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Abstract. The paper describes the design and the implementation of
PargreSQL parallel database management system (DBMS) for cluster
systems. PargreSQL is based on PostgreSQL open-source DBMS and ex-
ploits partitioned parallelism. Presented experimental results show that
this scheme is worthy of further development.

1 Introduction

Currently open-source PostgreSQL DBMS is one of reliable alternatives for com-
mercial DBMSes [9]. There are many practical database applications based upon
PostgreSQL and research projects devoted to extension and improvement of
PostgreSQL.

One of the research goals is to adapt PostgreSQL for parallel query processing.
In this paper we describe the architecture and design of PargreSQL [8] parallel
DBMS for analytical data processing on cluster systems. PargreSQL represents
PostgreSQL with embedded partitioned parallelism.

The paper is organized as follows. Section 2 gives a description of the Par-
greSQL architecture in comparison with PostgreSQL’s one. Section 3 introduces
the implementationt principles of PargreSQL DBMS. The results of experiments
on the current implementation are shown in section 4. Section 5 briefly discusses
related work. Section 6 contains concluding remarks and directions for future
work.

2 PargreSQL Design

PargreSQL utilizes the idea of partitioned parallelism [2] in cluster systems (see
fig. 1). This form of parallelism supposes partitioning of relations and their
distribution among the disks of the cluster.

The way the partitioning is done is defined by a fragmentation function, which
for each tuple of the relation calculates the number of the processor node where
this tuple should be placed. A query is executed in parallel on all processor nodes
as a set of parallel agents. Each agent processes its own fragment and generates
a partial query result. The partial results are merged into the result relation.
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Fig. 1. Query processing with partitioned parallelism

2.1 Client-Server Model

PostgreSQL is based on the client-server model. A session involves three pro-
cesses into interaction: a frontend, a backend and a daemon (see fig. 2a; here k
is a number of clients).
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(b) PargreSQL processes

Fig. 2. DBMS processes

The daemon handles incoming connections from frontends and creates a back-
end for each one. Each backend executes queries received from the related fron-
tend. The architecture of PargreSQL, in contrast with PostgreSQL, assumes that
a client connects to two or more servers (see fig. 2b; here n is a number of cluster
nodes).

The interaction sequence is shown in fig. 3. As opposed to PostgreSQL there
are many daemons running in PargreSQL. The frontend connects to each of
them, sends the same query to many backends, and receives the result relation.

2.2 Deployment Scheme

The application library libpq implements the interaction protocol between the
client and the server and consists of two parts: the frontend (libpq-fe) and the
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Fig. 3. Interaction of clients and servers

backend (libpq-be). The former is deployed on the client side and serves as an
API for the end-user application. The latter is deployed on the server side and
serves as an API for libpq-fe, as shown in fig. 4a.
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(b) PargreSQL deployment

Fig. 4. DBMS deployment

PargreSQL deployment scheme is depicted in fig. 4b. The only difference of
deployment schemes (see fig. 4b) is that in case of PargreSQL there is one more
component on the client side — the libpq-fe wrapper.

2.3 PargreSQL Subsystems

There are following steps of query processing in PostgreSQL: parse, rewrite,
plan/optimize, and execute.
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Parallel query processing in PargreSQL adds two more steps: parallelize
and balance. During the query execution each agent processes its own part of
the relation independently so, to obtain the correct result, transfers of tuples
are required. On parallelization step creation of a parallel plan is performed
by inserting special exchange operators into the corresponding places of the
plan. Balance step provides load-balancing of the server nodes during the query
execution process.

Comparison of PostgreSQL and PargreSQL architectures is depicted in fig. 5.
PostgreSQL (see fig. 5a) is treated as one of the PargreSQL’s subsystems (see
fig. 5b). PargreSQL development involves changes in Storage, Executor and Plan-
ner subsystems of PostgreSQL.
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Planner

(a) PostgreSQL subsystems
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(b) PargreSQL subsystems

Fig. 5. DBMS subsystems

Parser checks the syntax of the query string and builds a parse tree. Rewriter
processes the tree according to the rules specified by the user (e.g. view defini-
tions). Planner creates an optimal execution plan for this query tree. Executor
takes the execution plan and processes it recursively from the root. Storage pro-
vides functions to store and retrieve tuples and metadata.

