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Abstract
The paper touches upon the problem of local-best-match time series subsequence similarity
search. The problem assumes that a query sequence and a longer time series are given, and
the task is to find all the subsequences whose distance from the query is the minimal among
their neighboring subsequences and distance from the query is under specified threshold. The
Dynamic TimeWarping (DTW) is used as a distance metric, which currently is recognized as the
best similarity measure for most time series applications. However, computation of DTW costs
too much despite the existing sophisticated software approaches. Existing hardware approaches
to DTW computation involve GPU and FPGA and pay no regard to the Intel Many Integrated
Core architecture. The paper proposes a parallel algorithm for solving this problem using both
CPU and the Intel Xeon Phi many-core coprocessor. The implementation is based on the
OpenMP parallel programming technology and offload execution mode, where part of the code
and data is transmitted to the coprocessor. The algorithm utilizes a queue of subsequences on
the processor side, which are uploaded to the coprocessor for the DTW computations. The
results of experiments confirm the effectiveness of the algorithm.

Keywords: time series data mining, subsequence similarity, local-best-match search, Dynamic Time
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1 Introduction

Subsequence similarity search is one of the topical issues of time series data mining in many
applications, e.g. weather forecasting [1], finance analytics [2], medical monitoring [3], etc.
Local-best-match search assumes that a query sequence and a longer time series are given, and
the task is to find all the subsequences whose distance from the query is the minimal among
their neighboring subsequences and distance from the query is under specified threshold.

Nowadays the Dynamic Time Warping (DTW) [4] is the most popular similarity measure
in many applications [5]. DTW is computationally expensive and there are many approaches
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that have been proposed to accelerate it, e.g. lower bounding [5], computation reusing [6], data
indexing [7], early abandoning [8], etc. However, DTW still takes a large part of the total
application runtime. That is why there are efforts to accelerate subsequence similarity search
using parallel hardware, e.g. computer-cluster [9], multi-core [10], FPGA and GPU [6, 11, 12].

This paper presents a parallel algorithm for local-best-match subsequence search based on
DTW distance for a central processor unit (CPU) accompanied with the Intel Xeon Phi many-
core coprocessor [13]. The rest of the paper is organized as follows. Section 2 contains formal
definition of the problem, briefly describes Intel Xeon Phi architecture and programming model
and discusses related work. The suggested algorithm is described in section 3. The results
of experimental evaluation of the algorithm are presented in section 4. Section 5 contains
concluding remarks and directions for future research.

2 Background and Related Work

2.1 Formal Definitions

A time series T is an ordered sequence t1, t2, . . . , tN of real data points, measured chronologi-
cally, where N is a length of the sequence.

Dynamic Time Warping (DTW) is a similarity measure between two time series X and Y ,
where X = x1, x2, ..., xN and Y = y1, y2, ..., yN , is defined as follows.

DTW (X,Y ) = d(N,N), where

d(i, j) = |xi − yj |+min

⎧⎨
⎩

d(i− 1, j)
d(i, j − 1)
d(i− 1, j − 1),

d(0, 0) = 0; d(i, 0) = d(0, j) =∞; i = j = 1, 2, . . . , N .

A subsequence Tim of time series T is its continuous subset starting from i-th position and
consisting of m data points, i.e. Tim = ti, ti+1, . . . , ti+m−1, where 1 ≤ i ≤ N and i+m ≤ N .

A query Q is a certain subsequence to be found in T . Let n is a length of the query, n� N .
Local-best-match subsequence search [11] is defined as follows. Let E > 0 is a similarity

threshold and L denotes the resulting set of subsequences. Then Tim ∈ L ⇔ Tim satisfies the
following conditions:

1. m = n;

2. DTW (Tim, Q) < E ;
3. i = argmin

j∈{i−1,i,i+1}
DTW (Tj m, Q).

2.2 The Intel Xeon Phi Architecture and Programming Model

The Intel Xeon Phi coprocessor is an x86 many-core coprocessor of 61 cores, connected by a high-
performance on-die bidirectional interconnect where each core supports 4× hyperthreading and
contains 512-bit wide vector processor unit (VPU). Each core has two levels of cache memory:
a 32 Kb L1 data cache, a 32 Kb L1 instruction cache, and a core-private 512 Kb unified L2
cache. The Intel Xeon Phi coprocessor is to be connected to a host computer via a PCI Express
system interface. PCI Express is used for data transfer between CPU and the coprocessor.
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The Intel Xeon Phi coprocessor supports the same programming tools and models as a
regular Intel Xeon processor because of its Intel x86 native architecture. The Intel Xeon Phi
coprocessor supports three programming modes: native, offload and symmetric. In native mode
the application runs independently, on the coprocessor only. In offload mode the application
is running on the host and offloads computationally intensive part of work to the coprocessor.
The symmetric mode allows the coprocessor to communicate with other devices by means of
Message Passing Interface (MPI).

