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Abstract—The detection of anomalous subsequences in a time series is required today in a wide range of com-
putationally intensive applications such as digital industry, the Internet of Things, personal medicine, etc.
One of the most attractive approaches to solving this problem is the concept of discord—the subsequence of
a time series with the greatest distance to its nearest neighbor—because it requires the analyst to set only one
intuitive parameter (subsequence length). The previously proposed DRAG (discord range aware gathering)
algorithm for finding discords is exact, but its parallel versions are absent for any hardware architecture. The
paper proposes a new approach to parallelizing this algorithm for a graphics processing unit, which is called
PD3 (parallel DRAG-based discord discovery). A data preprocessing phase was added to the PD3 to compute
mean values and standard deviations of all subsequences of the time series. The results are used further at the
candidate selection and refinement phases to calculate the distances between the subsequences of the time
series. Each algorithm phase is parallelized separately on the basis of the data parallelism concept and using
vector data structures. Experiments show that the PD3 is much ahead of competing parallel algorithms in
terms of the average time taken to find one discord.
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INTRODUCTION
At present, subsequence anomaly detection in time

series is one of the most pressing research problem of
time series mining [1] in demand over a wide range of
practical domains, such as predictive maintenance of
equipment in digital industry applications [9], smart
building management in IoT applications [6, 23],
human condition monitoring and proactive disease
diagnosis in personal medicine applications [4], etc.

The discord concept [7] formalizes the idea of
anomalous subsequence and is currently one of the
most promising theoretical developments used to
search for anomalies in time series [1]. The discord in
a time series is defined as a subsequence which has the
largest distance to its nearest neighbor. The nearest
neighbor is a subsequence that is non-self-match to
the given subsequence and is at a minimum distance
away. The discord discovery requires only one intuitive
parameter—the subsequence length—and therefore is
more attractive for the end user than most other
approaches to anomaly detection in time series, which
require three to seven parameters that are not always
intuitively understandable [8].

The algorithm called HOTSAX (heuristically
ordered time series using symbolic aggregate approxi-
mation) [7] searches for time series discords in the
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main memory. However, the HOTSAX uses a sym-
bolic aggregate approximation [10] to index subse-
quences of a time series and is therefore an approxi-
mate algorithm. The later proposed DRAG (discord
range aware gathering) algorithm [15] is exact and
searches for range discords in a time series stored on
disk. The range discord is the one that is at least r away
from its nearest neighbor, where r is a parameter.

Discord discovery is a computationally costly task,
and so parallel algorithms to search for discords on
various hardware platforms are strongly needed. In
[20, 21], one of the coauthors of this article proposed
an approach to parallelizing the HOTSAX algorithm
for Intel many-core processors and NVIDIA GPUs
based on OpenMP and OpenACC technologies,
respectively. This article continues these studies and
proposes a parallel algorithm called PD3 (parallel
DRAG-based discord discovery) for range discord
detection on a GPU based on the sequential DRAG
algorithm [15].

The article is organized as follows. Section 1 con-
tains an overview of related work. Section 2 gives a for-
mal statement of the problem and brief ly describes the
sequential DRAG algorithm. Section 3 describes the
proposed parallel algorithm. Section 4 presents the
results of computational experiments to study the per-
formance of the proposed algorithm. The conclusion
summarizes the results of the study and outlines the
path forward for future research.
112. © Pleiades Publishing, Ltd., 2023.
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1. OVERVIEW OF RELATED WORK

The concept of time series discord was proposed by
Keogh et al. in [7] along with the HOTSAX discord
search algorithm. The HOTSAX is an approximate
algorithm because it applies Symbolic Aggregate
ApproXimation (SAX) [10]. The HOTSAX uses two
nested loops to search through all pairs of subse-
quences, calculating the distance between them, and
finds the maximum distance to the nearest neighbor.
A prefix tree is used by the HOTSAX to store the sub-
sequences of the time series in memory [5]. Unprom-
ising subsequences are discarded during iteration
without calculating distances. An unpromising subse-
quence is the one with a neighbor closer than the cur-
rent maximum of distances to all its nearest neighbors.
The HOTSAX employs some heuristics to discard
more unpromising candidates. To do this, the follow-
ing four sets of subsequences of the original time series
are defined. The set of discord candidates contains the
subsequences whose SAX codes are the rarest. The
remaining subsequences are considered to be obvi-
ously normal. For a given subsequence, the sets of its
neighbors and the sets of outsiders contain subse-
quences with SAX codes that match or differ from its
SAX code, respectively. The heuristic dictates to
search in the outer loop first through candidates and
then through obviously normal subsequences. In the
inner loop, neighbors are searched through first and
then outsiders.

