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Abstract: Botanical plants suffer from several types of diseases that must be identified early to
improve the production of fruits and vegetables. Mango fruit is one of the most popular and
desirable fruits worldwide due to its taste and richness in vitamins. However, plant diseases also
affect these plants’ production and quality. This study proposes a convolutional neural network
(CNN)-based metaheuristic approach for disease diagnosis and detection. The proposed approach
involves preprocessing, image segmentation, feature extraction, and disease classification. First, the
image of mango leaves is enhanced using histogram equalization and contrast enhancement. Then, a
geometric mean-based neutrosophic with a fuzzy c-means method is used for segmentation. Next,
the essential features are retrieved from the segmented images, including the Upgraded Local Binary
Pattern (ULBP), color, and pixel features. Finally, these features are given into the disease detection
phase, which is modeled using a Convolutional Neural Network (CNN) (deep learning model).
Furthermore, to enhance the classification accuracy of CNN, the weights are fine-tuned using a new
hybrid optimization model referred to as Cat Swarm Updated Black Widow Model (CSUBW). The
new hybrid optimization model is developed by hybridizing the standard Cat Swarm Optimization
Algorithm (CSO) and Black Widow Optimization Algorithm (BWO). Finally, a performance evaluation
is undergone to validate the efficiency of the projected model.

Keywords: botanical leaf disease; Black Widow Algorithm; CNN; Cat Swarm Optimization

1. Introduction

Mango fruit is one of the most popular fruits worldwide due to its rich vitamins
and fantastic taste. India is one of the largest producers of mangoes, and it produces
40% of the world’s mangoes [1]. Pests and diseases damage crop production, crushing
30% to 40% of the crop yield [2]. Unaided eye vision is used to identify the mango plant
pathogens, which has less precision. Farmers are unaware of the various diseases that
affect mango plants, resulting in lower mango fruit yield. The various diseases wreak
havoc on the mango harvest, and uneven colored black spots appear due to the disease.
These patches occur on the leaf surface or young fruits [3–6]. These patches start small
but soon spread to the whole fruit or leaves, causing the fruit to rot. These illnesses
must be diagnosed and monitored in a specific time frame while they are still in their
early stages [7–9]. These diseases are caused by pathogens such as champignons, bacteria,
and viruses, resulting in plant death. Identifying plant diseases is the process of agricultural
experts inspecting each plant regularly. Farmers must actively track the plant body for
this, which is a time-consuming process [10–12]. Early identification of plant disease needs
the use of different techniques. Early recognition of the disease in the field is the initial
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step in managing the spread of mango diseases. Traditional disease detection strategies
rely on the help of agricultural organizations, but these methods are limited due to a lack
of logistical and human resources [13–15]. Mobile phones and UAVs use technologies
to increase internet access and have new instruments for disease detection that rely on
automatic image recognition to aid in large-scale detection. With the introduction of
CV, ML, and AI technologies, advancement has been achieved in building automated
models that enable the accurate and timely diagnosis of plant leaf disease [16,17]. With the
advent of a variety of high-performance computer processors and devices in the previous
decade, AI and machine learning technologies have attracted interest. DL has been well
acknowledged as being primarily employed in agriculture [18]. This idea seems crucial for
establishing, regulating, sustaining, and improving agricultural productivity. It is at the
core of the intelligent farming technique, which is identified to incorporate new technology,
algorithms, and gadgets into farming [18,19]. Deep learning using Neural Networks is
a part of machine learning. The advancement of such computer technologies will assist
farmers in monitoring and controlling plant diseases. Previous research has shown that
image recognition can be used to recognize plant disease in maize, apples [17–19], and other
stable and diseased plants [20]. The detection of mango leaf diseases using automatic image
recognition and attribute extraction has shown positive results [2,3]. However, extraction
characteristics are computationally intensive and require solid performance expertise.
Therefore, the optimized deep learning models are suggested as a promising solution. The
significant contributions of this research work follow:

• Introduces a new geometric mean-based neutrosophic with fuzzy c-mean for segment-
ing the diseased region from the standard leaf regions;

• Extracts Upgraded Local Binary Pattern (ULBP) to train the detection model precisely,
which results in the enhancement of texture features;

• Introduces a new optimized CNN model to detect the presence/absence of leaf disease
in mango trees;

• Introduces a new hybrid meta-heuristic optimization model called Cat Swarm Up-
dated Black Widow Model (CSUBW) to optimize the CNN.

This paper is organized as follows. Section 2 discusses the literature review.
Sections 3 and 4 provides the detailed description of the proposed methodology. Section 5
provides the description of the experiments and results. This paper is concluded in
Section 6.

