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Abstract—Currently, in a wide spectrum of subject domains, time series data mining requires the
efficient subsequence anomaly discovery in a very long time series, which cannot be entirely placed in
RAM. At present, one of the best approaches to solving such a problem is to formalize the anomaly as
a discord, a given-length subsequence that is maximally far away from its non-overlapping nearest
neighbor. In the article, we introduce a novel parallel algorithm called PADDi (PALMAD-based
anomaly discovery on distributed GPUs), which discovers arbitrary-length discords in a very long
time series on a high-performance cluster with nodes, each of which is equipped with multiple
GPUs. The algorithm exploits two-level parallelism: first, when the time series is divided into equal-
length fragments stored on disks associated with the cluster nodes, and second, when a fragment
is split into equal-length segments to be processed by GPUs of the respective node. To implement
data exchanges between nodes and calculations on GPUs within a node, we employ MPI and CUDA
technologies, respectively. The algorithm performs as follows. Firstly, in each segment processed
by one GPU, the algorithm selects potential discords and then discards false positives, resulting in
the local candidate set. Next, local candidate sets are sent among cluster nodes in an “all-to-all”
manner, resulting in a global candidate set. Then, each cluster node refines the global candidates
within its fragment, obtaining the local resulting set of true positive discords. Finally, each cluster
node sends the local resulting sets to a master node, which outputs the end result as the intersection
of the received local resulting sets. Extensive experiments over real-world and synthetic million-
length time series on various configurations of two high-performance clusters with different models
of GPU onboard (from 48 to 64 GPUs in total) showed that our algorithm’s scalability remains
linear without stagnation or degradation.

2010 Mathematics Subject Classification: 62M10, 65Y05
DOI: 10.1134/S1995080225606198

Keywords and phrases: time series, anomaly, discord discovery, parallel algorithm,
high-performance cluster, GPU, CUDA

INTRODUCTION

Over the past decade, time series anomaly discovery remains one of the most topical problems
for researchers and practitioners in a wide spectrum of subject domains [1]: Internet of Things [2],
smart cities [3] and buildings [4], monitoring of HPC-systems [5], etc. Within the time series anomaly
discovery scope, one of the most challenging task is subsequence anomaly detection, where we need to
find successive points in time whose collective behavior is unusual, although each point individually is
not necessarily an outlier.

Focusing on the subsequence anomaly detection task, we apply the discord concept [6], which is
currently considered one of the best approaches to formalize and discover subsequence anomaly [7, 8].
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Discord is intuitively defined as a given-length subsequence that is maximally far away from its non-
overlapping nearest neighbor. We can point out three following key serial discord discovery algorithms:
HOTSAX, DRAG, and MERLIN. HOTSAX [6] discovers discords in a time series, which is entirely
placed in RAM. DRAG [10] introduces the range discord concept (a discord that is at least a user-
defined threshold away from its non-overlapping nearest neighbor) and implements the range discord
discovery for the case when a time series is stored on disk. Finally, MERLIN [11], as opposed to its
predecessors, discovers discords of every possible length in a specified range determining the above-
threshold automatically.

In our latest study, we introduced the PD3 [12] and PALMAD [13] algorithms, which accelerate,
respectively, DRAG and MERLIN on a graphics processing unit (GPU). However, this does not allow
us to discover arbitrary-length discords in a very long time series that is stored on the disk (and cannot
be entirely placed in RAM).

The article pushes our previous research forward and contributes as follows:

• We introduce a novel parallel algorithm called PADDi (PALMAD-based Anomaly Discovery on
Distributed GPUs), which discovers arbitrary-length discords in a very long time series on a
high-performance cluster with nodes, each of which is equipped with multiple GPUs.

• We carry out extensive experiments to evaluate PADDi over real-world and synthetic million-
length time series on various configurations of two high-performance clusters with different mod-
els of GPU, where our algorithm’s scalability remains linear without stagnation or degradation.
We establish a repository [14], which contains the algorithm’s source code and supplemental data
to facilitate the reproducibility of our research.