One of the coauthors of this article proposed in [20,
21] an approach to parallelizing the HOTSAX algo-
rithm for Intel many-core processors and NVIDIA
GPUs based on OpenMP and OpenACC technolo-
gies, respectively. The parallel algorithm uses the rep-
resentation of the original time series as a matrix of
aligned subsequences, which makes it possible to par-
allelize efficiently preprocessing calculations (z-nor-
malization and symbolic aggregate approximation of
subsequences). A set of matrix data structures is
defined, which are necessary for the parallel algorithm
to store information corresponding to the prefix tree in
the sequential algorithm. The exhaustive search of
subsequences in a time series is carried out by two
nested loops in the way that was proposed in the orig-
inal sequential algorithm. The parallel search in these
loops occurs separately and in different ways for outer
and inner loops and depending on the type of subse-
quences scanned in these loops. The parallel algo-
rithm is significantly ahead of the sequential algorithm
in efficiency, but, being its successor, it remains an
approximate algorithm.

Later on, Yankov et al. introduced in [15] an exact
DRAG (discord range aware gathering) algorithm for
finding range discords in a time series stored on disk.
A range discord is at a distance of at least r to its near-
est neighbor, where r is a preset parameter. The
DRAG algorithm consists of two phases, each of
which requires one complete scan of the time series to
PATTERN RECOGNIT
search for discord candidates and to clean the resulting
set of false discords. To select the parameter r, the
authors propose to apply the HOTSAX algorithm as
follows. Uniform sampling is used to produce the lon-
gest possible subsequence of the original time series to
fit in the main memory. Then the HOTSAX algorithm
finds a discord in the specified subsequence, and the
value of the parameter r is assumed to be equal to the
distance from the found discord to its nearest neigh-
bor.

Regarding parallelization of the DRAG algo-
rithm, we note the following works. In [16], Yankov
et al. proposed an approach to parallelizing the
DRAG algorithm on a high-performance computing
cluster based on the MapReduce paradigm. The
authors of this article developed a parallel version of
the DRAG algorithm described in [22] for a high-
performance computing cluster with nodes based on
Intel many-core processors. Parallel implementa-
tions of the DRAG algorithm for a graphics process-
ing unit are absent as far as we know. Nevertheless,
we can point out in the overview the following two
papers which are devoted to parallel search for dis-
cords on a GPU but which do not use the DRAG
algorithm as a basis.

Thuy et al. proposed in [13] the algorithm
KBF_GPU (brute-force for K-distance discord) that
searches on a GPU for a subsequence in a time series
such that the sum of distances from it to its K nearest
neighbors (where K is a preset parameter) is maximal.
The authors call this subsequence “K-distance dis-
cord” and apply this concept as a means to solve the
“twin freak” problem where the discord does not
make it possible to find an anomalous subsequence if
it occurs more than once in the time series. The
KBF_GPU iterates all time series subsequences
through two nested loops, where the inner loop is par-
allelized and computes the sum of distances. In com-
putational experiments, however, the authors com-
pared their design only with the HOTSAX sequential
algorithm, which was expectedly much inferior in per-
formance.

In [18], Zhu et al. presented an exact parallel algo-
rithm of time series discord discovery for a graphics
processing unit. The algorithm defines discord based
on normalized Euclidean distance that is efficiently
computed through Pearson correlation using the tech-
nique proposed in [11]. The algorithm uses the follow-
ing computational patterns in the search for discords,
which ensure high performance. According to the first
pattern, the algorithm first calculates the minimum
distance between the candidate subsequence discord
and all other subsequences of the time series which are
non-self-match to this candidate and then finds the
candidate where the maximum distance among all
candidates is achieved. The second computational
pattern involves stopping the computations in the
above pattern beforehand when the distance between
ION AND IMAGE ANALYSIS  Vol. 33  No. 2  2023



A PARALLEL DISCORD DISCOVERY ALGORITHM 103
the candidate and some subsequence is less than the
current best (minimum) distance. In this case both the
candidate and this subsequence are obviously not dis-
cords, and there is no need to compute the distances
from the candidate to other non-self-match subse-
quences. The authors describe as a competing algo-
rithm the parallel SCAMP algorithm [19] for comput-
ing a matrix profile on a graphics processor. The
matrix profile of a given time series [17] can informally
be defined as a time series where the ith element is the
distance from the ith subsequence of the original time
series to its non-self-match nearest neighbor. Discords
can be found as subsequences of the original time
series to which local maxima of the matrix profile cor-
respond. Computational experiments performed by
the authors show [18] that the proposed algorithm
outperforms its analog in efficiency. However, the
computational patterns proposed by the authors limit
the search result to only one (albeit most important)
discord of the time series, whereas the DRAG algo-
rithm described above ensures finding all range dis-
cords.

