
ISSN0361-7688, ProgrammlngandComputerSojtwal'e, 2015, Vol 41, No. 6,pp. J50-J60.
Original lbtsstan 7ext Cl C.S. Pan, M.L. Zymbler, 2015, published in Progrommtravanle, 2015, Vol. 41, No. 6.

Encapsulation of Partitioned Parallelism
into Open-Source Database Management Systems

C. S. Pan and M. L. Zymbler
South Ural State University, pr. Lenina 76, Chelyabinsk, 454080 Russia

e-mail: pan@susu.ru, mzym@susu.ru
Received May 15, 2014

Abstract-This paper presents an original approach to parallel processing of very large databases by means of
encapsulation of partitioned parallelism into open-source database management systems (DBMSs).
The architecture and methods for implementing a parallel DBMS through encapsulation of partitioned par
allelism into PostgreSQL DBMS are described. Experimental results that confirm the effectiveness of the
proposed approach are presented.

DOI: 10.1134/S0361768815060067

1. INTRODUCTION

Big Data are now being one of the main factors that
considerably affect the field of data processing. In
today's information society, there is a variety of appli
cations (social networks, <ligital libraries, geographic
information systems, etc.) that produce-at 1 TB per
day-huge amounts of unstructured data. Cleaning
and structuring Big Data result in very large databases,
which require parallel processing.

Presently, parallel database management systems
(DBMSs) [l], which are responsible for query pro
cessing on multiprocessor and multicore computing
systems, are regarded by the scientific community as
almost the only effective instrument for storing and
processing very large databases. Parallel DBMSs are
based on partitioned parallelism [2], which assumes
fragmenting database relations into horizontal parti
tions, which, in turn, can be processed independently
on different nodes of a cluster computing system.

Presently-available parallel DBMSs (for example,
Teradata [3], Greenplum [4], and DB2 Parallel Edi
tion [5]), however, are expensive and often designed
for special-purpose hardware and software platforms.

This fact gave reasons for development of cluster
DBMSs [6], which implement parallel processing of
very large databases on computing systems with cluster
architecture by means of middleware. The cluster
DBMS oriented to online transaction processing
(OLTP) processes a large number of short transactions
and uses middleware to provide inter-transaction par
allelism. Clients connecting to the system are distrib
uted to be serviced by several instances of the DBMS,
which increases the availability of the system for a
great number of clients. When the cluster DBMS is
oriented to online analytical processing (OLAP} and

executes complex select queries from very large data
bases, middleware provides intra-query parallelism by
receiving, transforming, and distributing user queries,
as well as by merging partial results and transferring
them to the user.

MySQL Cluster [7], which supports OLTP, is con
structed by connecting a NDB module to MySQL
DBMS, which enables data storage in the memory of
many distributed computational nodes with allowance
for partitioning and replication. The scalability of
MySQL Cluster is limited to 48 nodes; databases more
than 3 TB in siz.e are not supported. Oracle Real Applica
tion Clusters (RAC) [8] stores up to three database (DB)
replicas to ensure high data availability and load balanc
ing among cluster nodes; the scalability of this DBMS,
however, is limited to 100 computational nodes.

Another OLAP cluster DBMS is implemented in
the framework of the ParGRES project [9]. Experi
ments show high scalability of this system; however,
full replication of all DB tables on computational
nodes can be regarded as its drawback. vParNDB [10]
is a middleware that rewrites queries so that they can
be executed in parallel with the use of the computa
tional nodes on which MySQL Cluster is deployed.
Experiments show a decent gain in speed with this
approach, yet the solutions based on MySQL Cluster
inherit the above-mentioned limitations of this
DBMS.

Open-source DBMSs [ll] are now being a reliable
alternative to commercial DBMSs [12]. At the same
time, there is a lack of open-source DBMSs that sup
port partitioned parallelism. In [13], a prototype
open-source parallel DBMS for cluster computing
systems is described. HadoopDB DBMS [14] is an
architectural hybrid between the MapReduce para-

350

ENCAPSULATION OF PARTITIONED PARALLELISM 351

:Client

replicate
query

coordinator
:DBMS :DBMS

Fig. 1. Query replication.

:DBMS

digm [15] and the technology of relational DBMSs.
In HadoopDB, the Hadoop framework [16] imple
ments MapReduce computations and enables the
communication infrastructure connecting the cluster
nodes on which instances of PostgreSQL are
deployed. SQL queries are translated into tasks for the
MapReduce environment, which are then sent to the
DBMS instances.

The lack of the open-source DBMSs exploiting
partitioned parallelism is due to the fact that parallel
DBMSs belong to the class of complex system soft
ware, while the development of such software is rather
expensive and takes a lot of time.

Therefore, the idea of upgrading the original
source code of an open-source serial DBMS to con
struct on its basis a parallel DBMS by encapsulation of
partitioned parallelism seems promising. In this case,
the upgrade of the source code implies no large-scale
modifications of original subsystems, which otherwise
would be similar to developing a parallel DBMS from
scratch. Commercial parallel DBMSs designed for
special-purpose hardware platforms are expected to be
more effective then a parallel cluster DBMS con
structed by modifying the source code of a serial
DBMS. The latter, however, is potentially comparable
with commercial DBMSs in terms of scalability, which
is achieved by adding new computational nodes into
the cluster, still offering a less expensive solution.