The remainder of the article is organized as follows. Section 1 briefly discusses related works. In
Section 2, we introduce the notation and formal definitions, along with a short description of the serial
and parallel algorithms our study is based on Section 3 introduces PADDi, our novel parallel algorithm
for discord discovery in the time series. In Section 4, we discuss the results of the experimental evaluation
of PADDi. Finally, in Conclusions, we summarize the results obtained and suggest directions for further
research.

1. RELATED WORK

Currently, the discord concept proposed by Keogh et al. [6], is considered one of the best approaches
to time series anomaly discovery [7, 8]. Discord is intuitively defined as a given-length subsequence
that is maximally far away from its non-overlapping nearest neighbor. In the above-cited article,
Keogh et al. introduced the HOTSAX (Heuristically Ordered Time series using Symbolic Aggregate
ApproXimation) algorithm for discords discovery for the case when a time series is entirely placed in
RAM. The algorithm encodes the time series subsequences by the SAX transform [9] and scans all the
pairs of subsequences. During the scanning, HOTSAX calculates the distance between subsequences
and finds the maximum among the distances to the nearest neighbor. Herewith, the algorithm discards
unpromising subsequences without calculating distances. However, HOTSAX suffers from the fact that
the length of a time series to discover discords in is limited by the RAM size.

In [10], Keogh et al. proposed the improvement of HOTSAX, the DRAG (Discord Range Aware
Gathering) algorithm, which discovers discords in a time series placed on a disk, not in RAM. DRAG
introduces the range discord concept, where such a discord is at least a user-defined threshold away from
its non-overlapping nearest neighbor. The algorithm performs in two phases, where, on each phase, it
linearly scans the time series at once. In the first phase, candidate selection, DRAG collects potential
range discords, whereas in the second phase, discord refinement, it prunes the false positives. However,
DRAG does not provide a user with a formal way to choose the threshold to ensure efficient discord
discovery. In addition, DRAG (like HOTSAX) discovers discords of a fixed, not arbitrary length, which
would be much more useful for a user who is not an expert in the subject domain.

In [11], Keogh et al. introduced the MERLIN algorithm, which removes the above-mentioned
limitations of DRAG. MERLIN discovers discords of every possible length in a specified range through
repeated calls of DRAG and adaptive selection of the threshold. However, MERLIN is a serial algorithm,
and its parallelization could significantly increase the efficiency of discord discovery.
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Research that addresses the parallelization of the fixed-length discord discovery can be briefly
described as follows. In our previous work [15, 16], we proposed a way to accelerate HOTSAX on
Intel many-core CPUs and GPUs. In [17], we introduced a parallelization scheme for DRAG on a
high-performance cluster with Intel many-core CPUs. As it was shown in the experiments, such an
algorithm significantly outruns two DRAG-based rivals, DDD (Distributed Discord Discovery) [18]
and PDD (Parallel Discord Discovery) [19], since they employ intensive data exchanges between cluster
nodes. We can also point out two following algorithms for GPU: first, by Zhu et al. [20], which employs
the computational patterns, and second, KBF_GPU (Brute-Force for K-distance discord) [21] that
discovers K-distance discords, some modification of the classic discord concept.

To the best of our knowledge, no research has addressed the accelerating of the arbitrary-length
discords discovery with GPU or any other parallel hardware architecture except our algorithm PALMAD
(Parallel Arbitrary Length MERLIN-based Anomaly Discovery) introduced earlier in [13]. PALMAD
basically follows MERLIN, the original serial algorithm, but employs our derived recurrent formulas
to calculate the mean values and standard deviations of subsequences. Further, we use such data
in calculations of the Euclidean distance between subsequences and, eventually, significantly reduce
the costs of entire calculations. Furthermore, PALMAD repeatedly calls PD3 (Parallel DRAG-based
Discord Discovery), our developed parallel version of the original DRAG algorithm proposed earlier
in [12]. However, PALMAD makes it possible to discover arbitrary-length discords on one GPU just for
the case when time series should be entirely placed in RAM, not for a very long time series that is stored
on the disk. This requires modifications to our developments for a high-performance cluster with nodes,
each of which is equipped with several GPUs, thus, in this article, we consider such a challenging task.

