after PCA

Alzheimer’s 100 BMP 256× 256 2 T2-weighted 1296 39
Hemorrhage 200 JPEG 256× 256 2 T1-weighted 1296 70

In this article, a 5× 5-fold stratified cross-validation technique has been used. Table 2
represents the ratio of number of training and testing images used in Alzheimer’s and
Hemorrhage datasets. Therefore, 5 trials have been taken in two datasets from which
80 images (40 for normal images and another 40 for abnormal images) are used in the
training phase and the remaining 20 images (10 for normal images and another 10 for
abnormal images) are utilized for testing in Alzheimer’s dataset similarly 160 images
(80 for normal images and another 80 for abnormal images) have been used in training
and remaining 40 images (20 for normal images and another 20 for abnormal images) are
employed for testing in Hemorrhage dataset. Each category of brain MR image sample
such as normal brain MR image, Alzheimer’s brain MRI, and Hemorrhage brain MRI are
represented in Figure 3a–c, respectively .

Table 2. Details of 5× 5-fold stratified cross-validation scheme used.

Dataset Total Number of
Images

Number of
Normal Training

Images

Number of
Abnormal

Training Images

Number of
Normal Testing

Images

Number of
Abnormal Testing

Images

Alzheimer’s 100 40 40 10 10
Hemorrhage 200 80 80 20 20

Figure 3. Samples of brain MR image: (a) Normal MRI. (b) Alzheimer’s disease. (c) Hemorrhage’s disease.

In this study, a comparative performance has been carried out between the proposed
hybrid model, i.e., ELM-based SSA (ELM-SSA) with other existing models such as BPNN,
FLANN, and RBFN with other optimization algorithms such as PSO and DE. The perfor-
mance indices used are accuracy, ROC (Receiver Operating Characteristic Curve), and
AUC (Area Under the ROC Curve).
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3. Proposed Methodology

The overall scheme of the proposed hybrid technique (ELM-SSA) for the classification
of brain MRI is shown in Figure 4.

Figure 4. Model for propose ELM-SSA classification of MR brain images.

The methodology SSA based ELM classifier is deal in this section. Each salp of SSA
denotes a candidate in the ELM model. Each salp consists of weights and biases of the
ELM network where n× N + N represents the salp length. Figure 5 denotes the structure
vector of a salp of SSA [35].

Figure 5. Vector structure of salp in ELM-SSA.

In this work, SSA is employed for minimization of misclassification rate which is
considered as cost function defined in Equation (19).

f = min(1− Accuracy) (19)

Here, Accuracy is computed as

Accuracy =
∑n

i=1 ∑c
j=1 f (i, j)c(i, j)

n
(20)

where c represents the total number of classes and n denotes the total number of instances.
f (i, j) = 1, if an instance i is of class j else 0.
c(i, j) = 1, if the predicted class of instance i is j else 0.

4. Experimental Results and Discussion

This section discusses the experimentation details of the proposed model along
with systems configuration, datasets used, parameters setting, validation strategies, and
result analysis.
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4.1. System Configuration

The simulation-based experiments of the proposed classification model are carried
out in this section. The configuration of the computing system used is presented in Table 3.

Table 3. The detailed configuration of the utilized system.

Name (Hardware/Software) Setting

CPU Intel(R) Core(TM) i3-6006U
Frequency 2.0 GHz

RAM 8 GB
Hard Drive 500 GB

Operating System Window 7
Simulation software Mat lab R2015a

An Intel(R) Core(TM) i3-6006U with 2 GHz frequency, 8 GB main memory, Windows 7
operating system and the statistical toolbox of Mat lab R2015a platform have been used for
our experiment.

4.2. Performance Evaluation

The various performance measures used are given below.

• Accuracy: It finds how many brain images are classified correctly from the total image
sets tested.

Accuracy =
tpe + tne

tpe + tne + f pe + f ne
(21)

where tpe = True Positive, tne = True Negative, f pe = False Positive, f ne = False Negative.
• ROC: It is an evaluation measure of binary classification and indicate diagnostic

ability of classifier. It is a probabilistic plot between true positive rate (TPR) and false
positive rate (FPR).

• AUC: It measures the ability of a classifier to differentiate between classes and rep-
resents the summary of the ROC curve. A higher AUC exhibits better between
two classes.

• Overall improvement: It represents the percentage of improvement of the proposed
classifier over other classification models in terms of accuracy, AUC, and ROC.

• Speedup: It measures the relative comparison of execution time without of any
standard classifier, which is represented as

Slatency =
Sold
Snew

(22)

where Sold is the execution time of standard classifier, and Snew is the execution time
of proposed hybrid classier.