The changes in the PostgeSQL’s source code are needed to integrate it with
the new subsystems. par Storage is responsible for storing partitioning metadata
of relations. par Exchange encapsulates the implementation of the exchange op-
erator. Exchange operator is meant to compute the exchange function ψ for each
tuple of the relation, send “alien” tuples to the other nodes, and receive “native”
tuples in response. In section 3.2 we will describe exchange operator in detail.
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There are new subsystems which do not require any modifications to the
PostgreSQL’s source code: par libpq-fe and par Compat. par libpq-fe is a wrap-
per around libpq-fe, it is needed to propagate queries from an application to
many servers. par Compat makes this propagation transparent to the applica-
tion. Section 3.1 further describes implementation details of par libpq subsystem.

3 PargreSQL Implementation

In this section we describe the implementation principles of some of the Par-
greSQL subsystems depicted in fig. 5b.

3.1 par libpq

Since the frontend in PargreSQL has to initiate a connection to every of the
database daemons, some modifications were introduced into the libpq application
library. The modified version is called par libpq. The purpose of this library is to
serve as a replacement for the original libpq and to allow the applications to use
PargreSQL without much effort.

par libpq consists of par libpq-fe library and a set of macros (par Compat).
par libpq-fe is a library to be linked with frontend applications instead of orig-
inal PostgreSQL’s libpq-fe, around which it is a wrapper. Its implementation is
illustrated with a class diagram in fig. 6. The idea is to use the original libpq-fe
for connecting to many servers simultaneously.

par_libpq-fe

par_PGconn

par_PQconnectdb()
par_PQstatus()
par_PQexec()
par_PQfinish()

libpq-fe

PGconn

PQconnectdb()
PQstatus()
PQexec()
PQfinish()

* 1

PGresult

Fig. 6. PargreSQL libpq-fe wrapper

par Compat is a set of C preprocessor definitions for transparent usage of
par libpq-fe. An example of these macros is given in fig. 7.

These macros change the original API calls into the new API calls, so by
including them an application programmer can switch from PostgreSQL to Par-
greSQL without global changes in the application code.
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#define PGconn par_PGconn
#define PQconnectdb(X) par_PQconnectdb()
#define PQfinish(X) par_PQfinish(X)
#define PQstatus(X) par_PQstatus(X)
#define PQexec(X,Y) par_PQexec(X,Y)

Fig. 7. PargreSQL compatibility macros

3.2 Exchange Operator

In order to compute the correct results the DBMS instances running in parallel
have to send tuples to each other, because a tuple stored on one node could
be processed on another node, e.g. in case of an aggregation with group-by on
attribute A while the fragmentation attribute is B. To resolve such situations
we should implement an operator that would move tuples from one point in the
query plan to the same point on another node’s plan.

Exchange operator [3,10] serves as an exchange point for transfering tuples
between parallel agents. It is inserted into the query plans by par Parallelizer
subsystem (which will be discussed further). The operator’s structure is pre-
sented in fig. 8.

merge

split

scattergather

ex
ch

an
ge

Fig. 8. Exchange operator structure

Fig. 9 shows the algorithms for next() method of Exchange suboperators.
Split (see fig. 9a) decides whether a given tuple is “native” and should be kept

on the current node, or it is “alien” and should be sent to appropriate node.
“Native” tuples are returned immediately whereas “alien” tuples and NULLs
(meaning that scanning of tuples is over) are put into Scatter ’s buffer for sending
to appropriate nodes.

Gather (see fig. 9b) provides receiving of tuples from other processor nodes.
Having received a tuple Gather starts a receive operation again. NULL value
received means that the corresponding node has finished its work. As soon as a
NULL is received from every node Gather finishes its work.