2. PRELIMINARIES

Prior to introducing the proposed algorithm for unsupervised labeling of long time series, below,
in Subsections 2.1 and 2.2, respectively, we first give basic definitions and notation, and then briefly
describe underlying developments our approach is based on.

2.1. Formal Definitions and Notation

Time series and subsequence. A time series is a chronologically ordered sequence of real-valued
numbers

T = {ti}ni=1, ti ∈ R.

A subsequence Ti,m of a time series T is its subset of m successive elements that starts at the ith
position

Ti,m = {tk}i+m−1
k=i , 1 ≤ i ≤ n−m+ 1, 3 ≤ m � n.

We denote the set of all m-length subsequences in T by Sm
T .

Discords. Given a time series T and its two subsequences Ti,m and Tj,m, we say that they are non-
self match to each other at distance Dist(Ti,m, Tj,m) if |i− j| ≥ m. Let us denote a non-self match of
a subsequence C ∈ Sm

T by MC .

Given a time series T , its subsequence D ∈ Sm
T is said to be the discord if D has the largest distance

to its nearest non-self match

∀C ∈ Sm
T min

MD∈Sm
T

Dist(D, MD) > min
MC∈Sm

T

Dist(C, MC).

Given the positive real number r, the discord at a distance of at least r from its nearest non-self match
is called the range discord. That is, the range discord D ∈ Sm

T w.r.t. the parameter r meets the following

min
MD∈Sm

T

Dist(D, MD) ≥ r.

Further, for brevity, we use the term “discord”, meaning range discord, unless otherwise is clearly
indicated.
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Distance function. A distance function for any two m-length subsequences is a nonnegative and
symmetric function Dist : Rm × R

m → R. We employ the Euclidean metric that is defined as follows.
Let us have X, Y ∈ Sm

T , then the Euclidean distance between the subsequences is calculated as below

ED(X, Y ) =

√
√
√
√

m∑

i=1

(xi − yi)2.

In our study, the algorithms deal with subsequences that have been previously z-normalized to have a
mean of zero and a standard deviation of one. The z-normalized version of a subsequence X = {x}mi=1 ∈
Sm
T is defined as a subsequence X̂ = {x̂}mi=1, where

x̂i =
xi − μX

σX
, μX =

1

m

m∑

i=1

xi, σX =

√
√
√
√

1

m

m∑

i=1

x2i − μ2
X .

In our study, to provide the highest possible performance of discord discovery, we employ the squared
z-normalized Euclidean distance as the Dist(· , · ) function. Hereinafter, we denote by ÊD the Euclidean

distance between two z-normalized subsequences: ÊD(X, Y ) = ED(X̂, Ŷ ). To compute ÊD
2
(·, ·), we

employ the technique proposed in [22] that allows for faster calculation than in above classic formula

Dist(X, Y ) = ÊD
2
(X, Y ) = 2m

(

1− 〈X, Y 〉 −mμX μY

mσX σY

)

.

2.2. Previous Building-Block Algorithms

Serial algorithms: DRAG and MERLIN. DRAG [10] discovers given-length discords and performs
in two phases: candidate selection (collecting potential range discords) and discord refinement (pruning
the false positives). In the first phase, the algorithm scans through the time series, and for each
subsequence it validates each candidate already in the candidate set is a discord. If a candidate fails the
validation, then it is removed from this set. Finally, the new subsequence is either added to the candidate
set, or it is pruned. In the second phase, the algorithm scans through the time series, calculating the
distance between each subsequence and each candidate. If the distance is less than the given threshold,
then the candidate is permanently excluded from the candidate set as a false positive. If the above
distance is less than the best-so-far distance to the nearest neighbor, then the current distance to the
nearest neighbor is updated. MERLIN [1] discovers discords with length in the range minL..maxL
through repeated running DRAG along with the adaptive selection of the threshold. At each step,
MERLIN calculates the arithmetic mean μ and standard deviation σ of the distances from the last five
discords found to their nearest neighbors, and then calls DRAG with the threshold r = μ− 2σ. If DRAG
does not discover a discord, then σ is subtracted from r until DRAG completes successfully. To set the
parameter r for the first five discord lengths minL..minL + 4, MERLIN employs advanced formulas
introduced in [11].