4.3. Parameters Setting

Each bioinspired algorithm and classifier structure has various parameters which
need to be adjusted suitably during training phase. Table 4 represents the parameters used
for training. In this study, Gaussian activation function and 10 numbers of hidden nodes
have been considered for both RBFN and BPNN, respectively. As FLANN has single-layer
architecture, the hidden layer concept is eliminated and the expansion size of this classifier
have been considered as 8 for giving better result. There are two common controlling
parameters such as crossover and mutation in DE optimization algorithm having values
of 0.2 and 0.4, respectively. In case of PSO, the value of first acceleration coefficient is
considered as 1.5 and second acceleration coefficient is considered as 2.
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Table 4. Various parameter values used during model development.

ELM RBFN FLANN BPNN PSO DE SSA

Hidden layer
size: 50,

Activation
function:
sigmoid

Basis function:
Gaus-

sian,Hidden
layer size: 10,
Learning rate:

0.5

Size of
expansion: 8

Learning rate:
0.9, Momentum:

0.3, Hidden
layer size: 10,

Activation
function:
Gaussian

Iteration: 100,
Population Size:

50, Inertia
Weight (IW):
0.7, Inertia

Weight
Damping Ratio:

0.1, (c1): 1.5,
(c2): 2

Iteration: 100,
Population Size:
50, Crossover:
0.2, Mutation:
0.4, LB: 0.25,

UB: 0.75

Iteration: 100,
Population Size:

50, Inertia
weight: 0.7

In this simulation study, to have a uniform comparison population size of 50, 100 max-
imum iterations have been considered for all bioinspired algorithms. The first experiment
was conducted to decide the appropriate activation function and number of hidden nodes
of LSTM structure. Five activation functions—sine, sigmoid, tribas, radbas, and hardlimit—
along with 10 to 50 hidden nodes having 5 nodes per increment have been considered in
this work. The simulation results reveals that, the best performance is achieved in sigmoid
activation function along with 50 numbers of hidden nodes in both the datasets which
is shown in Figure 6. To discard the effect of arbitrary inputs to ELM architecture, each
experiment was comprised of 20 trials per fold while keeping same hidden nodes and
activation functions.

Figure 6. Comparison of average accuracy of five different activation functions along with the
number of hidden neurons used in ELM: (a) Alzheimer’s dataset and (b) Hemorrhage dataset.

4.4. Features Extraction and Reduction

The initial dimension of each image is 256× 256 = 65,536. In this work, a 3-level
DWT is used for extracting the feature which produces 36× 36 = 1296 number of features.
To further reduce the number of features, PCA has been used to reduce the dimension
to 39 and 70 in case of Alzheimer’s and Hemorrhage datasets respectively. The reduced
feature is nearly (3%, 5.4%) and (0.05%, 0.1%) of the original dimension for Alzheimer’s and
Hemorrhage datasets, respectively. Figure 7 shows the variance concerning the number of
Principal Components (PCs). The simulation results of both the datasets demonstrate that,
only 39 and 70 PCs maintain more than 95% of the total variance.
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Figure 7. Variance (%) in respect of the number of PCs for both (a) Alzheimer’s and
(b) Hemorrhage dataset.

4.5. Performance Comparison

The reduced 39 and 70 number of features have been applied four different classifiers
such as; ELM, FLANN, RBFN and BPNN. The testing accuracy of base classifiers with
conventional learning models has been obtained and shown in Figure 8.

From the above figure, it is observed that the conventional ELM achieves 87% of
accuracy in case of Alzheimer’s dataset and 88% of accuracy in case of Hemorrhage dataset,
which are superior to accuracy values of other classifiers. To further improve the accuracy,
the parameters of four models have been learned using PSO, DE and SSA.

Figure 8. Comparison of testing accuracy of detection using Alzheimer’s and Hemorrhage datasets
to ELM, FLANN, RBFN, and BPNN.