This paper presents an approach for parallel pro
cessing of very large databases, which is based on the
idea of upgrading the original source code of an open
source serial DBMS to construct on its basis a parallel
DBMS for cluster computing systems by encapsula
tion of partitioned parallelism.

The paper is organized as follows. Section 2 pres
ents an approach to developing a parallel DBMS
through encapsulation of partitioned parallelism into
an open-source serial DBMS. Section 3 describes
architecture and methods for implementing a parallel
DBMS constructed by applying the proposed
approach to PostgreSQL. Results of computational

experiments to estimate effectiveness of the proposed
methods are given in Section 4. The basic results and
directions of further investigations are discussed in the
Conclusion section.

2. METHODS FOR ENCAPSULATION
OF PARTITIONED PARALLELISM

This section describes a complex of methods for
encapsulation of partitioned parallelism into an open
source DBMS.

2.1. Query Replication

Query replication assumes sending a query to a
number of DBMS instances, with each instance pro
cessing its own DB partition (see Fig. 1).

One of the DBMS instances (for example, the one
running on the cluster node with a zero number) is
declared to be a coordinator. Query execution is orga
nized so that all the instances-except the coordina
tor-return the empty result, having sent their partial
results to the coordinator before execution is com
plete. The coordinator merges the partial results and
sends them to the client. When one of the instances
fails to execute the query, the coordinator returns the
error as a final result.

2.2. Parallel Execution Plan
and the Exchange Operation

Despite the fact that, in the process of query execu
tion, each DBMS instance processes its own DB par
tition independently, tuple exchange is required to
obtain a correct result. For example, when executing
the natural join of two relations according to a com
mon attribute, the tuples for which the join condition
is fulfilled can be stored in different DB partitions.
To handle such situations, a parallel execution plan is
constructed, which is a serial plan with exchange oper
ations inserted into its certain points.

The exchange operation [17] distributes tuples
among DBMS instances deployed on different com
putational nodes of the cluster systems. This operation
is implemented by analogy with other operations of
physical algebra, which have the iterator interface. The
exchange operation has two properties: port and dis
tribution function '1J. The port property distinguishes
exchange operations from one another in one execu
tion plan: tuples from one point of the plan must fall
within the same point of the plan on the other compu
tational node. The distribution function "1(t) calculates
the ID of the node on which the tuple t is to be pro
cessed. If the tuple tis required on the local node, then
it is passed further along the plan; otherwise, it is sent
to the node with the number '1J(t).

Figure 2 depicts the structure of the exchange oper
ation (the direction of tuple distribution is shown by
arrows). The operations split, scatter, gather, and

PROGRAMMING AND COMPUTER SOFfWARE Vol. 41 No. 6 2015

352 PAN, ZYMBLER

port
exchange function 'ljJ

Fig. 2. Architecture of the exchange operation.

merge, which are part of the exchange operation, are
also implemented based on the iterator model.

The split operation is a binary operation that classi
fies tuples arriving from the input stream either as
"native" or as "alien." The "native" tuples must be
processed on the current computational node and are
sent to the output buffer of the split operation. The
"alien" tuples must be processed on the computa
tional nodes other than the current one; these tuples
are placed by the split operation into the output buffer
of the scatter operation.

The scatter operation is a 0-ary operation that, hav
ing extracted tuples from its output buffer, calculates the
value of the distribution function for these tuples and
sends them to the corresponding computational nodes
according to the given number of the exchange port.

The gather operation is a 0-ary operation that reads
into its output buffer tuples from the specified
exchange port for all computational nodes other than
the current one.

The merge operation is a binary operation that
extracts tuples, one by one, from the output buffers of
its sons and places them into its own output buffer.

The original query executor of a serial DBMS exe
cutes the exchange operation just like any other with
out any parallelism. Parallelism is achieved owing to
the query parallelizer, which inserts exchange opera
tions into certain points of the execution plan so that
the logic of the query executor yields a correct result.

2.3. Adding Partition Metadata into
the DBMS Dictionary

The procedure of relation partitioning depends on
the partition function associated with the given rela
tion. For each tuple of the relation, the partition func
tion calculates the number of the computational node
on which this tuple must be accommodated. To pro-

vide the DBMS instance with the information about
table partitioning, the DB language should be
extended with syntactic constructions, which allow
one to define the partition function when executing
the command CREATE TABLE, while the DBMS
dictionary should be supplemented with metadata
about relation partitioning.

2.4. Parallel Plan of Data Modification Queries

The above scheme of parallel plan construction is
valid in the case of queries for data from the relations
the partitions of which are distributed over computa
tional nodes of the cluster system. This scheme, how
ever, should be modified to ensure correct execution
of queries for inserting and updating data (see Fig. 3).
When executing the INSERT query, the tuple must be
inserted only into one of the partitions, despite the fact
that this query is replicated. When processing the
UPDATE query, the updated tuples for which the par
tition function returns a value different from the ID of
the current node must be transferred to the corre
sponding computational node.