We can see from this overview that the DRAG
algorithm [15] is a promising tool for search for exact
discords, for which a parallel version for a graphics
process has not been developed yet. Since graphics
processors are currently widespread and are one of the
most popular manycore platforms [12], we can con-
clude that the task of developing a parallel version of
the DRAG algorithm for discord discovery in time
series on a graphics processor is quite urgent.

2. PROBLEM STATEMENT
2.1. Formal Definitions and Notation

This section provides the notation and definitions
of terms used according to [7, 15].

The time series T is a sequence of chronologically
ordered real values:

(1)

The number n is denoted by |T| and is called the length
of the time series.

The subsequence  of the time series T is a con-
tinuous interval of m elements starting from i:

(2)

We denote the set of all subsequences of the time
series T having length m as  and the cardinality of
this set as  = .

The subsequences  and  of T are called non-
self-match if |i – j| ≤ m. We denote the subsequence
that is non-self-match to the given subsequence C
as MC.

The subsequence D of the time series T is a discord if

(3)

where  is a nonnegative symmetric function.
In other words, a subsequence of the time series is a
discord if it is at the maximum distance to its nearest
neighbor, which is the nearest non-self-match subse-
quence in the sense of the chosen metric.

For a preset parameter r, the discord that is at least
r away from its nearest neighbor is called a range dis-
cord; i.e., the property  is valid
for the discord D.

To search for discords, the Euclidean distance (or
its modification) is used as the function ,
which is defined as follows. Let there be subsequences
X and Y of length m of time series T; then the Euclid-
ean distance ED between X and Y is calculated as

(4)

The DRAG algorithm assumes that the processed
subsequences of the time series were z-normalized is
advance. The z-normalization of the subse-
quence/series T is a subsequence/series ,
whose elements are calculated as follows:

(5)

The square of normalized Euclidean distance is
used in our study as the function :

(6)

To calculate normalized Euclidean distance, we use
the formula proposed in [11], which makes it possible to
perform calculations faster than by formulas (4)–(5):

(7)

where the subsequences  and  are considered as

vectors in Euclidean space , and  and ,  and
 are the arithmetic mean and standard deviation of

these vectors, respectively.
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104 KRAEVA, ZYMBLER
2.2. Sequential Algorithm

The DRAG algorithm (see Alg. 1) consists of two
phases: selection and refinement, wherein the candi-
date discord subsequences are selected and false posi-
tive candidates are removed, respectively. The algo-
rithm scans the time series T at the first phase and
checks the candidate c already in the set of discord
candidates  whether it is a true discord for each sub-
sequence . If a candidate fails the test, it is
removed from the set of candidates. At the end of the
first phase, the new element s is either added to the
candidate set or discarded. At the second phase, the
algorithm initializes the distance to its nearest neigh-
bor with +∞ for each candidate selected at the first
phase. The time series T is then scanned and the dis-
tance between each subsequence  and each
candidate c is calculated. The calculation of the dis-
tance uses the early completion of the summation

 if the position  , for

which  ≥  is reached [16]. If the
calculated distance is less than r, the candidate is
removed from . If the distance is less than the cur-
rent distance from the candidate to its nearest neigh-
bor c.dist (and greater than r because otherwise the
candidate would have been previously discarded), the
current value of the distance to the nearest neighbor is
updated. The formal proof of the DRAG algorithm
correctness is given in the original paper [16].

3. PARALLEL DISCORD 
DISCOVERY ALGORITHM

This section presents a parallel algorithm for dis-
cord discovery on a graphics processing unit based on

the above-described DRAG algorithm [15] and
named PD3 (parallel DRAG-based discord discov-
ery). Unlike the original algorithm, the PD3 uses the
square of normalized Euclidean distance as the metric
to speed up computation. In addition, we added a pre-
processing phase to the PD3 algorithm, which consists
in parallel computation of mean values and standard
deviations of all subsequences of the time series. The
results are then used at the candidate selection and
refinement phases to calculate the distances between
subsequences of the time series by formula (7). Each of
these phases of the algorithm is parallelized separately
on the basis of the concept of data parallelism and
using vector data structures that we developed.