The comparison of accuracy of the hybrid models has been made in Figures 9 and 10
for the two datasets, respectively. By comparing the classification performance of the
proposed ELM-SSA (Figure 9b) with others (Figure 9a,c,d) using Alzheimer’s dataset, it
is learnt that the ELM-SSA has highest accuracy than other classifiers. It is also observed
that ELM-SSA model provide fastest convergence. The SSA based ELM model offers
the best convergence speed. Similarly, by comparing the ELM-SSA (Figure 10c) with
other classification results (Figure 10a,b,d) for Hemorrhage’s dataset, it can be observed
that the ELM-SSA model yields higher accuracy and faster convergence speed. Table 5
presents the comparison of accuracy and AUC of all models. The classification accuracy
of the ELM-SSA model obtained for Alzheimer’s and Hemorrhage datasets are found
to be 99%. Figures 11 and 12 show the comparison of ROC plots for two datasets using
hybrid classifiers. It is observed from the plot that the ROC of ELM-SSA lies closer to
y-axis which is true positive rate. Figures 13 and 14 display the comparison plots of AUC
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for two datasets using hybrid classifiers. From this plot, it is found that the ELM-SSA
model provides highest AUCs of 0.9695 and 0.9659, respectively, for two datasets which are
superior to other hybridized models. The performance improvement of ELM-SSA model
over other classification models is listed in Table 6.

From Table 6, it is observed that the hybrid classification models which employ
optimization techniques provide better accuracy as compared to basic classification models
without optimization. Further, ELM-SSA model provides 13.79% and 12.5% better accuracy
as compared to basic ELM in case of Alzheimer’s and Hemorrhage datasets, respectively.
Similarly, it is demonstrated that the ELM-SSA model outperforms other hybrid ELM
models with an improved accuracy of 10%, 3.12% and 8.79%, 3.12% in case of Alzheimer’s
and Hemorrhage datasets over the ELM-DE and ELM-PSO models, respectively. The
ELM-SSA also exhibits superior classification compared to FLANN, RBFN, and BPNN
with enhanced accuracy of 22.22%, 30.26% and 26.92% for Alzheimer’s dataset and 22.22%,
23.75%, and 25.31% for Hemorrhage dataset, respectively. The results of Table 6 also show
that ELM-SSA outperforms other hybridized classification models such as FLANN-SSA
with increased accuracy of 5.31% and 1.02% for Alzheimer’s and Hemorrhage datasets
respectively. Similarly, the ELM-SSA has produced 8.79% and 2.06% better accuracy
as compared to RBFN-SSA. ELM-SSA model with 7.6% and 1.02% higher accuracy for
Alzheimer’s and Hemorrhage datasets respectively as compared to the BPNN-SSA.

From the analysis of all results, the ELM model with SSA based parameters tuning
outperforms the basic ELM, FLANN, RBFN, and BPNN classification models. Further,
ELM-SSA also exhibits superior performance over FLANN, RBFN, and BPNN models
hybridized with PSO, DE, as well as SSA schemes.

Figure 9. Comparison of Accuracy of classification of Alzheimer’s dataset using (a) BPNN, (b) ELM,
(c) FLANN, or (d) RBFN.
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Figure 10. Comparison of Accuracy of Hemorrhage dataset using (a) BPNN, (b) RBFN, (c) ELM, ir
(d) FLANN.

Figure 11. Comparison of ROC plots for Alzheimer’s dataset using classifier (a) BPNN, (b) ELM,
(c) RBFN, or (d) FLANN.
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Figure 12. Comparison of ROC plots for Hemorrhage dataset using classifiers (a) BPNN, (b) FLANN,
(c) ELM, or (d) RBFN.

Figure 13. Comparison of AUC values for Alzheimer’s dataset obtained using models (a) BPNN,
(b) ELM, (c) RBFN, or (d) FLANN.
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Figure 14. Comparison of AUC values for Hemorrhage dataset from models (a) BPNN, (b) ELM,
(c) RBFN, or (d) FLANN.

Table 5. Comparison of Accuracy and AUC of hybrid models using Alzheimer’s and Hemorrhage datasets.

Methods Accuracy
(Alzheimer’s)

AUC
(Alzheimer’s)

Accuracy
(Hemorrhage)

AUC
(Hemorrhage)

ELM-SSA 0.99 0.9695 0.99 0.9659
ELM-PSO 0.96 0.8731 0.96 0.9489
ELM-DE 0.90 0.8261 0.91 0.9393

FLANN-SSA 0.94 0.9007 0.98 0.8929
FLANN-PSO 0.93 0.9039 0.97 0.8924
FLANN-DE 0.91 0.8658 0.89 0.8591
RBFN-SSA 0.91 0.9433 0.97 0.9501
RBFN-PSO 0.89 0.9019 0.96 0.8722
RBFN-DE 0.90 0.8650 0.89 0.8275

BPNN-SSA 0.92 0.9373 0.98 0.9373
BPNN-PSO 0.83 0.8134 0.97 0.8204
BPNN-DE 0.89 0.7753 0.96 0.7590

In Table 7, the accuracy of the proposed model has been compared with that ob-
tained from other models in the field for Alzheimer’s and Hemorrhage disease classifi-
cation. The reported results are 93.18%, 98.01%, 96.36% and 96.50% of accuracy in case
of Alzheimer’s dataset [36–39] and 95.73%, 94.26%, and 95.5% of accuracy in case of
Hemorrhage dataset [40–42]. In essence, the proposed model have achieved an average
improvement accuracy of 4% than previously hybrid classification models.