2.3 Related Work

Currently DTW is considered as best similarity measure for many applications [5], despite
the fact that it is very time-consuming [14, 9]. Research devoted to acceleration of DTW
computation includes the following.

The SPRING algorithm [15] uses computation-reuse technique. However, this technique
squeezes the algorithm’s applications because data-reuse supposes non-normalized sequence.
In [7] indexing technique to speed up the search was used, which need to specify the query
length in advance. Authors of [16] suggested multiple indices for various length queries. Lower
bounding [17] allows one to discard unpromising subsequences using the lower bound of DTW
distance estimated in a cheap way. The UCR-DTW algorithm [8] integrates all the possible
existing speedup techniques and most likely it is the fastest of the existing subsequence matching
algorithms.

All the aforementioned algorithms aim to decrease the number of calls of DTW subroutine,
not accelerating DTW itself. However, because of its complexity, DTW still takes a large part
of the total application runtime [12]. There are approaches exploiting the allocation of DTW
computation of different subsequences into different processing elements.

In [10] subsequences starting from different positions of the time series are sent to different
Intel Xeon processors, and each processor computes DTW. In [9] different queries are distributed
onto different cores, and each subsequence is sent to different cores to be compared with different
queries. GPU implementation [12] parallelize the generation of the warping matrix but still
process the path search serially. GPU implementation proposed in [6] utilizes the same ideas
as in [10]. FPGA implementation described in [6] focuses on the naive subsequence similarity
search, and do not exploit any pre-processing techniques. It is generated by a C-to-VHDL tool
and should be recompiled if length of query is changed. This algorithm supports 8-bit data
precision and can not support queries longer than 210, so it can not be applied in big-scale tasks.
To address these problems in [11] a stream oriented framework was proposed. It implements
coarse-grained parallelism by reusing data of different DTW computations and uses a two-phase
precision reduction technique to guarantee accuracy while reducing resource cost.

This paper suggests a parallel algorithm of the local-best-match time series subsequence
similarity search under DTW for the Intel Many-integrated core accelerators where the UCR-
DTW serial algorithm is used as a basis. Parallelization of the original algorithm was performed
by means of OpenMP technology and adapted for the Intel Xeon Phi many-core coprocessor
using our previous research [18].

3 Local-best-match Search on the Intel Xeon Phi

Development of the parallel algorithm for local-best-match subsequence search looks like the
following. Firstly (3.1), we have implemented local-best-match serial algorithm using UCR-
DTW serial algorithm [8]. Next (3.2), we have created a parallel version of our serial algorithm
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by means of the OpenMP technology. Finally (3.3), we have adapted the algorithm developed
at the previous step for the Intel Xeon Phi many-core coprocessor.

3.1 Serial Algorithm

Our algorithm for local-best-match subsequence search is depicted in Fig. 1 (hereinafter lbm-
UCR-DTW). The original algorithm is represented by the Lower Bounding subactivity, where
a cascade of three lower bounding of DTW distance is used, namely LBKim [8], LBKeogh [14]
and LBKeoghEC [8].

[no Tin]

dist := DTW(Tin, Q)

bsf := min(bsf, max DTW(Tmn, Q))

else

[pruned]

else

Lower Bounding

i := i + 1
dist := 

[Local Min
Condition]

else

 :=  \ argmax DTW(Tmn, Q)
Tmn  

[ | | > K ]

Tmn  

 :=   CM

Update result

else

CL := CM
CM := CR
distL := distM
distM := distR

CR := Tin
distR := dist

SlidingInit
i := 0
dist := 
CL := EMPTY
CM := EMPTY
CR := EMPTY
bsf := 

Update Result

Init Read Next

Read Next

Get Tin

Sliding

LB_Kim(Tin, Q)

[lb_kim  bsf] [lb_keogh  bsf] [lb_keogh_ec  bsf]

else
Lower Bounding

else

pruned

non-pruned
LB_Keogh(Tin, Q) LB_KeoghEC(Tin, Q)

else

lbm-UCR-DTW

Local Min 
Condition

CL  EMPTY 
CM  EMPTY 
CR  EMPTY 
distM <  
distM < distL 
distM < distR

Figure 1: Serial algorithm

We assume that |L| ≤ K, i.e. resulting set contains no more than K subsequences, where K
is specified threshold. This restriction is practically useful due to possible memory limitations
to store resulting subsequences and does not lose generality because we can consider the case
of K =∞.

The bsf (best-so-far) variable stores the distance to the most distant subsequence among
all the similar subsequences and is calculated as follows:

bsf =

{ E , |L| < K
min(E , max

Tmn∈L
DTW (Tmn, Q)) , else.