Subsection 3.1 below briefly describes the architec-
ture and parallel programming model of the GPU.
Further, subsections 3.2 and 3.3 contain, respectively,
the data structures and implementation principles of
the developed parallel algorithm.

3.1. The GPU Hardware and Software Architecture

The NVIDIA graphics processing unit (GPU) [12]
is one of the most popular manycore accelerators at
the moment. The GPU has a hierarchical architecture
and consists of symmetric streaming multiprocessors
(SM). Each multiprocessor, in turn, consists of
CUDA (compute unified device architecture) cores.
Modern GPUs have thousands of CUDA cores capable
of outperforming CPUs on tasks that involve massive
parallel computing coupled with vector data processing.

A parallel application runs on the GPU as a set of
threads where each thread is executed by a separate
CUDA core and the following thread hierarchy is
provided. The top level of the hierarchy correspond-

Alg. 1 DRAG (in T, m, r; out )
Phase 1. Candidate selection Phase 2. Candidate refinement

1: 1:
2: for all  do 2: for all  do

3: isCand ← 3: c.dist ← ∞
4: for all  and  do 4: for all  do
5: if ED(s, c) < r then 5: for all  and  do
6: 6: if s = c then
7: isCand ← 7: continue
8: if isCand then 8: d ← EarlyAbandon ED(s, c)
9: 9: if  then
10: return 10:

11: c.dist ← min(c.dist, d)
12: else
13:
14: return 

$

←# 1,{ }mT ← ∅$

∈ 1,\m
T ms S T ∈ #c

TRUE

∈ #c ∈ sc M ∈ m
Ts S
∈ #c ∈ sc M

←# #\c
FALSE

← ∪# # s d r≥
# ← ∪$ $ c

←# #\c
$

#

∈ m
Ts S

∈ m
Ts S

( )
=

−
2

1

m
k kk

s c = �k <�( )m

( )
=

−
� 2

1
   k kk

s c 2.distc

#

PATTERN RECOGNITION AND IMAGE ANALYSIS  Vol. 33  No. 2  2023



A PARALLEL DISCORD DISCOVERY ALGORITHM 105

Fig. 1. The PD3 data structures.
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ing to all threads is a grid that consists of a one-
dimensional or two-dimensional array of symmetric
thread blocks. A thread block is a d-dimensional
(1 ≤ d ≤ 3) array of threads. The threads are divided
inside the block into warps—logical groups of 32
threads each. The warp threads are executed in SIMT
(single instruction multiple threads) mode, where
each thread executes the same instruction over its
own portion of shared data.

The CUDA function is called kernel. When running
a kernel on the GPU, the application programmer deter-
mines both the number of blocks in the grid and the
number of threads in each block. When the application
starts, the thread blocks are distributed for execution
among thread multiprocessors and are further executed
in parallel without the possibility of synchronization.
Threads within a block are allowed to be synchronized
and have access to shared memory allocated for this
block. Global accelerator memory is used to transfer
data between threads belonging to different blocks.

3.2. The Data Structures

The following data structures shown in Fig. 1 are
used to implement the PD3 algorithm, which include
vectors of mean values and standard deviations,
anomaly rating, and a bitmap.

The vectors  store, respectively, the mean
values and values of standard deviations of all subse-
quences of the original time series: ,

.

The anomaly rating is the vector nnDist ∈ 
whose element expresses the distance of the corre-
sponding subsequence of the time series to its nearest
neighbor:  = .

The Bitmap is a set of two vectors including the subse-
quence map and the nearest-neighbor map Bitmap.Sub-
seq, Bitmap.Neighbor ∈ . In the vectors, the ith ele-
ment is TRUE if the subsequence  and its nearest
neighbor are discords and FALSE otherwise, respec-
tively. The bitmap is initialized with TRUE values.
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3.3. The Algorithm Implementation

3.3.1. Parallel data preprocessing

As compared to the original sequential algorithm, a
preprocessing phase is added to the PD3 computa-
tional scheme to be followed by the candidate selec-
tion and refinement phases. Each phase is parallelized
separately. The preprocessing phase involves parallel
calculation on the GPU of mean values and of standard
deviation values of all subsequences of the time series
according to formula (5). The corresponding CUDA
kernel forms a one-dimensional grid of N threads in
which each blocksize of threads is a separate block where
the blocksize is a parameter of the algorithm and is set
multiple to the size of the GPU warp. Each thread com-
putes one element of the vectors  and . The following
is the description of methods for parallelizing the can-
didate selection and refinement phases.