Table 8 shows the comparison of the overall execution time of the proposed and
other hybridized models. It is seen that on an average, the ELM-SSA model yields lower
execution time compared to other models.
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Table 6. Performance comparison of ELM-SSA model with other classification models.

Methods

Classification
Accuracy

(Alzheimer’s
Dataset)

Performance
Improvement of

ELM-SSA (%)

Classification
Accuracy

(Hemorrhage
Dataset)

Performance
Improvement of

ELM-SSA (%)

ELM 0.87 13.79 0.88 12.5
ELM-PSO 0.96 3.12 0.96 3.12
ELM-DE 0.90 10 0.91 8.79
FLANN 0.81 22.22 0.81 22.22

FLANN-SSA 0.94 5.31 0.98 1.02
FLANN-PSO 0.93 6.4 0.97 2.06
FLANN-DE 0.91 8.79 0.89 11.23

RBFN 0.76 30.26 0.80 23.75
RBFN-SSA 0.91 8.79 0.97 2.06
RBFN-PSO 0.89 11.23 0.96 3.12
RBFN-DE 0.90 10 0.89 11.23

BPNN 0.78 26.92 0.79 25.31
BPNN-SSA 0.92 7.6 0.98 1.02
BPNN-PSO 0.83 19.27 0.97 2.06
BPNN-DE 0.89 11.23 0.96 3.12

Table 7. Comparison of classification Accuracy of ELM-SSA model with other models using
Alzheimer’s and Hemorrhage Datasets.

Paper Classifier
(Techniques)

Accuracy (%) of
Alzheimer’s Dataset

Accuracy (%) of
Hemorrhage Dataset

[36] Res-Net 93.18 -
[37] 3D-CNN 98.01 -
[38] VGG 96.36 -
[39] SVM(CHFS) 96.50 -
[40] CNN(GC-SDL) - 95.73

[41] Alex
Net(CLAHE+SITF) - 94.26

[42] K-NN(GLCM) - 95.5

[42] Multilayer Perceptron
(GLCM) - 95.5

Proposed model ELM-SSA
(DWT+PCA) 99 99

Table 8. Comparison of average execution time of proposed ELM-SSA model with other classification models.

Models
Total Execution Time

(Second)
(Alzheimer’s Dataset)

Speedup of ELM-SSA
Total Execution Time

(Second)
(Hemorrhage Dataset)

Speedup of ELM-SSA

ELM 700 1.06× 780 1.03×
ELM-SSA 660 - 755 -
ELM-PSO 710 1.07× 790 1.04×
ELM-DE 725 1.09× 800 1.05×
FLANN 720 1.09× 810 1.07×

FLANN-SSA 745 1.12× 850 1.12×
FLANN-PSO 680 1.03× 844 1.11×
FLANN-DE 755 1.14× 890 1.17×

RBFN 758 1.14× 840 1.10×
RBFN-SSA 765 1.15× 910 1.20×
RBFN-PSO 790 1.19× 940 1.24×
RBFN-DE 777 1.17× 955 1.26×

BPNN 765 1.15× 880 1.16×
BPNN-SSA 810 1.22× 910 1.20×
BPNN-PSO 885 1.34× 905 1.19×
BPNN-DE 880 1.33× 910 1.20×
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4.6. Analysis of Computational Time

The computational time of each phase of proposed hybrid classifier (DWT + PCA +
ELM-SSA) has been calculated for both the datasets. Figure 15 represents the comparison
of the average time required for feature extraction, feature reduction, and classification
over both the datasets in seconds (s) for a single brain image having a size of 256× 256.

For the Alzheimer’s dataset, each brain MR image takes 0.015 s, 0.004 s, and 0.001 s
for feature extraction, feature reduction and in classification, respectively, whereas the
corresponding times are 0.014 s, 0.005 s, and 0.0018 s for the Hemorrhage dataset. It has been
also found from the above analysis that the overall computational time for processing each
MR image of Alzheimer’s and Hemorrhage datasets are 0.0202 s and 0.0205 s, respectively.
It is also observed that feature extraction phase consumes more time than either feature
reduction and classification steps.