2. 5. Transparent Porting
of Original DBMS Applications

The source code of the user applications written for
the original open-source DBMS should undergo min
imum modifications to make them capable of running
in a parallel DBMS developed on the basis of the for
mer. The transparent porting of the original DBMS
applications to the parallel DBMS is implemented by
developing an application programmer library, the
interface of which is identical to that of the original
library. The new library replicates queries through
multiple invocations of functions from the original
library and, while having the interface identical to that
of the original library, enables transparent communica
tion between the application and the parallel DBMS.
Thus, when switching from the serial DBMS to the par
allel one, only the name of the application programmer
library is to be changed in the application code.

EJ EJ EJ
6

INSERT INSERT INSERT

~era
t t t

UPDATE UPDATE UPDATE

Fig. 3. Tuple insert and tuple update operations.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

ENCAPSULATION OF PARTITIONED PARALLELISM 353

II origfile.c
#include "newfile.c"
typedef struct origstruct {

newstruct ns;
} origstruct;

int origfunc() {

newfunc();

}

II newfile.c
typedef struct newstruct {

} newstruct;

int newfunc() {

}

Fig. 4. Adding fields into the structure and the call state
ment into the function.

2.6. Soft Modification of the Original
DBMS Source Code

A DBMS is a complex system software, the source
code of which amounts to tens of thousands of lines.
For such systems, the lack of technical discipline in
the process of source code modification can destroy
the whole project.

The proposed modification technique allows one
to minimize changes in the source code by encapsulat
ing the new code in separate subsystems. The modifi
cations in data structures and algorithms are encapsu
lated in new source code files, which are linked to the
source code files of the original DBMS.

Figure 4 illustrates the proposed technique. When
adding new fields into the original data structure, the
type newstruct, which contains the new fields, is
described in a new file, and a new field of the new
struct data type is added into the original structure.
When modifying original algorithms, the invocation of
a new function newfunc (),which is defined in the
source code file of a new subsystem, is added into the
body of the original function.

3. ENCAPSULATION OF PARALLELISM
INTO POSTGRESQL

This section describes the application of the pro
posed methods to PostgreSQL [18], which is now
being one of the most popular open-source DBMSs.
This choice is due to the fact that PostgreSQL has
open and detailed internal specifications, as well as
detailed programming guides. The source code devel-

PargreSQL

PostgreSQL

["P:rser I [St:rage ~ -- !'!~e? . -- ~c--;:r _Storage

F:::=J c==J I §cu tor ~ -- !'!~e? __ -~ par_ Exchange

...... « .. u .. s~: ~c==J_....._ __ _,

·--~ par_Balancer

libpq

f}ili;q-be 1 D;q-fe

par libpq
c==J -

~ par_libpq-fe I

C::. Compat I

Fig. 5. Architecture of PargreSQL.

oped by the authors of this paper amounts to about
5000 lines, which took about three person months.
The developed parallel DBMS was called PargreSQL
[19, 20].

3.1. Architecture of Pal'greSQL

The architecture of PargreSQL parallel DBMS is
shown in Fig. 5.

The original DBMS (PostgreSQL) is regarded as
one of the subsystems of the parallel DBMS. Below,
we briefly describe the structure of PostgreSQL.

The Parser subsystem analyzes the syntax of the
query. The Rewriter subsystem transforms the
query according to the rules specified by the adminis
trator (for example, replacing names of representa
tions by their definitions). The Planner subsystem
constructs and optimizes the execution plan for this
query. The Executor subsystem executes the plan.
The Storage subsystem is responsible for low-level
storage of data and metadata. The 1 ibpq library is an

connects

k

Frontend

-user 1

queryexec
- executor

Daemon

«create»

k

Backend

Fig. 6. Client-server model of PostgreSQL.

PROGRAMMING AND COMPUTER SOFfWARE Vol. 41 No. 6 2015

354 PAN, ZYMBLER

Fron tend

connects n
Daemon

par Frontend

-user 1

.___ __ par Backend
q ueryexec -execu~r .___ __ ____.

Fig. 7. PargreSQL processes.

.-----------. 2.1: ~e() .-----------,
d1 : Daemon b1 : par _ Backend

dn: Daemon f--------:---t b0 : par _ Backend
.___ ___ ____. 2.n: create() .___ ___ ____.

Back end

t 4.n: exchange()

Fig. 8. Client-server interaction in PargreSQL.

API of PostgreSQL, which implements the interfacing
protocol between the client (libpq-fe) and the
server (libpq-be).

The session of PostgreSQL involves three interact
ing processes (see Fig. 6): Frontend (client applica
tion), Daemon, and Backend. The daemon handles
incoming connections from clients and launches a
separate backend for each individual client.

The other subsystems of PargreSQL implement the
methods descnbed in Section 2. The par 1 ibpq subsys
tem implements query replication. The par Campa t
subsystem is a set of macros, which enable transparent
porting ofapplications to the new DBMS. The subsystems
par Parallelizer and par Exchange con
struct the parallel execution plan and the exchange
operation, respectively. The par Storage subsys
tem stores metadata about table partitioning. The
par Balancer subsystem is responsible for load
balancing in the process of query execution.

