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Abstract. Subsequence similarity search is one of the most important
problems of time series data mining. Nowadays there is empirical evi-
dence that Dynamic Time Warping (DTW) is the best distance metric
for many applications. However in spite of sophisticated software speedup
techniques DTW still computationally expensive. There are studies de-
voted to acceleration of the DTW computation by means of parallel
hardware (e.g. computer-cluster, multi-core, FPGA and GPU). In this
paper we present an approach to acceleration of the subsequence similar-
ity search based on DTW distance using the Intel Many Integrated Core
architecture. The experimental evaluation on synthetic and real data sets
confirms the efficiency of the approach.

1 Introduction

Subsequence similarity search is one of the most important problems of time
series data mining and appears in a wide spectrum of subject domains, e.g.
climate modeling [1], economic forecasting [5], medical monitoring [6], etc. The
problem assumes that a query sequence and a longer time series are given, and
the task is to find a subsequence in the longer time series, which best matches
with the query sequence.

Currently there is empirical evidence that the Dynamic Time Warping (DTW)
[2] is the most popular similarity measure in many applications [3]. DTW is com-
putationally expensive and there are approaches to solve this problem, e.g. lower
bounding [3], computation reusing [14], data indexing [11], early abandoning [12],
etc. However, DTW still costs too much and there are studies to accelerate sub-
sequence similarity search using parallel hardware, e.g. computer-cluster [16],
multi-core [15], FPGA and GPU [14, 17, 18].

In this paper we present a parallel algorithm for subsequence similarity search
based on DTW distance adapted for use on a central processor unit (CPU)
accompanied with the Intel Xeon Phi many-core coprocessor [4]. The remainder
of the paper is organized as follows. Section 2 contains formal definition of the
problem, briefly describes Intel Xeon Phi architecture and programming model
and discusses related work. The proposed algorithm is presented in the section 3.
The results of experimental evaluation of the algorithm are described in section 4.
Section 5 contains summarizing comments and directions for future research.



2 Formal Definitions and Related Work

2.1 Formal Definitions

A time series T is an ordered sequence t1, t2, . . . , tN of real data points, measured
chronologically, where N is a length of the sequence.

Dynamic Time Warping (DTW) is a similarity measure between two time
series X and Y , where X = x1, x2, ..., xN and Y = y1, y2, ..., yN , is defined as
follows.

DTW (X,Y ) = d(N,N), where

d(i, j) = |xi − yj |+ min

d(i− 1, j)
d(i, j − 1)
d(i− 1, j − 1),

d(0, 0) = 0; d(i, 0) = d(0, j) =∞; i = j = 1, 2, . . . , N .

A subsequence Tim of time series T is its continuous subset starting from i-th
position and consisting of m data points, i.e. Tim = ti, ti+1, . . . , ti+m−1, where
1 ≤ i ≤ N and i + m ≤ N .

A query Q is a certain subsequence to be found in T . Let n is a length of the
query, n� N .

Subsequence similarity search problem aims to finding a subsequence, which
is the most similar to the query with respect to a given similarity measure. Let
D is a similarity measure, then the resulting subsequence is argmin

1≤i≤N−n
D(Tin, Q).

We will use DTW as a similarity measure.

2.2 The Intel Xeon Phi Architecture and Programming Model

The Intel Xeon Phi coprocessor is an x86 many-core coprocessor of 61 cores,
connected by a high-performance on-die bidirectional interconnect where each
core supports 4× hyperthreading and contains 512-bit wide vector processor unit
(VPU). Each core has two levels of cache memory: a 32 Kb L1 data cache, a
32 Kb L1 instruction cache, and a core-private 512 Kb unified L2 cache. The
Intel Xeon Phi coprocessor is to be connected to a host computer via a PCI
Express system interface. PCI Express is used for data transfer between CPU
and the coprocessor.

Being based on Intel x86 architecture, the Intel Xeon Phi coprocessor sup-
ports the same programming tools and models as a regular Intel Xeon processor.