2. Literature Review

Plant disease detection is critical for implementing disease management strategies
that increase crop quality and quantity. Plant disease automation is advantageous since
it decreases the monitoring required on big farms. As the leaves are a plant’s primary
source of nutrition, it is critical to identify leaf diseases early and precisely. Farmers and
plant pathologists are implicated in traditional disease management methods. In the fields,
pesticide diagnosis and application are more common. This approach is time consuming
and challenging, and it frequently leads to erroneous diagnoses and inappropriate pesticide
application [16]. Different authors have suggested several deep learning architectures
throughout this era of study. CNN is one of the most often used deep learning algorithms
among them. The biological nerve and visual systems inspired CNN. It is a deep learn-
ing classification model that is supervised and has a good classification and recognition
accuracy. This paradigm has a complicated structure due to the massive number of infor-
mation processing layers. The multiplayer architecture distinguishes itself from traditional
Artificial Neural Networks (ANNs) [2]. They can learn features from a training dataset.
Compared to standard ANN models, CNN models require many neurons but a massive
amount of data to train [5,9]. Table 1 summarizes the characteristics and difficulties of
the existing literature-based studies. In 2020, Chouhan et al. [1] suggested an automated
web-based leaf disease segmentation approach based on an NN. The intended system
was divided into four radial basis functions: First, using a web-enabled digital camera,
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images of mango leaves are taken in real time. Second, using a “scale-invariant feature
transform technique”, the images were preprocessed, and features were extracted. Third,
the bacterial foraging optimization technique has been used to optimize the NN’s training
by utilizing the most distinct characteristics. Finally, the damaged region of the mango leaf
pictures was extracted using the radial basis function NN. The testing findings confirmed
the suggested system’s high accuracy in segmenting anthracnose (fungal) disease. In
2020, Mia et al. [2] proposed an NNE for MLDR to identify diseases quickly and correctly.
Training data were created using a classification model that collects pictures of leaves that
different diseases have damaged. An ML system was designed to autonomously upload
and correlate fresh pictures of damaged leaves with training data to determine mango
leaf diseases. With an average accuracy of 80%, the suggested system could correctly
identify and categorize the investigated illness. This recommended remedy suffocated
the mango plants. The technology had assisted in disease detection without any involve-
ment of an agriculturist, thereby improving the efficiency by identifying disease areas
with a machine learning model rather than a mechanical approach. It would also cure
the afflicted mango leaf disease appropriately, boost mango output, and fulfill worldwide
market demand. Venkatesh et al. [3] have proposed a “V2IncepNet” that integrates the
best feature of the Inception module. The VGGNet module extracts basic features, whereas
the Inception module does high-dimensional feature extraction and image categorization.
The VGGNet module extracts essential functionality, whereas the Inception module does
high-dimensional feature extraction and picture categorization. Certain color features
are all used in this work. According to the results, the suggested model can classify the
amount of Anthracnose disease infection on mango leaves with at least 92% accuracy.
The suggested model was straightforward but effective. In 2020, Pham et al. [16] developed
an ANN technique to identify early leaf tissue illnesses with tiny spots that can only be
seen with higher resolution images. All infected blobs were segmented for the whole
dataset after the preprocessing using a contrast enhancement technique. A list of various
measurement-based features representing the blobs was picked using a wrapper-based
feature selection technique based on a hybrid metaheuristic and then selected depending
on their impact on the model’s performance. The chosen features were then transferred as
inputs to the ANN. They evaluate the numbers achieved using their approaches to those
acquired using a different strategy incorporating transfer learning and prominent CNN
models (AlexNet, VGG16, ResNet-50). For the categorization of mango leaves affected by
the fungal disease Anthracnose, researchers have suggested MCNN. This research was
based on a real-time dataset of 1070 mango tree leaves recorded at “Shri Mata Vaishno Devi
University in Katra, J&K, India”. Both the healthy and diseased leaf images were included
in the dataset. Compared to other state-of-the-art methods, the suggested MCNN model
appears to have a better classification accuracy. In 2017, Ullagaddi and Raju [19] proposed
a directional feature extraction technique based on the MRKT to address difficulties with
plant disease detection caused by shape, color, or other misleading features. The directional
characteristics and histograms for plant components such as the leaf and fruit of the mango
crop were calculated using an MRKT-based approach. These histograms and the directional
features are set together with an Artificial Neural Network, resulting in a more accurate
diagnosis of Anthracnose disease, which appears as black spots on mango fruits and leaves.
The findings obtained by the suggested MRKT directional feature set have demonstrated
that the proposed concept has produced better results with an accuracy of up to 98%. In
2021, Kumar et al. [20] developed a new CNN architecture to detect mango Anthracnose
disease. Testing was performed using a “real-time dataset” collected from “Karnataka,
Maharashtra, and New Delhi farms”. It includes both healthy and unhealthy photographs
of mango tree leaves. In 2021, Sujatha et al. [4] used ANN to detect mango leaf diseases
early. The digital camera was used to capture the image of the damaged leaf; the image was
taken from a consistent distance with adequate illumination. The noise reduction using
an averaging filter, color transformation, and histogram equalization has been used to
preprocess the image captured with the digital camera. Compared to other image segmen-
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tation methods, histogram-based approaches were highly efficient, since they generally
require one pass across the pixels. The k-means method was used to segment the images in
this research. Many feature extraction approaches have been applied, including texture
characteristics based on GLCM and SGDM. Texture features include contrast, energy, local
homogeneity, cluster shadow, and prominence.

Table 1. Features and Challenges of Existing Works Focused on Mango Leaf Disease Detection.