Figure 7 shows the model of client-server interac
tions for PargreSQL.

In contrast to PostgreSQL, the PargreSQL client
can interact with two or more servers simultaneously.

The components par Backend and par Fron
tend are implemented based on the original compo
nents Backend and Frontend of PostgreSQL,
respectively. The Backend component is extended to
provide tuple exchange between DBMS instances,
while the Frontend component is expanded with
the query replication function.

3.2. Implementation of Query Replication

The interaction between the client application and
PargreSQL is shown in Fig. 8.

(a) (b) (c)

(d) (e) (f)

~~ =O 8 G
K ~ ~ ~ =O

Fig. 9. Insertion of the exchange operation.

The client successively connects to all DBMS dae
mons, so par Backend is launched on each node.
Then, the client queries all of these components in
parallel. Having received the query, each
par Backend instance executes it for its own DB
partition while possibly exchanging data with other
instances via the exchange operation. Once the query
is processed, the client receives the results from the
instances and aggregates them.

3.3. Construction of the Parallel Execution Plan

To construct the parallel execution plan, the fol
lowing technique is used [17]. The post-order traversal
of the serial plan tree is performed and an exchange
operation is inserted under a join operation if the cor
responding sub-operation results in a relation parti
tioned by the attribute that is not used in the join con
dition. In this case, the partitioning attribute is propa
gated over the tree from child operations to parent
operations. Thus, in each point of the plan, the attri
bute, which is responsible for partitioning the result of
the operation, is known. The cases that require insert
ing the exchange operation are shown in Fig. 9.

When constructing the execution plan in PostgreSQL,
the following types of join operation are used: Hash
Join [21], MergeJoin [22], andNestedLoop [23]. Inall
these cases, the insertion of exchange operations has
its own peculiarities.

The HashJoin operation assumes creating a hash
table for each relation being joined. The HashJoin
operation has two child operations of the Hash type,
each of which creates hash tables for their own sub
trees. The exchange operation is inserted between the
Hash operation and its subtree (see Fig. 9a), so the
hash table is created upon receiving the tuples sent by
other computational nodes, via the exchange opera
tion, to the current computational node.

The MergeJoin operation implies presorting the
relations being joined. The MergeJoin operation has

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

ENCAPSULATION OF PARTITIONED PARALLELISM 355

par Exchange
«entity»

1 par Plan

+frag_ attr

Split Merge Scatter Gather

+ init() -port -port

+ next() + init()
+isSending -NULLcnt

+ reset() + next() + init() + init()
+reset() +next() + next()

+ reset() + reset()

Fig. 10. Class diagram of the exchange operation.

two child operations of the Sort type, each of which
sorts data of their own sons. The exchange operation is
inserted between the Sort operation and its subtree (see
Fig. 9b), so the tuples are sorted upon receiving them
from other nodes.

The NestedLoop operation assumes that the right
relation is fully loaded into memory for its multiple
scanning in the inner loop of the join. The right son of
the NestedLoop operation is the Material operation,
which loads the results of its subtree into memory. The
exchange operation is inserted between the Material
operation and its subtree (see Fig. 9c), so the tuples are
loaded into memory upon receiving them from other
computational nodes. Inserting the exchange opera
tion above the Material operation will enable sending
the tuples of the right relation as many times as there
are tuples in the left relation. This leads to a deadlock
when the partitions of the left relation on different
cluster nodes contain a different number of tuples.

Figure 9d shows the insertion of the exchange oper
ation into the root of the execution plan. In this case,
the exchange operation merges partial results, which
are obtained by different computational nodes of the
cluster, on the coordinator node. The exchange oper
ation inserted into the root of the execution plan has a
distribution function that is a constant value equal to
the ID of the coordinator node.

To construct a correct parallel execution plan, in
addition to inserting the exchange operation for the
relation join operation, this operation should also be
inserted when processing the operations that sort and
aggregate tuples.

The Sort operation is used to arrange tuples arriving
from the subtree; if the exchange operation is placed
right above the Sort operation, the order of the tuples
will be violated and the sorting will not have the
expected effect. In such cases (see Fig. 9e), the
exchange operation is shifted to a lower level, under the
Sort operation. Thus, exchange precedes sorting,
which is correct.

Table 1. Hardware platform used for the experiments

Characteristic Value

Number of nodes/proces- 736/1472/8832
sors/cores

Processor type 3 TB Intel Xeon X5680height RAM
Peale performance 117 TFlops

Performance UNPACK 100.4 TFlops

The Agg operation is used to evaluate aggregate
functions without grouping in the queries of the form
select sum (a) from t. Since this operation
must process tuples that are located in all partitions of
the relation, to obtain a correct result, the exchange
operation with the exchange function identical to the
ID of the coordinator node is inserted under the Agg
operation (see Fig. 9f). This ensures sending all tuples
to one node and, accordingly, correct evaluation of the
aggregate function.

The GroupAgg operation is used to evaluate aggre
gate functions with grouping in the queries of the form
select a, sum (b) from t group by a.
In contrast to the previous case, for the correct execu
tion of this operation, it is sufficient to process each
individual group of tuples as a whole. Therefore, to
obtain a correct result, the exchange operation with the
exchange function that depends on the grouping attri
bute is inserted under the Agg operation (see Fig. 9g).
This ensures sending all tuples of one group to one
node and, accordingly, correct evaluation of the
aggregate function for each group.