3.3.2. Parallelizing candidate selection

We use the concept of data parallelism illustrated in
Fig. 2 for the parallel implementation of the candidate
selection phase. The time series is divided into seg-

ments   of equal length, where

each segment is processed by a separate thread block.
The thread block considers the subsequences of its
segment as (local) candidates for discord and it scans
and processes the subsequences of the time series,
which are non-self-match to the candidates and are
located to the right of the segment.

The subsequences are processed as follows. If the
distance from the candidate to the subsequence in ques-
tion is less than the parameter r, the candidate and sub-
sequence are excluded from further processing as cer-
tainly not being a discord and the corresponding bitmap
flags are set to FALSE. In this case, if all local candi-
dates are discarded, the block terminates ahead of time.
The block scans the subsequences of the time series to
the right of the local candidates in chunks with the
number of elements therein being equal to the length of
the segment. The first chunk of these elements starts
with the m-th element in the segment. This technique

μ σ

( )iT 1 Ni
segN

  ≤ ≤    
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106 KRAEVA, ZYMBLER
makes it possible to avoid redundant checks at the inter-
section of candidates and chunk subsequences.

The segment length is an algorithm parameter and is
set multiple to the size of the GPU warp. It is necessary
for thread load balancing that the number of processed
subsequences of the time series with the length m be
multiple to the number of subsequences of this length in
the segment. If it is not multiple, the time series is com-
plemented on the right by dummy elements of value
+∞. We introduce the following notation to formalize

the above scheme for selecting the segment length. We
designate the segment length as seglen. The cardinality
of the set of segment subsequences of length m is
denoted segN; then . We desig-
nate the number of dummy elements in the rightmost
segment of the time series as pad; then

(8)

Alg. 2 shows the implementation of the parallel can-
didate selection. The algorithm is implemented as two
CUDA kernels called one after another. The first

CUDA kernel forms a one-dimensional grid of 

blocks, each having segN threads. A thread block com-

= − + 1segN seglen m

( )

1, 0

2 1 , . 

m N mod segN
pad N segN m n otherwise

segN

− =
=   ⋅ + − −  

Alg. 2 ParSelectCandidates (in T, m, r, , ; out )

1: for each segment  of T do Parallel

2: for each chunk  of  where  do
3: if i = j then

4: QTrow ← CalculateDotProducts( , )
5: else

6: QTrow ← UpdateDotProducts( , )

7: QTcol ← CalculateDotProducts( , )

8: dist ← CalculateEDnorm( , , QTrow, , )
9: if dist < r then
10: Bitmap.Subseq(i·segN + tid) ← 
11: Bitmap.Neighbor(j·segN + 1) ← 
12: else
13: nnDist(i·segN + tid) ← min(dist, nnDist(i·segN + tid))

14: if  =  then

15: break

16: for each subsequence  of  do

17: QTrow ← UpdateDotProducts(QTrow, QTcol, , )

18: dist ← CalculateEDnorm( , , QTrow, , )
19: if dist < r then
20: Bitmap.Subseq(i·segN + tid) ← 
21: Bitmap.Neighbor(j·segN + k) ← 
22: else
23: nnDist(i·segN + tid) ← min(dist, nnDist(i·segN + tid))

24: if  =  then

25: break
26: for each subsequence  of T do Parallel
27: Bitmap.Subseq(k) ← Bitmap.Subseq(k)  Bitmap.Neighbor(k)
28:
29: return 
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Fig. 3. The thread block operation scheme in the ParSelectCandidates algorithm.
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putes the distances from all subsequences of its segment
to all subsequences of the current chunk. The operation
of the threads inside the block is detailed in Fig. 3.

The thread block loads its segment into shared
memory once prior to starting computations and
loads the current chunk to the right of the segment
into the same memory at each scanning step. This
technique reduces the number of accesses to global
memory to read elements of the time series, which
increases the performance of the algorithm. Then the
threads compute scalar products by storing the results
in shared memory first between the first subsequence
of the current chunk and all subsequences of the seg-
ment and then between the first subsequence of the
segment and all subsequences of the current chunk
(vectors QTrow and QTcol ∈  in rows 4, 6, and 7
in Alg. 2, respectively).