Author Adopted Methodology Advantages Drawbacks

Chouhan et al. [1] Radial Basis Function (RBF)
Neural Network

higher specificity and
sensitivity, intuitive,

user-friendly

need to overcome
over-segmentation problem;

highly prone to noise; not
applicable in industrial

applications

Mia et al. [2] neural network consumes less time

accuracy of classification is
lower; risk of over-fitting;

not used in industrial
applications

Venkatesh et al. [3] VGGNet model
simple and cost-effective;

used in industrial
applications

lower detection accuracy

Pham et al. [16]

Feed-Forward Neural
Network and Hybrid
Metaheuristic Feature

Selection

higher testing accuracy,
recall, precision and

F1-score

higher computational
complexity in terms of time

and cost

Singh et al. [13] Multilayer Convolution
Neural Network

higher classification
accuracy (97.13%)

computationally efficient;
used in different industrial

conditions

highly prone to noise

Ullagaddi and Raju [19] Modified Rotational Kernel
Transform Features

higher reorganising
accuracy and segmentation

accuracy

lower miss rate, specificity
and sensitivity; not

applicable in industrial
conditions

Kumar et al. [20] CNN
higher classification

accuracy; used in different
industrial constraints

lower sensitivity and
specificity higher
misclassification

Sujatha et al. [4] ANN less prone to noise, efficient
extraction metod92.31

higher computational
complexity; not applicable

in industrial conditions

3. Proposed Methodology

This study proposed a mango leaf detection approach that consists of the following
stages: (a) preprocessing, (b) image segmentation, (c) feature extraction, and (d) disease
prediction. The architecture of the proposed work is manifested in Figure 1. Initially,
the collected raw image is preprocessed via “contrast enhancement and histogram equal-
ization” to remove the noise and other unwanted artifacts to enhance the quality of the
image. Then, preprocessed images are segmented via the proposed geometric mean-based
neutrosophic with fuzzy C-mean. Subsequently, the most relevant features such as ULBP
(texture feature), color feature, and pixel features are extracted from the segmented images.
Finally, these features are fed as the input to the detection phase, which is modeled using
a CNN (deep learning model) for disease identification. Furthermore, to enhance CNN’s
classification accuracy, its weights are fine-tuned by a new hybrid optimization model.
The new hybrid optimization model hybridizes the standard CSO and BWO.
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Figure 1. Architecture of the proposed work.

3.1. Preprocessing: Contrast Enhancement and Histogram Equialization

The phrase “image preprocessing” refers to actions on images at the most fundamental
level. If entropy is an information metric, these techniques do not enhance picture infor-
mation content but rather reduce it. Instead, preprocessing aims to enhance the picture
data by suppressing unwanted distortions or enhancing important visual characteristics
for subsequent analysis and processing. In this research work, the collected input im-
age Iin is preprocessed via contrast enhancement and a histogram equalization model.
The preprocessing phases are diagrammatically shown in Figure 2.

Figure 2. Preprocessing phase.

3.2. Contrast Enhancement

The quality of the input image Iin is enhanced by applying the contrast enhancement
technique [21]. Initially, the RGB color channel is converted into HSI. This approach is
centered around the intensity parameters and preserves the other hue and saturation values.
Then, the intensity is separated into two-step parameter groups: low δlow and high δhigh .
These two groups can be expressed as per Equations (1) and (2), respectively.

δlow = {δj‖j ≤ δm} (1)

δhigh = {δi‖i > δm} (2)



Computers 2022, 11, 82 6 of 21

Here, δm is the trivial threshold intensity value. Furthermore, the enhanced intensity
is computed by using Equation (3).

δenhance(i) = δlow + (δhigh − δlow)× βi = {δi ‖i > δm} (3)

Here, βi is the cumulative density computed from the histogram. Next, the mean
brightness and the input brightness are calculated to reduce the inaccuracy. The repetition
of this procedure continues until the appropriate increased intensity values are found.
Finally, the result is created by combining the increased intensity with the other initial hue
and saturation values and converting them to an RGB color channel.

3.3. Histogram Equalization

The intensity distribution of an image is graphically represented by a histogram [22].
It essentially indicates the number of pixels for every pixel intensity considered. Histogram
equalization is a contrast-enhancing computer image processing method. It effectively
spreads out some of the most common intensity values, i.e., widening the image’s intensity
range. When near contrast values represent the useable data, this approach generally
boosts the global contrast of images and enables locations with poor local contrast to
get a boost in contrasts. A color histogram indicates the pixel values inside each color
image. Histogram equalization cannot be applied independently to the image’s red, green,
and blue components, since it causes drastic color shifts. However, suppose the picture
is transformed to another color space, such as HSL/HSV. The method can be applied to
the luminance or value channel without changing the image’s hue or saturation. The
preprocessed image acquired at the end of histogram equalization is denoted as Ipre,
which is subjected to the proposed geometric mean with a modified fuzzy C-means-based
neutrosophic segmentation phase.

3.4. Proposed Image Segmentation Phase
Geometric Mean with Modified Fuzzy C-Means Based Neutrosophic Segmentation Phase

The preprocessed image Ipre is segmented via geometric mean with fuzzy C-means-
based neutrosophic segmentation. The universe of the disclosure is denoted as U . The three
membership sets, namely True, indeterminacy Int and False are used to characterize the
neutrosophic image INS. In the image set Ipre , a pixel P is denoted as pix(t, i, f). Here, t, i
and f point to the values that vary in True, Int, False, respectively. Furthermore, from the
image domain, pix(t, i, f) is converted into the neutrosophic domain. This is shown in
Equation (4).