3. 4. Implementation of the Exchange Operation

The exchange operation is implemented by intro
ducing new functions and data types into PostgreSQL.
Figure 10 shows the par_Exchange package, which
contains new classes introduced into PostgreSQL.

The classes of this package-Merge, Split, Scatter, and
Gather-implement sub-operations of the exchange
operation with the same names. The Exchange_ Builder
class offers a method for constructing the operations
mentioned above and for building a whole exchange
operation from them.

To store the partitioning attribute, the Plan class of
PostgreSQL, which is an operation in the execution
plan, should be modified: an integer attribute
frag_attr should be added into this class.

The algorithm for implementing the method next
of the Split operation (see Fig. 11) is as follows. The
Split operation calls the method next of the left sub
tree and applies the distribution function to the resul
tant tuple received from it. If the distribution function
recognizes this tuple as a "native" one (the function
value coincides with the ID of the current computa
tional node), then the Split operation returns this tuple

PROGRAMMING AND COMPUTER SOFfWARE Vol. 41 No. 6 2015

356 PAN, ZYMBLER

Table2

Number
tpm-c..J,

Number
tpm-c..J,

Number
tpm-c..J,

Number
tpm-c..J,

of clients of clients of clients of clients

29 2202531 24 2165413 16 1882353 8 1156626

26 2107183 23 2156250 15 1747572 7 1150684

30 2195122 22 2146341 14 1647058 5 857142

32 2194285 20 2068965 13 1529411 6 847058

27 2189189 19 2054054 12 1358490 4 657534

31 2188235 18 2037735 11 1346938 3 444444

28 2181818 21 2016000 10 1290322 2 328767

25 2173913 17 1961538 9 1270588 1 150000

Table 3

Cluster/DBMS Number of nodes/clients tpm-C

1 SPARC SuperCluster with T3-4 Servers/Oracle Database 108 81 30249688
llg R2 Enterprise Edition w /RAC w /Partitioning

2 IBM Power 780 Server Model 9179-MHB/IBM DB2 9.7 24 96 10366254

3 Sun SPAC Enterprise T5440 Server Cluster/Oracle Database 48 24 7646486
llg Enterprise Edition w /RAC w /Partitionin

SKIP-Aurora SUSU/PargreSQL 12 29 2202531

4 HP Integrity rx5670 Cluster ltanium2/l.5 GHz-64p/Oracle 64 80 1184893
Database lOg Enterprise Edition

as a result. Otherwise, the tuple is placed into the buf
fer of the right son (Scatter operation), the method
next of the Scatter is called, and the exchange opera
tion switches to the wait state.

Figure 12 shows the method next of the Me.,-ge
operation. The Me.,-ge operation alternately calls the
methods next of its left and right sons (operations
Gather and Split). The calls are made while the
exchange operation is in the wait state. If both sons

[right.isSending
= TRUE

[native]

Fig. 11. Method next of the Split operation.

return the NULL value, then the input stream of tuples
is exhausted, and the Me.,-ge operation returns NULL.
If at least one son returns a tuple, then the Me.,-ge oper
ation returns that tuple as a result.

The algorithm implementing the method next of
the Scatter operation is shown in Fig. 13. The Scatter

even := not even

Fig. 12. Method next of the Merge operation.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

ENCAPSULATION OF PARTITIONED PARALLELISM 357

Test

Isend(NULL)

isSending :=FALSE

Isend(tuple, 1/J) •NULL

isSending := TRUE •NULL

Fig. 13. Method next of the Scatter operation.

operation has no children, and calling its method
next initiates sending the tuple, which is delivered by
the parent operation (Split), to the computational
node the ID of which is obtained by applying the
exchange function to this tuple. If, when calling the
method next, the tuple is not yet sent, then the value
WAIT is returned.

The Gather operation (see Fig. 14) receives tuples
from all computational nodes. When calling the
method next of this operation, the status of the
reception operations is checked: ifthe tuple is received
from a certain node, then a new reception operation
from this node is initiated, and the tuple received is
returned as a result. If, instead of a tuple, the value
NULL is received from all nodes, then the relation is
exhausted, and the method returns NULL as a sign of
the end of the relation.

To implement the operations Scatter and Gather in
PargreSQL, a message manager is developed based on
the message passing interface (MPI) [24]. MPl-based
messaging is typical for distributed memory systems;
however, in the case of PargreSQL, the direct use of the
MPI is difficult, since the architecture of this DBMS
implies dynamic generation of server processes.

The message manager consists of two-communi
cator and library-modules. The communicator is an
MPI program, which runs as an independent daemon
in one instance on each computational node. The
library provides server processes with an interface for
connecting to the communicator via shared memory
and organizes message communication. The library of
the message manager has the following main func
tions: "initiate data transmission," "initiate data
reception," and "check status of transmission/recep
tion"; the interface and semantics of these functions
are similar to those of the asynchronous functions

Fig. 14. Method next of the Gather operation.

create table Person (
id int ,
name varchar(30),
gender char(1),
birth date

) with (fragattr =id);

Fig. 15. Creating a table in PargreSQL.