The algorithm scans every triple of neighboring subsequences where the current processed
subsequence Ti n is denoted as CR and two previously processed subsequences Ti−1n and Ti−2n

are denoted as CM and CL respectively. The distances from the CR, CM and CL to the query
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are denoted as distR, distM and distL respectively. The Sliding subactivity updates these
variables during processing.

If CM subsequence represents a local minimum, then the Update Result subactivity in-
cludes CM subsequence in L resulting set. If cardinality of the L set is greater than K then
algorithm excludes from L a subsequence with greatest distance to the query and after that
updates the bsf variable according to aforementioned formula. The algorithm stops after all
the subsequences have been processed.

3.2 Parallel Algorithm for CPU

Fig. 2 depicts a parallel version of the lbm-UCR-DTW algorithm. Parallelization was performed
through the OpenMP technology.

Open file Swap Buf_1
and Buf_2

Read data 
in Buf_2

Output
result Close file

[Buf_2 is empty]
else

...

Read data 
in Buf_1

lbm-UCR-DTW(segment)

Process Segments

segment := segments[k]

[k > H]

else

Process
Segments

Process
Segments

Process
Segments

k := k + 1

k := 0

Figure 2: Parallel algorithm for CPU

The input time series T is partitioned into H equal-length segments. Let P denotes the
number of OpenMP-threads, S denotes a maximum length of segment, then H is defined as

H = � N

P · S � · P
The number of segments H is divisible by the number of threads P for better load balancing.

A k-th segment, 0 ≤ k ≤ H − 1, is defined as a subsequence Ts l, where

s =

{
1 , k = 0
k · 	NH 
 − n+ 2 , else

l =

⎧⎨
⎩
	NH 
 , k = 0
	NH 
+ n− 1 + (N mod H) , k = H − 1
	NH 
+ n− 1 , else

It means that the head part of every segment except first overlaps with the tail part of
previous segment in n− 1 data points, where n is length of the query. This prevents from the
loss of possible resulting subsequences, which start at tail part of the previous segment.

The algorithm distributes segments across threads as follows. There is an integer k variable,
which is shared among all threads and identifies first unprocessed segment. The k is initialized
by 0 and while there are unprocessed segments (i.e. k ≤ H), a thread gets k-th segment,
increments k by 1 and processes the segment by means of the lbm-UCR-DTW subroutine, which
implements the serial algorithm. To provide correct processing of shared data we use critical
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section to prevent multiple threads from accessing the critical section’s code at the same time,
i.e. only one active thread can get k-th segment and update the k variable.

We use this way of distribution instead of the assigning of each thread its own segments
before calculations because the latter could result in worse load balancing due to unpredictable
amount of pruned and early abandoned subsequences for each thread. In other words, overhead
costs to provide the critical section is a lesser evil than highly probable load imbalance.

In contrast with the serial version the bsf variable is shared among the threads. This allows
each thread to prune off unpromising subsequence using lower bounding. Resulting set is shared
among the threads as well and is write-protected by means of critical section. This allows to
improve the value of the bsf variable (i.e. decrease it to prune more unpromising subsequences)
faster than in case of using individual resulting subset for each thread.

3.3 Parallel Algorithm for the Intel Xeon Phi

The parallel algorithm for CPU and the Intel Xeon Phi is depicted in Fig. 3. The idea of the
algorithm is that the coprocessor should be exploited only for DTW computations whereas CPU
performs lower bounding, prepares subsequences for the coprocessor and computes DTW in case
if it really does not have another job. CPU supports a queue of candidate subsequences and
the coprocessor computes DTW for each candidate. Queue stores a tuple (i, A) corresponding
a candidate subsequence Ti n, where A is an n-element array containing LBKeogh lower bounds
for each position of the subsequence which is used for early abandoning of DTW [8].

CPU Intel Xeon Phi

Receive
candidates

...

Send phi_result

Wait for
candidates

Receive
phi_result

Open fileSwap Buf_1
and Buf_2

Output
resultClose file

[Buf_2 is
empty]else

Read data 
in Buf_1

[no candidates and
all threads are finished]

Send candidates

else

Send Buf_1 Receive Buf

result = find_local_min(result, DTW_distances)

Process Candidate

Process
Candidate

[no candidates] else

Update
Distances

Update Distances

[phi_result is empty] else

Read data 
in Buf_2

...