INS(G, H) = {True(G, H), Int(G, H), False(G, H)} (4)

The notation True(G, H), Int(G, H), False(G, H) denotes the membership values, which
are mathematically given in Equations (5), (7), and (9), respectively. Here, d(G, H) points to
the pixel(G, H) intensity value and d(G, H) is the d(G, H)’s local mean value. In addition,
δ(G, H) is the absolute value corresponding to the difference between the d(G, H) intensity
and its d(G, H) (local mean value), where z is a random number generated between 0 and 1.

True(G, H) =
d(G, H)− dmin

dmax − dmin
(5)

d(G, H) =
1

Z× Z

G+Z/2

∑
m=G−Z/2

H+Z/2

∑
n=H−Z/2

d(m, n) (6)

Int(G, H) =
δ(G, H)− δmin

δmax − δmin
(7)

δ(G, H) = abs(d(G, H))− d(G, H) (8)
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False(G, H) = 1− True(G, H) (9)

Geometric mean operation: for INS(G, H), the indeterminacy is computed by using
the value of Int(G, H). In order to correlate with False, True with Int, the modifications
taking place in True and False should have an effect on the influence of the element and Int’s
entropy. For the gray space image Igray of Ipre, the geometric mean operation is performed
rather than the existing α-mean operation.

Igray(G, H) =
1

Z× Z

G+Z/2

∏
m=G−Z/2

H+Z/2

∏
n=H−Z/2

(Igray(m, n)) (10)

For INS(), the geometric mean operation is computed as per Equations (11)–(18),
respectively.

INS(α) = I(True(α), Int(α), False(α)) (11)

True(α) =

{
False Int < (α)

False(α) Int ≥ (α)
(12)

False(α) =
1

Z× Z

G+Z/2

∑
m=G−Z/2

H+Z/2

∑
n=H−Z/2

True(m, n) (13)

False(α) =

{
False Int < (α)

False(α) Int ≥ (α)
(14)

False(α) =
1

Z× Z

G+Z/2

∑
m=G−w/2

H+Z/2

∑
n=H−w/2

False(m, n) (15)

Int(G, H) =
χT(G, H)− χTmin

χTmax − χTmin

(16)

χT(G, H) = abs(True(G, H)− True(G, H)) (17)

True(G, H) =
1

Z× Z

G+w/2

∑
m=G−Z/2

H+w/2

∑
n=H−Z/2

True(m, n) (18)

Here, χT(G, H) denotes the absolute difference between the True (mean intensity) and
its means value True(i, j).

The difference between the mean intensity True and its means value True(i, j) after
performing the geometric mean operation is an absolute value δE(G, H). In this work,
α = 0.85. The multi-features (attributes) are extracted from the produced neutrosophic
image, which is denoted as INS. Moreover, to alleviate the segmentation errors, the modified
fuzzy C-means (MFCM) segmentation algorithm is introduced in this research work.

The segmentation error can be mathematically given as per Equation (19).

Error =
idealobjectpixel − realobjectpixel

idealobjectpixel
(19)

The segmented image acquired from the geometric mean with fuzzy C-means based
neutrosophic segmentation is pointed as Iseg . Then, from Iseg , the multi-features such as
ULBP, color features and pixel features are extracted.

3.5. Proposed Feature Extraction Phase: Upgraded LBP, Color Feature and Pixel Feature

The feature extraction is a significant phase in which the most relevant features such
as ULBP, color features, and pixel features are extracted. All these extracted features are to-
gether used to train the deep learning classifier in the disease detection phase. The extracted
features are shown in Figure 3.
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Figure 3. Feature extraction phase.

Upgraded LBP (ULBP)

LBP [23] is a simple and effective texture operator that identifies pixels by thresholding
each pixel’s neighborhood and interpreting the outcome as a binary integer. The LBP is
easier to implement and has a superior discriminative capability. The LBP operator also
labels the image pixels along with the decimal numbers.

Each image pixel is calculated with its neighbors during the labeling phase by sub-
tracting the mean pixel value. Additionally, the consequent negative values are encoded as
0. In contrast, the positive and 0 values have been encoded as 1. All of the binary codes
are concatenated clockwise from the top-left to obtain a binary number, and these binary
numbers are known as LBP codes. The texture descriptor is being used to create the global
description, which would be made up of many local descriptions.

Furthermore, the distinguishable capability extracts characteristics from these texture
objects. In the block size, 3*3 of Iseg, the LBP is applied. The center pixel is referred to as
the threshold. The count of neighboring pixels is denoted as pix, and the ith neighboring
pixel is denoted as Npix. In addition, P and R denote the neighboring pixel and radius,
respectively. Moreover, the intensity of the current and the neighboring pixel is denoted as
pixc and pixg, respectively. The newly introduced ULBP model is mathematically shown
in Equation (20).

f ULBP(P, R) =
Npix

∑
i=1

σ(‖pixc − pixg‖)2i (20)

Here, σ is the standard deviation, which is mathematically given in Equation (21).

σ =

√
(X− µ)2

Npix
(21)

Here, µ is the mean of the data point X. Moreover, instead of using the arithmetic
mean, we have computed the geometric mean. The extracted ULBP feature is expressed in
FULBP . The value of σ(‖pixc − pixg‖) is shown in Equation (22).