Scatter (see fig. 9c) sends tuples coming from Split to other processor nodes.
Non-NULL tuple should be sent to a node with a number calculated by means
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Fig. 9. Algorithms for Exchange suboperators

of fragmentation function. In case of NULL value Scatter sends NULLs to all
the other nodes.

Merge (see fig. 9d) merges tuples from Gather and Split in an even-odd
manner.

The asynchronous MPI methods Isend, Irecv are used by Exchange to trans-
mit tuples and the Test method to check whether the appropriate transmission
finished.

3.3 Parallelizer

par Parallelizer subsystem prepares the query plan for parallel execution. The
cases in which the par Parallelizer inserts Exchange operators into the plan are
shown in fig. 10.

The Join operation executed independently on multiple nodes will miss some
tuples, unless we move the tuples matching the join qualifier to the same node.
That is performed by the Exchange operators, which are inserted under the Join
in cases (a), (b), and (c).
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Fig. 10. Parallelizer cases

The root Exchange operator (d) will mix the order of the tuples, so there
is no point in a plan where an Exchange is above a Sort. In this case (e) the
Parallelizer inserts the Exchange operation a level deeper — below the Sort.

Another case where the tuples should get redistributed is an aggregation,
which is performed by the Agg operation in PostgreSQL. There are two types
of aggregation — simple and grouped. In case of simple aggregation (f) the
Parallelizer inserts an Exchange that would accumulate all the tuples on one
node (since they are all needed for some global aggregating function). However,
the grouped aggregation (g) only needs to have all the tuples of the same group
located together.

3.4 Data Manipulation Operations

The algorithms for the exchange subnodes shown above will only work for SE-
LECT statements. In order to support data manipulation queries the execution
process needs to become a bit trickier.

When PostgreSQL executes an UPDATE or DELETE query, the resulting
tuples coming from the root of the plan have a special hidden attribute — the
CTID. It is the address of this tuple inside the storage of PostgreSQL, with this
CTID PostgreSQL tells which tuples are to be deleted or updated. The other
attributes contain the updated values or, in case of a DELETE, there are no
other attributes.

No changes are needed in order for DELETE to work in PargreSQL. But
INSERT and UPDATE should have additional logic — since a tuple only needs
to be inserted on one node and can move from one node to another during an
UPDATE.

There are two places in the PargreSQL code that were changed in order to
implement that behaviour for UPDATE queries — the Split operator, and the
executor.
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When Split meets an alien tuple, it creates a copy of the tuple and passes
one instance to the Merge (with the “delete me” bit set inside the CTID) and
the other — to the Scatter (with the “insert me” bit set inside the CTID). The
schematic for tuple flow in Exchange is shown in fig. 11.

merge

split

scattergather
[native]

[alien]
+DELETE_BIT

[alien]
+INSERT_BIT

Fig. 11. Tuple flow during an exchange

The executor in its turn checks for these bits and reacts accordingly. So, if the
“delete me” bit is set, it performs the delete routines, and if the “insert me” bit
is set — the insert routines. If neither bit is set the tuple is considered native
to the node, so the executor behaves as in PostgreSQL and updates the tuple in
the local storage.

For plain INSERT queries the parallelizer appends an additional condition
to the plan, that is equivalent to a WHERE fragattr % nodes == this node

clause. With this condition a tuple only gets inserted if it is native to the node.
Complex INSERT queries like INSERT INTO dest SELECT columns FROM src

do not need this additional condition.

3.5 Data Definition Operations

In order to provide data partitioning in PargreSQL we establish an additional
storage parameter for PostgreSQL tables, named fragattr (fragmentation at-
tribute). An application programmer is to specify an int-valued attribute of a
table as fragattr on the table’s creation. It is equivalent to defining the table’s
partitioning with ψ(t) = t.fragattr mod n fragmentation function, where n is
a number of nodes and mod denotes the modulo operation. The parameter is
specified in the WITH clause of the CREATE TABLE query (see fig. 12).