MPI I send, MPI Irecv, and MPI Test, respec-
tivel.Y. -

3.5. Implementation of Partition Metadata Storage

To implement data partitioning in PostgreSQL, a new
attribute fragattr is introduced into table metadata. This
attribute is of string type and defines the name of the col
umn on which the partition function of the correspond
ing table depends. When creating a table, the value of this
attribute must be set explicitly. The fragattr attribute is
specified in the query CREATE TABLE by using the
PostgreSQL construction WITH (see Fig. 15).

The attribute with the name specified in the table
parameter fragattr is used in processing the UPDATE
and INSERT queries to ensure partitioning with the
function cp(t) = t.fragattr mod N, where N is the num
ber of computational nodes in the cluster system and
mod is the modulo operation.

3. 6. Implementation of Data Modification Queries

When processing data insertion queries, it is man
datory to add a select operation with the condition
¢(t) = i (where i is the number of the current node)
into the root of the execution plan (see Fig. 16).

Such a condition will discard all the tuples that
must be inserted into other computational nodes.
Thus, each tuple inserted into the database will fall
within only one DB partition.

To transfer modified tuples, the algorithm of the
exchange operation should be changed. The new
exchange operation (see Fig. 17) will detect the tuples
with a modified partitioning attribute and create cop
ies of such tuples.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

358 PAN, ZYMBLER

cp(t) = current node

Fig. 16. Parallel query plan for the INSERT query.

One copy labeled "delete me" is passed further
along the plan, while the second copy labeled "insert
me" is sent to the corresponding node. Thus, the new
exchange algorithm makes it possible to relocate the
tuples that became "alien" due to modification: if cp(f) '#
cp(t), then the tuple ton the node cp(t) is deleted and
the tuple f is inserted on the node cp(t').

4. COMPUTATIONAL EXPERIMENTS

To estimate the effectiveness of the proposed
methods and algorithms of PargreSQL, two series of
computational experiments were carried out. The first
series of experiments investigates the scalability of
PargreSQL. In the second series of experiments, the
efficiency of PargreSQL is compared with that of pres
ently-available DBMSs with similar characteristics.
A SKIF-Avrora YuUrGU supercomputer [25] is used as
a hardware platform for the experiments; the characteris
tics of this supercomputer are presented in Table 1.

4.1. Scalability

Scalability is a measure of parallelization effective
ness for hardware platforms with different numbers of
computational nodes. In the case of parallel DBMSs,
the main qualitative characteristics of parallelization
effectiveness are extendability and speedup, which
characterize capabilities of the system to adapt to the
increase in the number of cluster nodes and to the rise
in the amount of data to be processed. These charac
teristics are defined as follows [26].

Let A and B be two different configurations of a
parallel database machine with a fixed architecture,
which differ in the number of processors and devices
associated with them (all configurations assume the
proportional increase in the number of memory mod
ules and disks), and a test Q be defmed. Then, the
speedup a AB, which is achieved when transferring from
the configuration A to the configuration B, is defined
as aAB = tQA/tQB, where tQA and tQB characterize the time
required for A and B to execute the test Q. The speedup
parameter allows one to estimate the effectiveness of
system expansion for comparable tasks.

Fig. 17. Tuple stream in the exchange operation for the
UPDATE query.

Now let a set of tests Oi. Q2, ••• be defined; these tests
quantitatively surpass a certain fixed test Q by a factor of
i, where i is the number of the corresponding test and
conftgUration of the parallel database machine Ai. A2, ••• ,

the degree of parallelism (number of processors) of
which exceeds that of a certain minimum configura
tion A by a factor of j (j is the number of the corre
sponding configuration). Then, the extendability e1an,
which is achieved when transferring from the configu
rationAk to the configuration Am (k < m), is defined as
e1an = tQkAJtQmAm. The extendability parameter allows
one to estimate the effectiveness of system expansion
for more complex tasks.

A parallel system is said to be highly scalable if its
extendability and speedup are close to linear. Linear
speedup implies that there is a constant k > 0 such that
aAB = kd9/dA for any conftgurations A and B (dis the
number of processors in the corresponding conftgura
tion). Linear extendability means that this parameter is
equal to one for all conftgurations of a given system
architecture.

In the speedup experiments, PargreSQL executes
the query for natural join of two relations according to
a common attribute. The sizes of the relations are 300
and 7.5 million tuples, respectively, with the tuples
being uniformly distributed over cluster nodes.

Results of these experiments are presented in Fig. 18;
it can be seen that speedup is close to linear.

In the extendability experiments, PargreSQL exe
cutes the query for naturaljoin of two relations according
to a common attribute. The tuples of these relations are
uniformly distributed over the cluster nodes. The sizes of
the relations are increased proportionally to the increase
in the number of the cluster nodes, multiplied by 12 and
0.3 million tuples, respectively.

Results of these experiments are presented in Fig. 19:
it can be seen that extendability is close to linear.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

ENCAPSUIATION OF PARTITIONED PARALLELISM 359

Speedup
140
120
100
80
60
40
20 ----·Linear
0

1 8 16 32 64 128
Number of computational nodes

F1g.18.Speedup.