The Intel Xeon Phi coprocessor supports three programming modes: native,
offload and symmetric. In native mode the application runs independently, on
the coprocessor only. In offload mode the application is running on the host
and offloads computationally intensive part of work to the coprocessor. The
symmetric mode allows the coprocessor to communicate with other devices by
means of Message Passing Interface (MPI).



2.3 Related Work

Currently DTW is considered as best similarity measure for many applica-
tions [3], despite the fact that it is very time-consuming [8, 16]. Research devoted
to acceleration of DTW computation includes the following.

The SPRING algorithm [13] uses computation-reuse technique. However,
this technique squeezes the algorithm’s applications because data-reuse supposes
non-normalized sequence. In [11] indexing technique to speed up the search was
used, which need to specify the query length in advance. Authors of [9] sug-
gested multiple indices for various length queries. Lower bounding [7] allows one
to discard unpromising subsequences using the lower bound of DTW distance
estimated in a cheap way. The UCR-DTW algorithm [12] integrates all the pos-
sible existing speedup techniques and most likely it is the fastest of the existing
subsequence matching algorithms.

All the aforementioned algorithms aim to decrease the number of calls of
DTW subroutine, not accelerating DTW itself. However, because of its com-
plexity, DTW still takes a large part of the total application runtime [18]. There
are approaches exploiting the allocation of DTW computation of different sub-
sequences into different processing elements. In [15] subsequences starting from
different positions of the time series are sent to different Intel Xeon processors,
and each processor computes DTW. In [16] different queries are distributed onto
different cores, and each subsequence is sent to different cores to be compared
with different queries. GPU implementation [18] parallelize the generation of the
warping matrix but still process the path search serially. GPU implementation
proposed in [14] utilizes the same ideas as in [15]. FPGA implementation de-
scribed in [14] focuses on the naive subsequence similarity search, and do not
exploit any pre-processing techniques. It is generated by a C-to-VHDL tool and
should be recompiled if length of query is changed. This algorithm supports 8-bit
data precision and can not supports queries longer than 210, so it can not be
applied in big-scale tasks. To address these problems in [17] a stream oriented
framework was proposed. It implements coarse-grained parallelism by reusing
data of different DTW computations and uses a two-phase precision reduction
technique to guarantee accuracy while reducing resource cost.

In this work we present a parallel algorithm of the time series subsequence
similarity search under DTW on the Intel Xeon Phi many-core coprocessor where
the UCR-DTW serial algorithm is used as a basis.

3 Acceleration by the Intel Xeon Phi Coprocessor

3.1 Serial Algorithm

The UCR-DTW serial algorithm [12] is depicted in the Fig. 1. It uses a cascade
of three lower bounding of DTW distance, namely LBKim [10, 12], LBKeogh [8]
and LBKeoghEC [12]. If the lower bound has exceeded some threshold, the DTW
distance also exceeds the same threshold, so the subsequence can be pruned
off. Here the bsf (best-so-far) variable stores the distance to the most similar
subsequence.
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else
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UCR-DTW

Fig. 1: Serial algorithm

3.2 Parallel Algorithm

Fig. 2 depicts a parallel version of the UCR-DTW algorithm. Parallelization of
the original algorithm was performed through the OpenMP technology.
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Fig. 2: Parallel algorithm for CPU

The source time series T is partitioned into H equal-length segments. Let
P denotes the number of OpenMP-threads, S denotes a maximum length of
segment, then H is defined as

H = d N

P · S
e · P

A k-th segment, 0 ≤ k ≤ H − 1, is defined as a subsequence Tsl, where

s =

{
1 , k = 0
k · bNH c − n + 2 , else



l =


bNH c , k = 0
bNH c+ n− 1 + (N mod H) , k = H − 1
bNH c+ n− 1 , else

It means that the head part of every segment except first overlaps with the
tail part of previous segment in n−1 data points, where n is length of the query.
This prevents from losing of possible resulting subsequences, which start at tail
part of previous segment.

The number of segments H is divisible by the number of threads P for better
load balancing.