Parallel algorithms: PD3 and PALMAD. Our developed algorithm PD3 [12] accelerates both
phases of DRAG with a GPU. PD3 exploits segment-wise processing of a time series and the above-
mentioned fast calculation of the squared z-normalized Euclidean distance. Each block of GPU
threads treats subsequences of its segment as local candidates and processes the subsequences located
to the right of the segment and do not overlap with the candidates. The thread block scans the
subsequences chunk-wisely, where the number of elements in a chunk is equal to the segment length.
The refinement phase is parallelized similarly, involving, however, only segments with a non-empty set
of local candidates and subsequences located to the left of the segment. PALMAD [13], our developed
algorithm, parallelizes MERLIN on a GPU. PALMAD basically follows the original serial algorithm and
repeatedly calls PD3. However, PALMAD employs our derived recurrent formulas for calculation of the
mean values and standard deviations of subsequences, significantly reducing the costs of calculation of
the distances between subsequences.
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Fig. 1. Data layout in PADDi.

3. DISCORD DISCOVERY ON MULTI-GPU CLUSTER

Below, we introduce PADDi (PALMAD-based anomaly discovery on distributed GPUs), a novel
parallel algorithm for arbitrary-length discord discovery in a very long time series on a high-performance
cluster with nodes, each of which is equipped with multiple GPUs. In Subsections 3.1 and 3.2,
respectively, we describe our algorithm’s data layout and parallelization scheme.

3.1. Data Layout

In Fig. 1, we show the data layout of our algorithm, which employs two-level data parallelism. In the
first level, we split the given time series T into a set of equal-length fragments T (1), . . . , T (p), where p
is the number of cluster nodes, and place the fragments on disks of the nodes. We suppose that p is
selected in such a way that the fragment and the algorithm’s supplemental data can be entirely placed in
the node RAM. To prevent loss of results at the junction of fragments, we use overlapping as follows: at
the end of each fragment (except for the last one), we add maxL − 1 points taken from the beginning of
the next fragment.

In the second level of parallelism, we divide each fragment into equal-length segments according to
the number of GPUs installed on the node. To make segmentation of each fragment T (i), we employ the

above-described overlapping technique, resulting in a set of segments T
(i)
1 , . . . , T

(i)
q , 1 ≤ i ≤ p, where q

is the number of GPUs that each cluster node is equipped with. Furthermore, each segment is aligned
to ensure a load balance of the GPU threads processing its segment. The segment length is chosen as
a multiple of the GPU warp size; if this is not the case, then the segment is padded on the right with
dummy points that have the +∞ value.

3.2. Parallelization

In Fig. 2, we show the parallelization scheme of our algorithm. For each discord length within the
given range minL..maxL, PADDi performs in three phases: local selection, local refinement, and global
refinement. Among all cluster nodes, we choose a master node, which further collects the discords
obtained by other nodes and outputs the final result. To implement data exchanges across the cluster
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nodes and calculations on GPUs installed on a node, we employ, respectively, the MPI and CUDA
technologies.

In the first phase, for each fragment T (i), PADDi, applying our earlier developed algorithm PD3,

selects potential discords within each segment T (i)
j and then discards false positives of them, resulting

in the discord set D(i)
j . After that, each GPU transfers its result to the CPU of the cluster node, where

the phase resulting set is obtained as C(i) = ∪q
j=1D

(i)
j .

The resulting set of the first phase, however, may contain false positives, since the discords found in
one segment are not compared to the subsequences from other segments of the same fragment, and thus
may not be discords within the entire fragment. This is the reason that we consider C(i) the fragment
candidate set and proceed with the second phase, local refinement, where PADDi performs as follows.
Firstly, C(i) is transferred to each GPU of the cluster node. Next, on each GPU, we refine C(i) against

the segment T (i)
j , resulting in the updated discord set D(i)

j . Finally, each GPU transfers its result to
the CPU of the cluster node, where the phase resulting set is obtained as an intersection of the partial

results, D(i) = ∩q
j=1D

(i)
j .