σ(‖pixc − pixg‖) =
{

1 i f (pixc − pixg) > 0
0 otherwise

(22)

3.6. Color and Pixel Features

The color features extracted from Iseg are the R channel of RGB, H channel of HSV,
and L channel of LUV images. The RGB color model is additive [24], wherein “red, green,
and blue” light are combined to generate a wide variety of colors. Whereas if an RGB
picture is 24-bit, every channel for red, green, and blue contains 8 bits—in other words,
the image has been made up of three images (one for each channel), each of which may
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hold discrete pixels with standard brightness levels of 0 to 255. Each channel of a 48-bit
RGB picture (extremely high color depth) has been made up of 16-bit images. The red area
of the image appears significantly brighter than the others in the red channel. The HSV (or
HSL) color space is a color representation paradigm based on (human) color perception.
Color is a term used to describe the hue (mainly red, yellow, green, cyan, blue, or magenta).
It is usual to draw a circle around the hue and provide its magnitude in degrees (over
360°). In the “LUV” region (where “L stands for luminance, whereas U and V represent
chromaticity values of color images”), the extracted color feature is denoted as f color.

Brightness [25] is a relative term that refers to the intensity of one pixel compared to
another. As an image pixel feature, the brightness of each pixel is calculated. The extracted
pixel feature is denoted as f pixel . The extracted overall features are denoted as f pixel +
f color+f ULBP = F . Using this F, the optimized CNN is trained.

4. Optimal Trained CNN for Disease Detection Model
4.1. Optimized CNN

The extracted F is given as the input to optimized CNN [25–27] for detecting the
presence/absence of mango leaf diseases. The CNN comprises three primary layers: “con-
volutional, pooling, and fully connected layers”. For the inputs, the feature representations
are learned in the convolutional layer consisting of several convolution kernels. The diverse
feature maps are computed using these convolution kernels. In the feature map, every neu-
ron in the current layer is connected to the previous layer’s neighboring neurons, and this
mechanism is denoted as the neuron’s receptive field. Moreover, the input is convoluted by
applying the element-wise nonlinear activation function with the learned kernel in order
to achieve a new feature map. Several different kernels are being implied to create the
complete feature maps. For example, at layer L of feature map K, the feature value residing
in the location (I, J) can be computed using Equation (23). The generated feature map is
denoted as SL

I,J,K.

SL
I,J,K = WLT

K × FL
I,J + BaisL

K (23)

Here, WL
K and BiasL

K point to the weight vector corresponding to the feature value
residing in the location (I, J) at layer L of feature map K. In addition, FL

I,J is the extracted
feature, which comes as input to CNN at the location (I, J) in the Lth layer corresponding
to the Kth map. Moreover, this weight function W is fine-tuned using a new CSUBW
model, considering minimizing the loss (error) while detecting (diseased or non-diseased).
Within the CNN, the nonlinearity is introduced by the “activation function”. The nonlinear
activation function is denoted as AF(.). For the convolutional feature SL

I,J,K , the activation
function AFL

I,J,K is computed using Equation (24).

AFL
I,J,K = AF(SL

I,J,K) (24)

The typical activation functions are sigmoid, tanh, and ReLU. The shift-invariance of
the feature maps is achieved by lessening its resolution. The poling layer is denoted as the
pool(). The output from CNN is denoted as OL

I,J,K, which can be mathematically given as
per Equation (25). Here, <i,j points to the local neighborhood that is localized around the
location (I, J). The CNN’s final layer is the output layer with more fully connected layers.

OL
I,J,K = pool(AFL

o,p,K), ∀(o, p) ∈ <I,J (25)

There is N count of input–output relations (Fn, On; n ∈ [1, ..., N]. Here, N points to
the nth input data and On is the targeted label (presence/absence of disease in mango
leaf). The output from CNN is denoted as yn. In CNN, Equation (26) determines the loss
function, which must be minimized. In this research work, the loss function is minimized
by fine-tuning the weight of CNN using a newly developed hybrid optimization model
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(CSUBW). This is shown in Equation (27). The solution fed as input to the CSUBW model
is manifested in Figure 4.

Loss =
1
n

N

∑
n=1

(ζ, O(n), y(n)) (26)

Obj = min(Loss) (27)

Figure 4. Solution Encoding.

4.2. CNN Training by Proposed CSUBW

The CSO has been developed with the inspiration acquired from the behavior of cats.
With higher convergence, the CSO model solves difficult optimization issues. “Seeking
mode” and “tracking mode” are the two most common cat behaviors. Furthermore,
the BWO was inspired by the “unique mating behavior” of black widow spiders. The BWO
model also effectively addresses complex optimization problems with strongly convergent
solutions. Furthermore, in this case, the search agents identify global solutions within the
search space. According to the literature, hybrid optimization models require a higher
level of convergence than standard algorithms [28–34]. We integrated the BWO [35,36]
within the CSA model in this study; hence, the proposed hybrid method is the Cat Swarm
Updated Black Widow model (CSUBW) model. The stages used in the CSUBW model are
shown below:

Step 1: Initialize the search agent’s M population (pop) in the D-dimensional space.
The velocity of the search agent is denoted, and the position of the search agent is pointed as X.

Step 2: The cats are sprinkled randomly in the dimensional space, and the value is
selected randomly within the maximum and minimum velocity bounds.