On the basis of the results (vector QTrow) and the
previously computed vectors  and , formula (7) is
used to calculate the distances between the first subse-
quence of the chunk and all subsequences of the seg-
ment (see row 8 in Alg. 2). The unpromising discord
candidates in the segment and in the current chunk are

R
segN

μ σ
PATTERN RECOGNITION AND IMAGE ANALYSIS  V
discarded using the calculated distance (see rows 9–11
in Alg. 2). If the candidates are not discarded, the
anomaly rating of the candidate in the segment is
updated (see row 13 in Alg. 2). If all candidates are dis-
carded as a result of segment processing, the thread
block terminates early (see rows 14–15 in Alg. 2).

Thereafter the threads perform similar operations
on the remaining subsequences of the current chunk,
calculating, however, the scalar products more effi-
ciently (see rows 16–25 in Alg. 2). The computation
of scalar products between the current subsequence
of the chunk being processed and all subsequences of
the segment (vector QTrow) is based on QTcol com-
puted earlier and QTrow computed during the previ-
ous iteration (see row 17 in Alg. 2). Each thread pro-
cesses the segment subsequence whose number coin-
cides with the number of the thread in the block. The
thread that computes one scalar product between the

th  subsequence of the Chunk( j) and
the segment subsequence T(i) uses the following for-
mula:

k < ≤(1 )k segN
ol. 33  No. 2  2023



108 KRAEVA, ZYMBLER
(9)

where tid denotes the thread number in the block. Since
the value of the first summand is not computed in our
proposed formula (9) but is taken from the previous iter-
ation, the complexity of calculating the scalar product is
O(1) instead of O(m) for the case of a direct computation.

The second CUDA kernel performs elementwise
conjunction of the Bitmap.Subseq and Bitmap.Neighbor
vectors, writing its result into Bitmap.Subseq. This opera-
tion makes it possible to additionally discard the subse-
quences that are nearest neighbors of the subsequences

discarded during the work of the first CUDA kernel. The
kernel is organized as a one-dimensional grid of

 blocks consisting of blocksize threads, where

each thread computes one element of the resulting Bit-
map.Subseq vector (see rows 26–27 in Alg. 2).

The result of the candidate selection phase is the set
 of the subsequences for which the elements in Bit-

map.Subseq are TRUE (see row 28 in Alg. 2).

3.3.3. Parallelizing Candidate Refinement

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

1, 1,

, ,

1 1 1

, 1
, 1, 

i j
tid m k m

i j
tid m k m

QTrow tid T Chunk

QTrow tid T m Chunk m tid segN
QTcol k tid

− − − − ⋅
= + ⋅ < ≤
 =


 
  

N
blocksize

#

Alg. 3 ParRefineCandidates (in T, m, r, , , ; out )

1: for each segment  of T do Parallel

2: if  =  then

3: continue

4: for each chunk Chunk(j) of  where  do
5: if i = j then

6: QTrow ← CalculateDotProducts( , )
7: else

8: QTrow ← UpdateDotProducts( , )

9: QTcol ← CalculateDotProducts( , )

10: dist ← CalculateEDnorm( , , QTrow, , )
11: if dist < r then
12: Bitmap.Subseq(i·segN + tid) ← 
13: else
14: nnDist(i·segN + tid) ← min(dist, nnDist(i·segN + tid))

15: if  =  then

16: break

17: for each subsequence  of  do

18: QTrow ← UpdateDotProducts(QTrow, QTcol, , )

19: dist ← CalculateEDnorm( , , QTrow, , )
20: if dist < r then
21: Bitmap.Subseq(i·segN + tid) ← 
22: else
23: nnDist(i·segN + tid) ← min(dist, nnDist(i·segN + tid))