As before, the resulting set of the second phase needs to be refined, since it consists only of discords
discovered in one fragment. In the third phase, PADDi performs global refinement as follows. First,
each fragment discord set D(i) is sent by the respective CPU among the cluster nodes in an “all-to-
all” manner (using the MPI_Allgatherv function), resulting in the whole time series candidate set,
C(i) = ∪p

i=1D
(i). Next, as in the previous phase, we send the candidate set to the GPU of the cluster

node and refine it against the respective segment, updating the set D
(i)
j . Then, like in the previous

phase, we transfer the partial results from GPU to CPU and obtain their intersection: C(i) = ∩q
j=1D

(i)
j .

Finally, we send the updated discord set C(i) to the master node (using the MPI_Gatherv function),
which obtains the m-length discord set of the whole time series intersecting the received partial
results: Dm = ∩p

i=1C
(i). In the end, the master node obtains the all-length discords discovered set

as D = ∪maxL
minL Dm.

While in the local selection and local refinement phases, we employ our earlier developed algorithm
PD3, we implemented the global refinement from scratch. In this phase, we calculate the distance
between each m-length candidate from the set C(i) and each m-length subsequence in the fragment T (i)

through the advanced formula given in Section 2.1. In the memory of the GPU installed on the

cluster node, we represent the above-mentioned sets as matrices C ∈ R
|C(i)|×m and S ∈ R

(n−m+1)×m,

respectively. Multiplication of the matrices S and C results in the matrix P ∈ R
(n−m+1)×|C(i)|, where

each element represents the scalar product of the corresponding rows of the matrix S (subsequences)
and columns of the transposed matrix Cᵀ (candidates). To calculate the above multiplication on the
GPU, we employ the parallel block-wise algorithm [23]. Further, we use the elements of the matrix P
to calculate the distances between the candidates and subsequences through the above-mentioned
formula. Finally, we take as a result each candidate, where the distance to its nearest neighbor exceeds
the threshold.

4. EXPERIMENTAL EVALUATION

In the experiments, to confirm the efficiency of PADDi, we evaluate the performance and speedup
our algorithm. We designed the experiments to be easily reproducible with our repository [14], which
contains the algorithm’s source code and supplemental data. Below, Section 4.1 describes the metrics,
hardware, and time series employed in the experiments, and Section 4.2 discusses the experimental
results.
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Fig. 2. Parallelization scheme in PADDi.

4.1. Experimental Setup
Metrics. The algorithm’s performance is interpreted as its running time. For each experiment, we

ran PADDi ten times and took the average value as the final running time. The speedup of our algorithm
employing k graphics processors is calculated as S(k) = t1/tk, where t1 and tk are the running times of
PALMAD on one GPU and PADDi on k GPUs, respectively.
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Table 1. Time series employed in the experiments

Time series Length, n Discord length range, minL..maxL Domain

ECG

2× 106 64..128

ECG of an adult patient

GAP Power demand of a household in France

MGAB Synthetic time series generated by the
Mackey–Glass equation

Table 2. Hardware platform of the experiments

Feature GPU-MSU GPU-UNN

Node

Brand and family NVIDIA Tesla NVIDIA Kepler

Model K40 P100 K20X

Number of CUDA cores 2 880 3 584 2 688

Core frequency, GHz 0.745 1.19 0.732

RAM, Gb 11.56 16 6

Peak performance (double
precision), TFLOPS 1.682 4 1.31

Cluster
Number of nodes 48 64 64

GPUs per node 1 2 3

Rivals. We skip the comparison of PADDi and MERLIN performance results since, obviously, the
original serial algorithm is significantly (orders of magnitude) inferior to its parallel descendant. As for
the comparison of our algorithm with parallel rivals, we employ an indirect competitor, SCAMP [29],
since our review of related work (see Section 1) does not reveal any other discord discovery solution
oriented to high-performance clusters with GPU-based nodes. SCAMP (SCAlable Matrix Profile) is
currently the fastest parallel algorithm to calculate the matrix profile (MP) [30] of a time series and can be
run on multiple GPUs. MP is defined as a real-valued array, where the ith element is the distance from
the ith subsequence of the original time series to its non-overlapping nearest neighbor. Thus, discords
can be found as local maxima of MP. It is worth noting that MP is the basis of numerous time series
mining primitives (e.g., motifs can be found as local minima of MP).