Thus, the experimental results show that the scal
ability of PargreSQL is close to linear.

4.2. TPC Benchmark

The TPC-C benchmark is developed by the Transac
tion Processing Council (TPC) [27] for measuring the
performance of DBMSs in processing a mix of short
transactions. This benchmark simulates the activity of a
typical warehouse (booking, accounting management,
product distribution, etc.). As a performance measure,
the TPC-C uses the commercial throughput, which
characteriz.es the number of orders that can be processed
per minute. This performance measure is expressed by
the maximum speed of transaction execution (tpm-C:
transactions-per-minute-C).

In these experiments, from 1 to 30 concurrent clients
query PargreSQL, which runs on 12 nodes of a cluster
computing system. The DB siz.e is 12 warehouses.
Table 2 shows the PargreSQL performance on the TPC
C benchmark in the descending order oftpm-C.

This result lifted PargreSQL to the top five of the
TPC-C rating for parallel cluster DBMSs as of Sep
tember 2013 (see Table 3).

Thus, we can conclude that PargreSQL parallel
DBMS is an effective and relatively inexpensive solu
tion for storing and processing very large databases,
which possesses high scalability.

CONCLUSIONS

In this paper, the problem of processing very large
databases on computing systems with cluster architec
ture is considered. The approach to solving this prob
lem is proposed, which implies modifying the original
source code of an open-source DBMS to construct on
its basis a parallel DBMS by encapsulation of parti
tioned parallelism. The modification of the source
code involves as little changes as possible. The parallel
DBMS constructed in this way has high scalability.
The lag in performance as compared to commercial
parallel DBMSs designed for special-purpose hard-

Scalability

1.0 - -----------------------------
0.8

0.6

0.4
-::-- Actual

0.2 ----· Linear

o.o~~-~--~------~~
1 8 16 32 64 128

Number of computational nodes

Flg. 19. Scalability of PargreSQL.

ware and software platfonns can be compensated by
adding new computational nodes into the cluster while
preserving the efficiency of the proposed solution.
This approach can be used for parallelizing almost any
open-source DBMS (PostgreSQL, MySQL, etc.).

The architecture and methods for implementing Par
greSQL parallel DBMS, which is developed through
encapsulation of partitioned parallelism into Post
greSQL, are described. The results of computational
experiments show that the extendability and speedup
characteristics of PargreSQL are close to linear; the
experiments also show a rather hlgh performance of Par
greSQL on the TPC-C benchmark.

The following directions for further research seem
promising.

1. For the open-source serial DBMS, the imple
mentation of data replication based on both partial
data mirroring [28] and estimating communication
costs of partitioned relations processing [29]; for the
parallel DBMS, the development of a load balancing
subsystem.

2. For the parallel DBMS constructed by modify
ing the source code of a serial DBMS, the develop
ment of effective methods for controlling the buffer
pool, which are oriented to parallel DB systems with
out resource sharing [30].

3. The adaptation-based on the DMM model
[31]-ofthe proposed methods and a]gorithms to the
cluster systems the nodes of which are equipped with
multicore accelerators.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Educa
tion and Science of the Russian Federation in the
framework of the Federal Targeted Programme for
Research and Development in Priority Areas of Devel
opment of the Russian Scientific and Technological
Complex for 2014-2020 (project no. 14.574.21.0035).

PROGRAMMING AND COMPUTER SOFIWARE Vol. 41 No.6 2015

360 PAN, Z\'MBLER

REFERENCES

I. Sokolinsky, L.B., Survey of architectures of parallel
database systems, Program. Comput. Software, 2004,
vol. 30, no. 6, pp. 337-346.

2. Lepikhov, A.V. and Sokolinsky, L.B., Query processing
in a DBMS for cluster systems, Program. Comput. Soft
ware, 2010, vol. 36, no. 4, pp. 205-215.

3. Page, J., A study ofa parallel database machine and its
performance tbe NCR/Teradata DBC/lOU, Leet.
Notes. Comput. Sci., 1992, vol. 618, pp. 115-137.

4. Waas, F.M., Beyond conventional data warehousing
Massively parallel data processing witb greenplum
database, Proc. 2nd Int. Workshop on Business Intelli
gence for the Real-Time Enterprise (BIRTE) in conjunc
tion with VLDB, Auckland, 2008.

5. Baru, C.K., Fecteau, G., Goyal, A, et al., An overview
ofDB2 parallel edition, Proc. ACM SIGMOD Int. Co'lf.
Management of Data, San Jose, 1995, pp. 460-462.

6. Akal, F., Bohm, K., and Schek, H.-J., OLAP query
evaluation in a database cluster: A performance study
on intra-query parallelism, Leet. Notes. Comput. Sci.,
2002, vol. 2435, pp. 218-231.

7. Ronsttfun, M. and Oreland, J., Recovery principles in
MySQL Cluster 5.1, Proc. 31st Int. Co'lf. l'ery Large
Data Bases, Trondheim, 2005, pp. 1108-lll5.