Step 3: As per the “mixture ratio (MR)”, the count of cats is selected and set into the
tracing mode. The rest of the cats are set into seeking mode.

Step 4: Seeking Mode

(a) Seeking Mode: for the present cat Catk, J count of copies are made. Here, J is the SMP.
If SPC value = true, then set J = (SMP-1) and set the present cat as the best one.

(b) As per CDC, the SRD values are randomly plus or minus. Then, replace the old ones
with the current ones.

(c) For all the candidate points, the fitness function (Fit) is computed using Equation (27).

Posi =
Fiti − Fitb

Fitmax − Fitmin
, where 0 < i < j (28)

(d) When all are not equivalent, the selecting probability is computed for every candidate
point using Equation (28). When the fit is equivalent for every candidate point,
the selecting probability is set as 1 for each candidate point.
Here, the objective is minimization, so, Fitb = Fitmax

(e) The point is randomly picked to move away from the candidate points, and the
position of the cats Catk is replaced.

Step 5: Proposed Tracing Mode: In the tracing mode, the cat moves with its own
velocity in every dimension. The steps followed in the tracing model are manifested below:
(a) For every dimension, the velocity of the search agent is updated using the newly
proposed expression given in Equation (29).

Vd+1
Jnew

= ωVd
j + β(Pg − Xd

j ) + α× ε (29)

Here, ω is the inertia weight, and ε is the random velocity that is uniformly distributed
in the interval [0, 1]. In addition, the controlling parameters are α and β. Mathematically,
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the control parameter used to control the cats in the exploration process is pointed as α(t)
and β(t) can be given as per Equations (30) and (31), respectively. Here, α(min) and α(max)
point to the minimal and maximal limits. The maximal iteration is denoted as t(max),
and the current iteration is pointed as t. Moreover, β(min) and β(max) denote the value of
the first and last iteration, respectively.

α(t) = αmax −
αmax − αmin

tmax
× t (30)

β(t) = βmin + (βmax − βmin) · Sin
πt

tmax
(31)

(b) Verify whether the velocity resides within the maximum velocity. In case the new
velocity is beyond the range of the maximum velocity range, then set it to be equal to
the limit.

(c) Update the position of Catk using the BWO’s mutation update model rather than
using the traditional CSA update function. The mutation update model randomly
selects the Mutepop number from the population (pop). Based on the mutation rate,
the Mutepop is computed.

Step 6: Compute the fitness of the search agent using Equation (27). The cat with the
best fitness function is said to be the best solution Xbest.

Step 7: The cats are moved based on their flags; if the cat Catk is found to be in the
seeking mode, then apply the seeking mode process; else, apply the tracing mode process.

Step 8: Again, based on the MR, re-pick the count of cats and set them into tracing
mode and seeking mode.

Step 9: Terminate.

5. Results and Discussion
5.1. Simulation Setup

The proposed automatic disease detection model was implemented in MATLAB.
The proposed work has been evaluated with the data collected from [37]. The sample
images acquired after the preprocessing phase are shown in Figure 5. The segmented
images acquired after the proposed geometric mean with modified fuzzy C-means based
neutrosophic segmentation are shown in Figures 6 and 7. The proposed work has been
compared to existing models such as CSO, BWO, WOA, EHO, SVM, NN, NB, and RF.
The performance measures such as “Accuracy, Sensitivity, Specificity, Precision, Negative
Predictive Value (NPV), F1-Score, False-Positive Rate (FPR), False Negative Rate (FNR),
and False Discovery Rate (FDR)” are computed. The proposed model was trained with
70% of the data, and 30% was utilized to test the model. Among these, 70% (considered
as 100%), 70%, 80%, and 90% of the training data are adjusted and the results acquired
are recorded.

Figure 5. Preprocessing on healthy leaves: original sample image and respective preprocessed image.
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Figure 6. Preprocessing on diseased leaves: original sample image and respective preprocessed image.