3.6 Load Balancing (Future Work)

We are planning to implement a load balancing scheme proposed in [6]. The
scheme is based on partial data replication. The last portion of tuples from each
fragment are copied to several other nodes in case the native node would get
delayed processing its fragment. When a node manages with its own fragment,
and some other node has not, the idle node can start processing the correspond-
ing copy, thus freeing the other node from some work. The “last” portion here
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create table Person (
    id int,
    name varchar(30),
    gender char(1),
    birth date
) with (fragattr = id);

Fig. 12. Table creation in PargreSQL

means the tuples that get read last from the storage due to their physical order
or an index.

In PargreSQL the scheme could be represented by a number of tables in a
dedicated namespace of the database. The idle node would communicate to the
busy one and ask where to start processing of the partial copy from. After that
the two nodes would know where to start and to stop and would have rouhgly
the same amount of tuples to process.

4 Experimental Evaluation

To evaluate our approach we performed a series of experiments on SKIF-Aurora
SUSU supercomputer1 based on Intel R© Xeon 5680 processors and liquid cooling.
We executed a query carrying out a natural join of two synthetical tables com-
prising of 60 mln. and 1.5 mln. records respectively and distributed uniformly
among the computer nodes. To form values of tables’ fragmentation attributes,
a probabilistic model proposed in [6] was used.
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Fig. 13. PargreSQL speedup

Fig. 13 depicts the experimental results. Here μ is the portion of “alien” tuples
at every fragment of the relations, e.g. μ = 0.75 means that during the query

1 http://www.hpcwire.com/hpcwire/2011-12-08/skif aurora susu supercomputer

is most energy-efficient hpc system in russia.html

http://www.hpcwire.com/hpcwire/2011-12-08/skif_aurora_susu_supercomputer_is_most_energy-efficient_hpc_system_in_russia.html
http://www.hpcwire.com/hpcwire/2011-12-08/skif_aurora_susu_supercomputer_is_most_energy-efficient_hpc_system_in_russia.html
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execution every agent was obliged to send 75% of the tuples stored at the agent’s
node to other nodes. As we can see PargreSQL demonstrates a quite acceptable
speedup.

5 Related Work

The research on adaptation of PostgreSQL for parallel and distributed query
processing includes the following.

In [5] authors introduce their work on extending PostgreSQL to support dis-
tributed query processing. Several limitations in PostgreSQL’s query engine and
corresponding query execution techniques to improve performance of distributed
query processing are presented.

ParGRES [7] is an open-source database cluster middleware for high perfor-
mance OLAP query processing. ParGRES exploits intra-query parallelism on
PC clusters and uses adaptive virtual partitioning of the database.

GParGRES [4] exploits database replication and inter- and intra-query par-
allelism to support OLAP queries in a grid. The approach has two levels of
query splitting: grid-level splitting, implemented by GParGRES, and node-level
splitting, implemented by ParGRES.

In [1] building a hybrid between MapReduce and parallel database is explored.
The authors created a prototype named HadoopDB on the basis of Hadoop
(communication layer) and PostgreSQL (database layer), that is as efficient as
parallel DBMS, but as scalable as MapReduce systems.

Our contribution is embedding partitioned parallelism into PostgreSQL on
the basis of the methods for parallel query processing, proposed in [2,3,6,10]. We
believe that our approach could be applied to other serial relational open-source
DBMSes (e.g. MySQL) to implement their parallel versions.

6 Conclusion

In this paper we have described the design and implementation of PargreSQL
parallel DBMS for cluster systems. PargreSQL is based upon PostgreSQL open-
source DBMS and exploits partitioned parallelism. This approach is applicable
to other open-source relational DBMSes. The results of preliminary experiments
show that this scheme is worthy of further development.

As future work we plan to implement load-balancing based upon partial data
replication, parallel execution of subqueries and stored procedures, and conduct
advanced experiments to analyze PargreSQL performance on complex queries.
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