24: if  =  then

25: break
26:
27: return 

μ σ # $

( )iT �

+ ⋅
= ⋅∧( 1) . ( )i segN

k i segN Bitmap Subseq k FALSE

( )iT i j≥

( )
1,

j
mChunk ( )iT

( )
1,

j
mChunk ( )iT

( )
1,

j
mChunk ( )iT

( )
1,

j
mChunk ( )iT μ σ

FALSE

+ ⋅
= ⋅∨( 1) ( )i segN

candk i segN Bitmap k FALSE

( )
,
j

k mChunk ( ) ( )
1,\j j

mChunk Chunk
( )
,
j

k mChunk ( )iT
( )
,
j

k mChunk ( )iT μ σ

FALSE

+ ⋅
= ⋅∨( 1) . ( )i segN

k i segN Bitmap Subseq k FALSE

← = TRUE$ ,{ | . ( ) }k mT Bitmap Subseq k

$

PATTERN RECOGNITION AND IMAGE ANALYSIS  Vol. 33  No. 2  2023



A PARALLEL DISCORD DISCOVERY ALGORITHM 109
The parallel candidate refinement procedure (see
Alg. 3) has an ideological similarity to the procedure of
parallel candidate selection described above. Only the
row segments whose set of local candidates is not
empty participate in the refinement (see rows 2–3 in
Alg. 3). The refinement of candidates belonging to
some segment consists in scanning and processing the
row subsequences that do not overlap with the candi-
dates and are located to the left of the given segment
(see row 4 in Alg. 3). If the distance from the candidate
to the subsequence in question is less than the param-
eter r, the candidate is obviously not included in the
resulting set of discords and is discarded.

4. COMPUTATIONAL EXPERIMENTS
To evaluate the efficiency of the PD3 algorithm, we

conducted computational experiments whereby we
investigated the algorithm’s performance and com-
pared it with competitors. The performance was
understood to be the algorithm running time exclud-
ing the overhead cost of reading data from disk, data
storing time, etc. The PD3 was run ten times during
the experiments, and the mean value was used as the
final running time. We took as competitors
KBF_GPU [13] and the algorithm from Zhu et al. [18]
discussed above in the overview of related work (see
Section 1). The authors of these algorithms did not
provide their source codes, so to ensure a fair compar-
ison in the experiments, the PD3 algorithm was stud-
ied under the same experimental conditions as the
competing algorithms. It was run on the same hard-
ware platforms and processed the same time series
with the same discord length. The relevant hardware
and data information was collected from the papers
that proposed these algorithms. The time series used
by the authors of the competing algorithms were taken
from industrial and medical domains and were in a
publicly accessible archive [2].

The results of the PD3 algorithm were compared
with those published by the authors of competing
algorithms in the above papers. In addition, since the
competing algorithms limit the search to a single dis-
cord of a given length while our algorithm finds all dis-
cords for the given length and parameter r, we com-
pared the average time taken by the algorithms to find
one discord. The PD3 parameters were set in all
experiments as follows. The segment length (see Sub-
section 3.3.2) was taken as . The parame-
ter r was selected under the procedure based on the
application of the HOTSAX algorithm described
above (see Section 1).

The experiments to compare with KBF_GPU were
conducted on the equipment of the Supercomputer
Center of South Ural State University (SUSU) [3],
including an NVIDIA Tesla V100 GPU (5120 cores
@1.3 GHz) with a peak performance of 7 TFLOPS
(for double-precision numbers). The experiment
results are shown in Fig. 4. It can be seen that the PD3

= 512seglen
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significantly (up to two orders of magnitude) outper-
forms KBF_GPU. This was expected because the
KBF_GPU algorithm only parallelizes the complete
subsequence search, while the PD3 uses subsequence
discarding, advanced data structures, etc.

The experiments to compare with the algorithm of
Zhu et al. [18] were conducted using the Lomonosov-
2 supercomputer installed at Moscow State University
[14], including an NVIDIA Tesla P100 GPU
(3584 cores @1.19 GHz) with a peak performance of
4 TFLOPS (for double-precision numbers). The
results of the experiments are presented in Fig. 5. The
diagram shows the average time taken by the algo-
rithms to find one discord for various time series. This
parameter coincides with the total running time of the
algorithm proposed by Zhu et al. since this algorithm
searches for a single (most important) discord. The
average time to find one discord by the PD3 algorithm
is shown for different values of the parameter K, the
number of the desired (most important) discords
being 1, 10, 50, and 100. It can be seen that the algo-
rithm of Zhu et al. significantly (by an order of magni-
tude) outperforms PD3 when searching for a single
discord. However, as the parameter K increased, we
could see a change in the picture in favor of PD3.
Already when searching for 10 discords, PD3 is either
behind the competing algorithm by 1.5 to 2 times (see
the ECG, ECG2, and Respiration time series) or
spends about as much time on average to find one dis-
cord as the competing algorithm (see the Space Shut-
tle time series) or is already 1.8 times ahead (see Power
demand time series). When searching for top 50 dis-
cords, the PD3 algorithm is already 2 to 5 times ahead
of its competitor. When searching for the top 100 dis-
cords, this gap increases by 5 to 17 times. Conse-
quently, in applications where it is required to find all
possible anomalies of a time series (rather than the
most important one), the PD3 algorithm will be more
valuable than the algorithm of Zhu et al.