5.2. Performance Analysis

The performance of the proposed work (CSUBW + CNN) is compared over the exist-
ing molds such as CSO, BWO, WOA, EHO, SVM, NN, NB, and RF, respectively, in terms
of positive measures such as “accuracy, Sensitivity, Specificity, Precision” and negative
measures such as ”FPR, FNR, FDR, and F1-Score”. In order to prove that the proposed
model had achieved the best performance, its positive and the other measures need to
be higher; negative measures need to be lower. The proposed work had attained the
best performance under all the computed measures. All these improvements are owing
to two major reasons: (a) extraction of the most relevant features rather than using the
existing ones and (b) fine-tuning the parameter of the detection framework (CNN) via
the newly introduced hybrid optimization model. In the newly introduced optimization
model, we have considered four major parameters: ω is the inertia weight, ε is the random
velocity that is uniformly distributed in the interval [0, 1], and α and β are the control-
ling parameters. All these together aided in boosting the convergence performance of
the projected model. The positive performance of the CSUBW + CNN is manifested in
Figure 8. These evaluations vary the learning rate from 70% to 80%, and 90%, respec-
tively. The CSUBW + CNN had attained maximal accuracy under all the three variations
in the learning rate on observing the outcomes. When the LR = 07, the CSUBW + CNN
had attained the maximal accuracy as 93%, while the existing models had recorded the
lower accuracy ranges as CSO = 0.65, BWO = 0.68, WOA = 0.69, EHO = 0.7, SVM = 0.6,
NN = 0.4, NB = 0.7 and RF = 0.62. Moreover, the specificity, sensitivity, and precision of the
CSUBW + CNN is also higher under all the variations in the LR. At LR = 90, the precision
of the CSUBW + CNN has achieved the maximal value of 100%, which is the most optimal
score. The sensitivity of the CSUBW + CNN at LR = 90 is 100%, which is also the best score.
On the other hand, the FDR, FNR, FDR and F1-score’s performance of the proposed model
are shown in Figure 9. The FDR of the CSUBW + CNN had attained the least value below
0.06 for every variation in the LR. At the 90th LR, the CSUBW + CNN had attained the least
FDR as 0.04, which is 90%, 90.2%, 90.4%, 92.4%, 88.5%, 60%, 89.4%, and 92% better than
the existing models such as CSO, BWO, WOA, EHO, SVM, NN, NB, and RF, respectively.
The FPR of the CSUBW + CNN had attained the least value for every variation in the
LR. In addition, F1-scores are computed to validate the efficiency of the CSUBW + CNN.
On observing the outcomes from Figure 9, the CSUBW + CNN had attained the maximal
value for every variation in the LR. The F1-score of the CSUBW + CNN at LR = 70 is 92%,
which is better than the existing models such as CSO = 70%, BWO = 71%, WOA = 71.5%,
EHO = 72%, SVM = 75%, NN = 10%, NB = 72% and RF = 70%. Thus, from the evolutionist,
it is vivid that the proposed work had attained the most favorable performance, and hence,
it is sufficient for detecting the mango leaf disease.
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Figure 7. Figure showing the difference between proposed segmentation approach with FCM-based
segmented image and K-means-based segmented image.

Figure 8. Performance comparison of proposed and conventional models: Accuracy, Sensitivity,
Specificity, and Precision.

5.3. Convergence Analysis by Fixing ω = 0.2, 0.5 and 0.8

The convergence analysis is undergone to prove that the proposed algorithm is more
significant than the existing algorithms, particularly in achieving the defined objective
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function. Within the proposed optimization model, two parameters (ω is the inertia weight,
and ε is the random velocity uniformly distributed with the interval [0, 1] in Equation (29))
have been introduced. So, we have varied ω from 0.2 to 0.5 and 0.8, respectively, and ε
from 0.2 to 0.5 and 0.8, respectively. The results acquired are manifested in Figure 4. While
fixing ω = 0.2, the cost functions of the CSUBW with variation in ε = 0.2, 0.5 and 0.8 are
manifested in Figure 10. Since this work aims to lessen the loss function of CNN (the leaf
disease detector), the parameter that archives the least value is said to be the best one.
On observing the outcome, the cost function of the CSUBW at the 2nd iteration is higher for
all the three variations (i.e., ε = 0.2, ε = 0.5 and ε = 0.8). However, as the count of iteration
tends to increase, the cost function of ε = 0.2, ε = 0.5 and ε = 0.8 also minimized. Inherently,
among all the three variations (ε = 0.2, ε = 0.5 and ε = 0.8), the least value has been recorded
by the CSUBW at ε = 0.2. At ε = 0.2, the cost function of the CSUBW at 25th iteration is 2.31%
and 3.21% better than the cost function of the CSUBW at ε = 0.2 and ε = 0.5, respectively.
Then, on fixing ω= 0.5 for the CSUBW, the variations taking place under ε = 0.2, ε = 0.5 and
ε = 0.8 are recorded in Figure 11. On observing the outcomes, the CSUBW had attained the
least value, when ε = 0.2, and the attained cost function at the 25th iteration is 1.0667 (best
score). In addition, the value of ω = 0.8 is set for the CSUBW, and the value of ε is varied
from ε = 0.2, ε = 0.5 and ε = 0.8, respectively. The results acquired by the proposed wok
are manifested in Figure 12. Under this scenario, the CSUBW had attained the least cost
function (i.e., achievement of the objective function) when ε = 0.2. Furthermore, at ω = 0.8,
the cost function of the CSUBW at the 25th iteration is 0.93% and 2.30% better than the cost
function of the CSUBW at ε = 0.2 and ε = 0.5, respectively.

Figure 9. FDR, FNR, FPR and F1-score-based performance comparison of proposed and conven-
tional models.
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Figure 10. Cost function of the CSUBW by fixing ω = 0.2, 0.5, 0.8; varying ε = 0.2.

Figure 11. Cost function of the CSUBW by fixing ω = 0.2, 0.5, 0.8; varying ε = 0.5.