Figure 15. Average computational time in (second) at different phases of ELM-SSA over Alzheimer’s
and Hemorrhage datasets.

The summary of the investigated is listed in steps:

• In this work, Alzheimer’s and Hemorrhage brain MRI datasets has been considered
and are used for classification with RBFN, FLANN, BPNN, and ELM models.

• The training process of ELM is very simple, but it needs more hidden unit’s compari-
son to RBFN, FLANN, and BPNN models.

• The suitable activation function and appropriate number of hidden nodes of ELM are
chosen by trial and error. In this work, it is found that, sigmoid activation function
and 50 numbers of hidden units provide better accuracy than those obtained by other
combination.

• For achieving the best possible classification, different bioinspired techniques such as
PSO, DE, and SSA have been chosen.

• To find the maximum accuracy, the SSA tuned ELM classifier is found to be best.
• For a comparison purpose, same population size and number of iterations are taken

in all the evolutionary algorithms
• Higher classification accuracy is demonstrated by the proposed ELM-SSA approach

for the two datasets
• The highest AUC value is achieved by the ELM-SSA model compared to other hy-

bridized classifier which is true for the two datasets.
• The ELM-SSA model exhibits the best ROC plots for the two datasets used.
• In Table 6, it is shown that the ELM-SSA combined model produces better classification

accuracy than the basic ELM as well as other classification schemes using FLANN,
RBFN, and BPNN models.



Mathematics 2021, 9, 2095 19 of 21

• It is also observed that feature extraction phase consumes more computational time
than either of feature reduction and classification stage.

• In general, the proposed ELM-SSA model outperforms other hybridized classification
models such as FLANN-SSA with an improvement in accuracy of 5.31% and 1.02%
for Alzheimer’s and Hemorrhage datasets respectively. Similarly the ELM-SSA model
has produced 8.79% and 2.06% better accuracy as compared to RBFN-SSA for two
datasets. ELM-SSA has also shown 7.6% and 1.02% higher accuracy for Alzheimer’s
and Hemorrhage datasets, respectively, as compared to BPNN-SSA.

• In general, it is found that the proposed ELM-SSA model executes faster than other
models over both the datasets.

5. Conclusions and Future Work

The paper has suggested an efficient and faster hybrid classification model using two
standard MR image datasets. Through exhaustive simulation study, it is demonstrated that
the proposed ELM-SSA model outperforms other competitive conventional and hybrid ML
models. A special ongoing favorable metaheuristic optimization algorithm like Salp Swarm
Algorithm has been proposed in this work. As the output weight of the learning model
depends on arbitrary input weights and biases, it needs to optimize the hidden neuron
parameters in ELM for better results. The SSA-based ELM model exhibits parameters
tuned. From the above discussion, the ELM-SSA model has shown 13.79% and 12.5%
improved accuracy as compared to basic ELM model for two datasets. Similarly, the ELM-
SSA model also outperforms other hybrid ELM models such as ELM-DE and ELM-PSO
with an improved accuracy of 10%, 3.12% and 8.79%, 3.12% in case of Alzheimer’s and
Hemorrhage datasets, respectively. The ELM-SSA also exhibits superior classification
compared to FLANN, RBFN, and BPNN with an enhanced accuracy of 22.22%, 30.26%, and
26.92% for Alzheimer’s dataset and 22.22%, 23.75%, and 25.31% for the Hemorrhage dataset,
respectively. ELM-SSA outperforms other hybridized classification models such as FLANN-
SSA with increased accuracy of 5.31% and 1.02% for Alzheimer’s and Hemorrhage datasets
respectively. Similarly, the ELM-SSA has produced 8.79% and 2.06% better accuracy as
compared to RBFN-SSA. The proposed model with 7.6% and 1.02% higher accuracy for
Alzheimer’s and Hemorrhage datasets, respectively, as compared to the BPNN-SSA. It has
been found from the results section that the ELM-SSA model provides the highest AUCs of
0.9695 and 0.9659, respectively, for two datasets which are superior to other hybridized
models. The classification accuracy of the ELM-SSA model obtained for both datasets is
found to be 99%. It was also found that ELM based hybrid classification model such as
ELM-SSA is a better classifier model as compared to FLANN, RBFN, and BPNN classifiers
optimized by SSA, PSO, and DE concerning classification accuracy, ROC, and AUC.

In the future, the potentiality of SSA can employed for Kernel ELM (K-ELM) and
Regularized ELM model. Classification accuracy can be improve by using different deep
learning techniques and ensemble models.The performance of proposed model could be
improvised by adding more samples and different augmentation techniques.
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