CONCLUSIONS
This paper reviews the problem of finding anoma-

lous subsequences (continuous intervals) of time
series, which is currently relevant in a wide range of
applications, including the digital industry, Internet of
Things, personal medicine, etc. The study uses the
concept of discord [7], which is a subsequence of the
time series farthest from its nearest neighbor, while the
nearest neighbor of this subsequence is a non-self-
match at a minimum distance away. The use of discord
discovery to find anomalies in a time series is prefera-
ble to other approaches because it is based on an intu-
itive parameter—the length of the subsequence. The
HOTSAX algorithm [7] implements the search for
time series discords, but is an approximate algorithm
because it transforms the subsequences of the time
series using symbolic aggregate approximation [10].
The DRAG algorithm [15] performs an exact search
ol. 33  No. 2  2023
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Fig. 4. The performance of the PD3 algorithm as compared to KBF_GPU.
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for time series discords that have a distance of at least
r to the nearest neighbor, where r is an expert-set
parameter. DRAG consists of two phases: selection of
discord candidates and refinement of the resulting set
from false discords. A review of the literature shows
that no parallelizing schemes for the DRAG algorithm
have yet been proposed.

A parallel algorithm named PD3 (parallel DRAG-
based discord discovery) is proposed on the basis of
the DRAG algorithm to search for range discords of
time series on a GPU. To accelerate the calculations,
the PD3 uses the square of normalized Euclidean dis-
tance as a metric and is supplemented with a prepro-
cessing phase at which the mean values and standard
PATTERN RECOGNIT
deviations of all subsequences of the time series are
computed. The results are then applied at the selection
and refinement phases to calculate the distances
between the subsequences of the time series. Each
phase of the algorithm is parallelized separately on the
basis of the concept of data parallelism and using vec-
tor data structures. The time series is divided into seg-
ments of equal length, each segment being processed
by a separate GPU thread block. At the parallel candi-
date selection phase, the thread block considers the
subsequences of its segment as (local) discord candi-
dates and processes the subsequences of the time series
which are located to the right of the given segment and
do not overlap with the candidates. The parallel
ION AND IMAGE ANALYSIS  Vol. 33  No. 2  2023
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refinement phase uses a similar technique, but it
involves only the time series segments whose set of
local candidates is not empty, and the subsequences of
the time series that are located to the left of the given
segment are subject to processing. The processing of
subsequences consists in calculating the distance from
the candidate to the subsequence in question: if it is
less than the parameter r, the candidate and subse-
quence are excluded from further processing as not
being discords. As a result, the subsequences that were
not discarded make up the resulting set of the desired
discords of the original time series.

The computational experiments involved compar-
ing the performance of the PD3 and of two GPU-
based parallel discord discovery algorithms proposed
in [13, 18] in so far as the literature review showed the
absence of other competitors. Both algorithms limit
the search result to a single (most important) discord
of the time series. However, the first algorithm,
KBF_GPU [13], offers modified discord discovery to
solve the problem of “twin freaks” (similar anomalies
that cannot be detected using the discord concept) and
implements this search by parallelizing complete enu-
meration of the subsequences of the time series.
Expectedly, our algorithm significantly (up to two
orders of magnitude) is ahead of KBF_GPU in per-
formance. The second algorithm of Zhu et al. [18]
applies computational patterns to discard unpromising
discord candidates and thus to improve performance.
The PD3 algorithm, while searching for all discords of
a given length, lags (by an order of magnitude) behind
its counterpart, which searches for only one (most
important) of them. However, in terms of the average
time taken to search for one discord, the algorithm we
have developed is ahead of its competitor (up to one
order of magnitude), which can be seen already when
searching for the top 50 discords. Thus, the PD3 will
be more valuable than the competing algorithm in
applications where one needs to find all possible
anomalies of the time series (rather than the most
important one).

As a possible area for future research, we consider
using the PD3 algorithm to develop a method for
detecting anomalies in a streaming time series whose
values arrive in real time.
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