Process Segments
by lbm-UCR-DTW*

segment := segments[k]

[k > H] else
lbm-UCR-DTW*(segment)

Get Candidate

dist := DTW(candidate)

phi_result := phi_result  (candidate, dist)

Get (subsequence, dist) from phi_result

DTW_distances[subsequence] := dist

k := k + 1

Process
Segments by

lbm-UCR-DTW*

Process
Segments by

lbm-UCR-DTW*

Process
Segments by

lbm-UCR-DTW*
Process

Candidate

Figure 3: Parallel algorithm for CPU and the Intel Xeon Phi

To reduce the amount of data transferred to the coprocessor, CPU offloads current buffer
of the time series once whereas queue is offloaded each time it is full. The number of elements
in the queue is the algorithm’s parameter and is calculated as C · h ·W , where C is a number
of cores of the coprocessor, h is a hyperthreading factor of the coprocessor and W is a number
of candidates to be processed by a coprocessor’s thread.

The algorithm could be described in the following way. One of the CPU threads is declared
as a master and the rest as workers. At start master sends a buffer with the current segment of
the time series to the coprocessor. If queue is full then master offloads it to the coprocessor to
perform DTW computation for the corresponding subsequences by the coprocessor’s threads.
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Worker’s activity is similar to activity of CPU threads in parallel algorithm described in 3.2.
Each worker processes segments by means of the lbm-UCR-DTW* (see Fig. 4) subroutine, which
calculates cascade of lower bounds for the subsequence. If the subsequence is dissimilar to the
query then the worker prunes it off otherwise the subsequence is pushed to the queue. If the
queue is full (and data previously transferred to the coprocessor have not been processed yet),
the worker calculates DTW by itself. Worker stores results of DTW calculations in an array
shared among all the workers.

[no Tin]

dist := DTW(Tin, Q)

else

[pruned]

else

Lower Bounding

elseUpdate Result

Init Read Next

Sliding

[Queue.IsFull]

Queue.Push (Tin)

CR := EMPTY

Sliding

Push 
to Queue

else

Push to Queue

[Local Min
Condition]

DTW_distances[i] := dist

Figure 4: lbm-UCR-DTW* subroutine

After all the candidate subsequences are offloaded to the coprocessor DTW calculation is
performed for every candidate subsequence and “index-distance” tuples are offloaded to CPU.
Finally, algorithm searches local-best-match subsequences in the shared array filled earlier.

4 Experiments

Hardware platform of the experiments is described in Tab. 1.

Table 1: Specifications of the hardware platform
Specifications Processor Coprocessor
Model Intel Xeon X5680 Intel Xeon Phi SE10X
Cores 6 61
Frequency, GHz 3.33 1.1
Threads per core 2 4
Peak performance, TFLOPS 0.371 1.076
Memory, Gb 24 8

Experiments have been performed on three time series, namely PURE RANDOM, RAN-
DOM WALK and ECG. The PURE RANDOM data set consists of 106 points generated by
a random function. The RANDOM WALK data set is one-dimensional random walk time se-
ries consisting of 108 points. The ECG data set [8] consists of 2 · 107 points and represents
approximately 22 hours of one electrocardiographic channel sampled at 250 Hz.
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Figure 5: Performance of the algorithm

In the experiments we used E = 2+Dmin as a similarity threshold where Dmin is a distance
between a query and the most similar subsequence found beforehand using our algorithm [18].
As cardinality of the resulting set we used K = 104. We investigated performance of our
algorithm varying query length and similarity threshold.

On the PURE RANDOM data set our algorithm shows (Fig. 5a) a two times higher perfor-
mance than the parallel algorithm for CPU only. Experimental results on RANDOM WALK
data set (Fig. 5b) show that our algorithm is more effective for longer queries. In case of
shorter queries the algorithm has the same performance as parallel algorithm for CPU only.
In the experiments on ECG data set our algorithm shows (Fig. 5c) almost three times higher
performance than the parallel algorithm for CPU only.

Impact of the E similarity threshold on the performance is depicted in Fig. 6. As expected
algorithm’s performance is inversely proportional to the similarity threshold. As we can see
for each data set and length of query there exists a threshold t such that execution time stays
almost constant for all values of threshold more than t. This behavior occurs because resulting
set is updated with the same speed for all values of threshold more than t.
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Figure 6: Impact of similarity threshold on the performance of the algorithm

5 Conclusion

In this paper we have described the parallel algorithm for local-best-match time series sub-
sequence search under DTW distance on the Intel Many Integrated Core architecture. The
parallel algorithm combines capabilities of CPU and the Intel Xeon Phi coprocessor. The co-
processor is exploited only for DTW computations whereas CPU performs lower bounding,
prepares subsequences for the coprocessor and computes DTW as a last resort. CPU supports
a queue of candidate subsequences and the coprocessor computes DTW for every candidate.
Experiments on synthetic and real data sets have shown that our algorithm outperforms serial
algorithm and parallel algorithm that uses CPU only.

As future work we plan to extend our research for the case of cluster system based on nodes
equipped with the Intel Xeon Phi coprocessors.
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