Datasets. In our study, we employed the time series listed in Table 1. Each time series consists of
two million points. For all time series, we discover discords with length starting from 64 and ending
by 128. The ECG [24] time series contains the measurements of an adult patient’s electrocardiogram.
The GAP [25] time series represents minute-by-minute indicators of the total energy consumption of a
private house in France in 2006–2010. The MGAB [26] time series is synthetically generated based on
the Mackey–Glass equation (nonlinear differential equation with time delay) [27].

Hardware. Table 2 summarizes the hardware platform we use in the experiments. We employ two
high-performance clusters with multi-GPU nodes, namely Lomonosov-2 [5] and Lobachevsky [28]. As
can be seen, we run our algorithm on the following three configurations of the above clusters: 48×K40,
64×P100, and 64×K20X.

4.2. Results and Discussion

Speedup and performance. Figures 3 and 4 depict the scalability of our algorithm over million-
length time series from different subject domains, where the results show a picture common to all
time series and all hardware configurations involved in the experiments. As can be seen, speedup
and performance decrease compared to ideal when the algorithm runs on a configuration with a larger
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Fig. 3. Speedup of PADDi.

number of cluster nodes. Nevertheless, the algorithm’s scalability remains linear, and there is no
stagnation or degradation.

Impact of data exchanges on scalability. In Fig. 5, we show the proportion of the algorithm’s
running time between the local and global stages, where the former includes the local selection and
local refinement, and the latter corresponds to the global refinement. In addition, for the corresponding
configurations and time series, we show the size of candidates involved in data exchanges between
cluster nodes. It can be seen that the longer running time of the global stage corresponds to a larger
size of candidates involved in data exchanges between cluster nodes. This, in turn, results in a lower
speedup and performance of the algorithm (cf. Figs. 3, 4, and 5).

Next, let us discuss the algorithm’s scalability when it is run on a high-performance cluster
configured with different numbers of nodes, where for all the configurations it has the same number
of GPUs in total (for the configurations 64×P100 and 64×K20X). From Fig. 5, it can be seen that when
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Fig. 4. Performance of PADDi.

PADDi runs on cluster nodes with the highest possible number of GPUs, our algorithm is more scalable
compared to the case of a larger number of cluster nodes with one GPU on each node. The reason is
that one GPU discards fewer candidates in its fragment. This, in turn, increases the size of the data to
be sent, and the time spent on the refinement phase due to the larger amount of calculations.

It is worth noting that discord discovery on a hardware architecture with distributed memory cannot
avoid exchanges of candidates. Candidates selected in some fragment of a time series, but refined within
that fragment without involving the candidates of other fragments of the time series, obviously do not
have to be true positive discords w.r.t. the definition in Section 2 [6].

Comparison with SCAMP. To compare our algorithm’s performance with the above-mentioned
SCAMP algorithm, we employ the Lobachevsky high-performance cluster (denoted as GPU-UNN in
Tab. 2), where PADDi and SCAMP run on the 16 nodes each with three GPUs onboard and 48 nodes
each with one GPU onboard, respectively. We specify the range 64–128 as an input parameter for the
discord length. To better understand the experimental results, it is worth noting the principal differences
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Fig. 5. Proportion of the local and global stages in running time of PADDi.
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between SCAMP and PADDi. First, the former discovers discords of the fixed length, whereas through
the latter, we obtain discords of arbitrary length, i.e., all the discords with the length in the specified
range. Thus, if PADDi runs for the given time series and specified discord length range, then to obtain
the same resulting discords through SCAMP, we need to run SCAMP for each length in the specified
range. Second, SCAMP does not need data exchanges between GPUs (except that one to merge
the partial results), whereas for PADDi, data exchanges are employed in both the local and global
refinement phases. Finally, SCAMP employs sophisticated techniques to calculate distances for all the
subsequences of the given time series, whereas PADDi prunes unpromising candidate subsequences
that are unknown beforehand and needs to perform exchanges of the rest candidates across GPUs.
Summing up, we can make the following informal assumption on the performance of the competitors.
When the discord length range is relatively long, PADDi probably outruns SCAMP if the number of
unpromising candidates that need to be sent across GPUs is not significantly large.