Figure 12. Cost function of the CSUBW by fixing ω = 0.2, 0.5, 0.8; varying ε = 0.8.
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5.4. Convergence Analysis by Fixing ε = 0.2, 0.5 and 0.8

The convergence of the CSUBW is evaluated by fixing ε = 0.2, 0.5 and 0.8 and by
varying ω from 0.2 to 0.5 and 0.8, respectively. The results acquired with the CSUBW
for fixing ε = 0.2 are manifested in Figure 13. On observing the outcome acquired by
fixing ε = 0.2, the CSUBW has achieved the objective function (minimized cost function) at
ω = 0.2. At the 25th iteration, the cost function of the CSUBW is 0.93% and 1.04% better
than the cost function of the CSUBW at ε = 0.5 and ε = 0.8, respectively. In addition, results
acquired with the CSUBW for fixing ε = 0.5 are manifested in Figure 14. On observing
the outcomes, the CSUBW had attained the best score at ω = 0.8, and it is 1.1% and 1.65%
better than the cost function of the CSUBW at ε = 0.2 and ε = 0.5, respectively. Similar to
this, the convergence analysis of the CSUBW for ε = 0.8 is recorded is Figure 15. For the
CSUBW, the value of ε as well as ω are varied in Equation (29). When ω = 0.2 and ε = 0.2,
the CSUBW had attained the optimal value as 1.0551, which is the most favorable score.
In addition, when ω = 0.5 and ε = 0.5, the CSUBW had attained the best score as 1.0709.
Under the case, ω = 0.8 and ε = 0.8, the CSUBW had attained the optimal performance
value as 1.0709.

Figure 13. Cost function of the CSUBW by fixing ε = 0.2, 0.5 and 0.8; varying ω = 0.2.

Figure 14. Cost function of the CSUBW by fixing ε = 0.2, 0.5 and 0.8; varying ω = 0.5.
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Figure 15. Cost function of the CSUBW by fixing ε = 0.2, 0.5 and 0.8; varying ω = 0.8.

5.5. Overall Performance Analysis

The overall performance of the CSUBW + CNN had been recorded for both the
proposed and existing models at 70% of LR. The projected model had attained the best
results, owing to the enhancement of the convergence speed of the solutions with the newly
introduced hybrid optimization model. The accuracy of the CSUBW + CNN is 0.912, which
is 24.5%, 23.6%, 23.6%, 23.6%, 33.3%, 52.8%, 24.56% and 30.7% better than the existing
models such as CSO, BWO, WOA, EHO, SVM, NN, NB, and RF, respectively. In addition,
the specificity of the CSUBW + CNN is 28.9%, 27.5%, 28.9%, 28.9%, 10.1%, 92.5%,21.7% and
20.2% better than the existing models such as CSO, BWO, WOA, EHO, SVM, NN, NB and
RF, respectively. The CSUBW + CNN had attained the maximal precision of 0.94521. On the
other hand, the negative measures such as FPR, FDR, and FNR of the CSUBW + CNN
had attained the minimal value (best score). The FNR of the CSUBW + CNN is 0.092105,
which is better than CSO = 0.35526, BWO = 0.34211, WOA = 0.35526, EHO = 0.35526,
NN = 0.93243, NB = 0.28947 and RF = 0.27632.

In addition, the CSUBW + CNN had attained the maximal performance in terms
of other measures such as F1-score. The CSUBW + CNN had attained the maximal F1-
score as 0.92617, which is 22.7%, 21.7%, 22.17%, 22.19%, 18.35%, 86.3%, 20.6% and 23.86%
better than the existing models such as CSO, BWO, WOA, EHO, SVM, NN, NB, and RF,
respectively. Thus, from the overall evaluation, it is clear that the CSUBW + CNN had
maximal performance and hence becomes much sufficient for mango leaf disease detection.
Figures 16–18 depict the ROC curve for varied learning percentages 70, 80 and 90. The ROC
curve is considered for the predicted label and the original label. The proposed methodol-
ogy is compared over the NB, RF, NN, SVM, EHO + CNN, WOA + CNN, BWO + CNN
and CSO + CNN. The value of the proposed method is high when compared to the other
existing models.
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Figure 16. ROC Curve for 70th Learning Percentage.

Figure 17. ROC Curve for 80th Learning Percentage.

Figure 18. ROC Curve for 90th Learning Percentage.
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6. Conclusions and Future Scope

This paper proposed a new automatic disease prediction model by following four ma-
jor phases: (a) preprocessing, (b) image segmentation, (c) feature extraction, and (d) disease
prediction. The acquired raw image was first preprocessed using contrast enhancement
and histogram equalization to eliminate noise and other undesirable artifacts and improve
the image quality. Then, preprocessed images were segmented via Geometric Mean-based
neutrosophic with fuzzy C-mean. Next, the most important features were retrieved from
the segmented pictures, including “texture features such as ULBP, color features, and pixel
features”. Finally, these characteristics were given into the detection phase based on a CNN
model for illness detection. Furthermore, to enhance the classification accuracy of CNN, its
weights were fine-tuned using the CSUBW model. Finally, the new hybrid optimization
model (CSUBW) hybridized the standard CSO and BWO algorithms. The performance of
the proposed work had been recorded for both the proposed and existing models at 70% of
LR. The accuracy of the proposed work is 0.912, which is 24.5%, 23.6%, 23.6%, 23.6%, 33.3%,
52.8%, 24.56% and 30.7% better than the existing models such as CSO, BWO, WOA, EHO,
SVM, NN, NB, and RF, respectively. Thus, from the overall evaluation, it is clear that the
proposed work had attained the maximal performance and hence is sufficient for mango
leaf disease detection. The current research work has emphasized assisting the growers by
helping them identify the mango leaves disease in their environment. However, we intend
to better support them by developing enhanced feature extraction methods and detection
via a most effective optimization approach.
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