The algorithm is based on dynamic distribution of segments across threads.
We use k variable, which is shared among all threads and identifies first unpro-
cessed segment. The k variable initialized by 0 and while there are unprocessed
segments (i.e. k ≤ H), a thread gets k-th segment, increments k by 1 and
processes the segment by means of UCR-DTW subroutine, which implements an
original serial algorithm. To provide correct processing of shared data we use
critical section to prevent multiple threads from accessing the critical section’s
code at the same time, i.e. only one active thread can get k-th segment and
update the k variable.

We reject static distribution of segments across threads (where each thread
is assigned by its own segments before calculations) due to the following reason.
Static distribution could result in worse load balancing because of unpredictable
amount of pruned and early abandoned subsequences for each thread. So, over-
head costs to provide the critical section in case of dynamic distribution is a
lesser evil than highly probable load imbalance in case of static distribution.

In contrast with the serial version the bsf variable is shared among the
threads. This allows each thread to prune off unpromising subsequence using
lower bounding.

This algorithm is ready-to-use on the Intel Xeon Phi coprocessor in native
mode. However, experiments have shown (Fig. 5) that the algorithm is slower
than on CPU. This implementation does not provide sufficient floating point
operations per byte of data to be effectively processed on the coprocessor. To
overcome this we combined CPU and coprocessor to process time series as de-
scribed in the next section.

3.3 Combining CPU and the Intel Xeon Phi

The parallel algorithm for CPU and the Intel Xeon Phi is depicted in Fig. 3.
The idea of the algorithm is that the coprocessor should be exploited only

for DTW computations whereas CPU performs lower bounding, prepares subse-
quences for the coprocessor and computes DTW in case if it really does not have
another job. CPU supports a queue of candidate subsequences and the coproces-
sor computes DTW for each candidate. Queue stores a tuple (i, A) corresponding
a candidate subsequence Tin, where A is an n-element array containing LBKeogh

lower bounds for each position of the subsequence which is used for early aban-
doning of DTW [12].
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Fig. 3: Parallel algorithm for CPU and the Intel Xeon Phi

To reduce the amount of data transferred to the coprocessor, CPU offloads
current buffer of the time series once whereas queue is offloaded each time it
is full. The number of elements in the queue is calculated as C · h ·W , where
C is a number of cores of the coprocessor, h is a hyperthreading factor of the
coprocessor and W is a number of candidates to be processed by a coprocessor’s
thread.

The algorithm could be described in the following way. One of the CPU
threads is declared as a master and the rest as workers. At start master sends a
buffer with the current buffer with the time series to the coprocessor. If queue
is full then master offloads it to the coprocessor to perform DTW computation
for the corresponding subsequences by the coprocessor’s threads.

Worker’s activity is similar to activity of threads in parallel algorithm for
CPU only. Each worker processes segments by UCR-DTW* (see Fig. 4) subroutine.
The UCR-DTW* subroutine calculates cascade of lower bounds for the subsequence.
If it is dissimilar to the query then the worker prunes it off otherwise worker
pushes this subsequence to the queue. If the queue is full (and data previously
transferred to the coprocessor have not been processed yet), the worker calculates
DTW by itself.

At the end of offload section the information about most similar subsequence
found on the coprocessor is transferred to the CPU. The final result is calculated
among the most similar subsequence found on the CPU and same that found on
the coprocessor.



[no Tin]

Get next Tin
else [pruned]

Lower Bound Cascade Pruning

dist = DTW(Tin, Q)

[Queue.IsFull]

Queue.Push (candidate)
else

bsf = min(bsf, dist)

else

Fig. 4: UCR-DTW* subroutine

4 Experiments

Hardware. To evaluate the developed algorithm we performed experiments on
the Tornado SUSU1 supercomputer’s node (see Tab. 1 for its specifications).

Table 1: Specifications of the Tornado SUSU supercomputer’s node
Specifications Processor Coprocessor

Model Intel Xeon X5680 Intel Xeon Phi SE10X

Cores 6 61

Frequency, GHz 3.33 1.1

Threads per core 2 4

Peak performance, TFLOPS 0.371 1.076

Memory, Gb 24 8

Cache, Mb 12 30.5

Data sets. Experiments have been performed on three time series, which are
summarized in Tab. 2. The PURE RANDOM data set was generated by a ran-
dom function. The RANDOM WALK data set is one-dimensional random walk
time series. The ECG (electrocardiographic) data set represents approximately
22 hours of one ECG channel sampled at 250 Hz.