In Fig. 6, we show the results of the experiments. As can be seen, it basically follows the assumption
above and SCAMP is inferior to our algorithm for all the time series involved in the experiments.

Correctness of discord discovery. In the experiments, we do not evaluate our algorithm’s accuracy
of anomaly discovery, since it requires a time series with anomalies manually marked by an expert in
the subject domain. However, such a markup is hardly ever possible for the million-length time series
involved in our study. Anyway, in the experiments, we confirmed that PADDi produces the correct
results, verifying that discords discovered by PADDi are the same as those obtained as a by-product
of the MP calculation through the above-mentioned SCAMP algorithm. In addition, Fig. 7 depicts the
statistical results and shows that the discords found have approximately the same distribution by length.
For any length, the number of discords found is less than 0.08% of the total number of subsequences in
the time series, confirming the intuitive idea that anomalies are very rare.

CONCLUSIONS
In this article, we address the subsequence anomaly discovery in a very long time series, which cannot

be entirely placed in RAM. Such a problem remains one of the most topical issues for researchers and
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practitioners in a wide spectrum of subject domains. Our study is based on the discord concept by
Keogh et al. [6], which is currently considered one of the best approaches to formalize and discover
subsequence anomalies. Discord is defined as a given-length subsequence that is maximally far away
from its non-overlapping nearest neighbor. We also employ the algorithms by Keogh et al., DRAG [10]
and MERLIN [11], which implements, respectively, fixed- and arbitrary-length discord discovery in a
time series stored on disk.

In the article, we propose a novel parallel algorithm called PADDi (PALMAD-based Anomaly
Discovery on Distributed GPUs), which discovers arbitrary-length discords in a very long time series on
a high-performance cluster with nodes, each of which is equipped with multiple GPUs. PADDi employs
our earlier developed parallel algorithms PD3 [12] and PALMAD [13], which accelerate, respectively,
DRAG and MERLIN on a GPU.

Our algorithm exploits two-level data parallelism. At the first level, the time series is divided into
equal-length fragments distributed over disks associated with the nodes of the high-performance cluster.
The second level of parallelism is implemented by splitting each fragment into equal-length segments,
which are processed by GPUs installed on the cluster node. Both fragments and segments are formed
with overlapping to prevent loss of results at junctions of fragments and segments, respectively. We
employ MPI and CUDA to implement data exchanges between cluster nodes and calculations on GPUs
within a node, respectively. PADDi iterates the specified range of discord lengths, where at each iteration,
it performs parallel preprocessing and discord discovery for the respective length. The discord discovery
is performed in two following phases by each cluster node. In the first phase, through our PD3 parallel
algorithm, in each segment processed by a separate GPU installed on the node, we select potential
discords and then discard false positive of them, resulting in the local candidate set. In the second
phase, local candidate sets are sent among cluster nodes in an “all-to-all” discipline, resulting in a
global candidate set. Next, each cluster node refines the global candidates within its fragment based on
the parallel block multiplication of the matrix of candidates and the matrix of segment subsequences,
obtaining the local resulting set of true positive discords. Finally, each cluster node sends the local
resulting set to a master node, which outputs the end result as the intersection of the received local
resulting sets.

We carry out extensive experiments to evaluate PADDi over real-world and synthetic million-length
time series on two high-performance clusters, Lomonosov-2 (Moscow State University, Russia) and
Lobachevsky (State University of Nizhny Novgorod, Russia), which have up to 64 nodes with different
models of GPU. The results are common to all time series and all hardware configurations involved in the
experiments: our algorithm’s performance and speedup remain linear without stagnation or degradation;
the more GPUs are installed on one node of the cluster, the greater speedup we obtain. To facilitate the
reproducibility of our study, we establish a repository [14], which contains the algorithm’s source code
and supplemental data.

In our further research, we plan to implement the above-described approach for the case of a high-
performance cluster based on nodes with multiple Intel many-core CPUs.
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