8. Pruscino, A., Oracle RAC: Architecture and perfor
mance, Proc. ACM SIGMOD Int. Cont Management of
Data, San Diego, 2003, p. 635.

9. Paes, M., Llma, A.A.B., Valduriez, P., and Mattoso, M.,
High-performance query processing of a real-world
OLAP database witb ParGRES, Leet. Notes. Comput.
Sci., 2008, vol. 5336, pp. 188-200.

10. Ngamsuriyaroj, S. and Pompattana, R., Performance
evaluation ofTPC-H queries on MySQL Cluster, Proc.
24th IEEE Int. Co'lf. Advanced Ieformation Networking
and Applications WiJrkshops (WAINA), Pertb, 2010,
pp.1035-1040.

11. Evdoridis, T. and Tzouramanis, T., A generalized com
parison of open source and commercial database man
agement systems, in Database Technologies: Concepts,
Methodologies, Tools, and Applications, !GI Global,
2009, pp. 294--308.

U. Paulson, L.D., Open source databases move into the
marketplace, Computer, 2004, vol. 37, no. 7, pp. 13-15.

13. Gavrish, E.V., Koltakov, A.V., Medvedev, A.A., and
Sokolinsky, L.B., Open-source parallel DBMS for
cluster computing systems, V"'111. YuUrGU, Ser. Vjchisl.
Mat. Informatika, 2013, vol. 2, no. 3, pp. 81-91.

14. Abouzeid, A, Bajda-Pawlikowski, K., Abadi, D.J.,
et al., HadoopDB: An architectural hybrid of
MapReduce and DBMS technologies for analytical
workloads, Proc. VLDB Endowment, 2009, vol. 2, no. 1,
pp. 922-933.

15. Dean, J. and Ghemawat, S., MapReduce: Simplified
data processing on large clusters, Commun. ACM, 2008,
vol. 51, no. 1, pp. 107-113.

16. White, T., Hadoop: The Definitive Guide, O'Reilly
Media, 2009.

17. Sokolinsky, L.B., Organization of parallel query pro
cessing in multiprocessor database machines with hier
archical architecture, Program. Comput. Software, 2001,
vol. 27, no. 6, pp. 297-308.

18. Stonebraker, M. and Kemnitz, G., The POSTGRES:
Next-generation database management system, C::Om
mun. ACM, 1991, vol. 34, no. 10, pp. 78-92.

19. Pan, C.S., Development of a parallel DBMS on tbe
basis of PostgreSQL, Proc. 7th Spring Researchers Col
loquium on Databases and Information Systems (SYRCo
DIS), 2011, pp. 57-61.

20. Pan, C.S. and Zymbler, M.L., Taming elephants, or
how to embed parallelism into PostgreSQL, Leet.
Notes. Comput. Sci., 2013, vol. 8055, pp. 153-164.

21. Zhou, J., Hashjoin, Encyclopedia of Database Systems,
Liu, L. and OZBU, M.T., Eds., Springer US, 2009,
pp. 1288-1289.

22. Zhou, J., Nested looP. join, Encyclopedia of Database
Systems, Liu, L. and Ozsu, M.T., Eds., Springer US,
2009, p. 1895.

23. Zhou, J., Sort-merge join, Encyclopedia of Database
Systems, Liu, L. and OZBU, M.T., Eds., Springer US,
2009, pp. 2673-2674.

24. Gropp, W., MP! 3 and beyond: Why MP! is successful
and what challenges it faces, Leet. Notes. Comput. Sci.,
2012, vol. 7490, pp. 1-9.

25. Moskovskii, AA., Perminov, M.P., Sokolinsky, L.B.,
Cherepennikov, V.V., and Shamakina, A.V., Study of
performance of tbe supercomputer family 'SKIF
Aurora' on industrial problems, Venn. YuUrGU, Ser.
Mat. Model. Program., 2010, vol. 211, no. 35, pp. 66-
78.

26. Sokolinsky, L.B., Para/lel'nye sistemy baz dannykh
(Parallel Database Systems), Moscow: Mosk. Gos.
Univ., 2013.

27. Nambiar, RO., Poess, M., Masland, A., et al., TPC
benchmark roadmap 2012, Leet. Notes. Comput. Sci.,
2013, vol. 7755, pp. 1-20.

28. Kostenetskii, P.S., Lepikhov, A.V., and Sokolinsky,
L.B., Technologies of parallel database systems for
hierarchical multiprocessor environments, Autom.
Remote Control, 2007, vol. 68, no. 5, pp. 847-859.

29. Gubin, M.V. and Sokolinsky, L.B., About communica
tion cost estimation for processing of partitioned rela
tion with uniform distnbution, Vestn. YuUrGU, Ser.
Vjchisl. Mat. Informatika, 2013, vol. 2, no. 1, pp. 33-43.

30. Sokolinsky, L.B., Effective buffer management
replacement algorithm for parallel shared-notbing
database system, Vjchisl. Melody Program., 2002, vol. 3,
no. 1, pp.113-130.

31. Kostenetskii, P.S. and Sokolinsky, L.B., Simulation of
hierarchical multiprocessor database systems, Program.
Comput. Software, 2013, vol. 39, no. 1, pp. 10-24.

Translated by Yu. Komienko

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