Table 2: Data sets used in experiments

Time series Category Length

PURE RANDOM synthetic 106

RANDOM WALK synthetic 108

ECG [12] real 2 · 107

1 supercomputer.susu.ru/en/computers/tornado/



Goals. In the experiments we investigated a) performance of our algorithm,
b) impact of the queue size on the speedup and c) runtime of our algorithm in
comparison with analogues for GPU and FPGA.

4.1 Performance

On the PURE RANDOM data set our algorithm shows (Fig. 5a) a two times
higher performance than the parallel algorithm for CPU only.

Experimental results on RANDOM WALK data set (Fig. 5b) show that our
algorithm is more effective for longer queries. In case of shorter queries the
algorithm has the same performance as parallel algorithm for CPU only.

For the experiments on ECG data set we used a subsequence TN−nn of the
whole time series T as a query to prevent from finding the most similar sub-
sequence at the early stage of computations and, in turn, to provide sufficient
amount of work on DTW computation. Our algorithm shows (Fig. 5c) almost
three times higher performance than the parallel algorithm for CPU only.
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Fig. 5: Performance of the algorithm



4.2 Impact of Queue Size

Results of the experiments are depicted in Fig. 6. In the current experimental
environment, i.e. number of cores of the coprocessor C is 602, hyperthreading
factor of the coprocessor h is 4, optimal number of candidates to be processed
by a coprocessor’s thread W is 10, so optimal number of the elements in the
queue is 2400. Experimental results described above have been achieved with
this queue size.
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Fig. 6: Impact of queue size on the speedup

4.3 Comparison with Algorithms for GPU and FPGA

We compared the performance of our algorithm with analogues for GPU and
FPGA developed in [14] (there is no comparison with results in [17] because
that research was devoted to a little bit different problem of search a set of
local-best-match subsequences). We repeated the experiments presented in that
paper using the same data set and query length.

2 One core is not involved in computations as it is recommended by the Intel Xeon
Phi programmer’s manual.



The results of the experiments are depicted in Fig. 7, here percentage on
the top of the bar indicates a part of subsequences that have not been pruned
and subjected to the DTW computation in our experiments. We also add to the
chart results of experiments on random walk and ECG data sets.
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Fig. 7: Comparison of performance

We took into account that the peak performance of the hardware we used
is significantly greater than its counterparts of that paper, i.e. overall peak per-
formance of our hardware was 1.44 TFLOPS whereas GPU as NVIDIA Tesla
C1060 had 77.8 GFLOPS and FPGA as Xilinx Virtex-5 LX-330 had 65 GFLOPS.
To provide more “fair” comparison we added to the chart hypothetical results
for modern NVIDIA Tesla K40 (1.43 TFLOPS)3 and Xilinx Virtex-7 980XT
(0.99 TFLOPS)4 multiplying real results of NVIDIA Tesla C1060 and Xilinx
Virtex-5 LX-330 by a respective scaling factor. As we can see our algorithm
does not concede to analogous on performance.

5 Conclusion

In this paper we have presented an approach to time series subsequence similar-
ity search under DTW distance on the Intel Many Integrated Core architecture.
The parallel algorithm combines capabilities of CPU and the Intel Xeon Phi
coprocessor. The coprocessor is exploited only for DTW computations whereas
CPU performs lower bounding, prepares subsequences for the coprocessor and

3 www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.

pdf
4 www.xilinx.com/publications/prod_mktg/Virtex7-Product-Brief.pdf



computes DTW as a last resort. CPU supports a queue of candidate subse-
quences and the coprocessor computes DTW for every candidate. Experiments
on synthetic and real data sets have shown that our algorithm does not concede
to analogous algorithms for GPU and FPGA on performance.

As future work we plan to extend our research for the cases of several co-
processors and cluster system based on nodes equipped with the Intel Xeon Phi
coprocessor(s).
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