
PADDi: Highly Scalable Parallel Algorithm
for Discord Discovery on Multi-GPU Clusters

Y. A. Kraeva1, * and M. L. Zymbler1, **

(Submitted by A. M. Elizarov)
1South Ural State University,

Chelyabinsk,
454080 Russia

Received November XX, 2024; revised November XX, 2024; accepted January XX, 2025

Abstract—Currently, in a wide spectrum of subject domains, time series data mining requires
the efficient subsequence anomaly discovery in a very long time series, which cannot be entirely
placed in RAM. At present, one of the best approaches to solving such a problem is to formalize
the anomaly as a discord, a given-length subsequence that is maximally far away from its non-
overlapping nearest neighbor. In the article, we introduce a novel parallel algorithm called
PADDi (PALMAD-based Anomaly Discovery on Distributed GPUs), which discovers arbitrary-
length discords in a very long time series on a high-performance cluster with nodes, each of
which is equipped with multiple GPUs. The algorithm exploits two-level parallelism: first, when
the time series is divided into equal-length fragments stored on disks associated with the cluster
nodes, and second, when a fragment is split into equal-length segments to be processed by GPUs
of the respective node. To implement data exchanges between nodes and calculations on GPUs
within a node, we employ MPI and CUDA technologies, respectively. The algorithm performs as
follows. Firstly, in each segment processed by one GPU, the algorithm selects potential discords
and then discards false positives, resulting in the local candidate set. Next, local candidate sets
are sent among cluster nodes in an “all-to-all” manner, resulting in a global candidate set.
Then, each cluster node refines the global candidates within its fragment, obtaining the local
resulting set of true positive discords. Finally, each cluster node sends the local resulting sets
to a master node, which outputs the end result as the intersection of the received local resulting
sets. Extensive experiments over real-world and synthetic million-length time series on various
configurations of two high-performance clusters with up to 64 nodes and different models of
GPU onboard showed that our algorithm’s scalability remains linear without stagnation or
degradation.

2010 Mathematical Subject Classification: 62M10, 65Y05

Keywords and phrases: time series, anomaly, discord discovery, parallel algorithm, high-
performance cluster, GPU, CUDA.

INTRODUCTION
Over the past decade, time series anomaly discovery remains one of the most topical problems

for researchers and practitioners in a wide spectrum of subject domains [1]: Internet of Things [2],
smart cities [3] and buildings [4], monitoring of HPC-systems [5], etc. Within the time series
anomaly discovery scope, one of the most challenging task is subsequence anomaly detection, where
we need to find successive points in time whose collective behavior is unusual, although each point
individually is not necessarily an outlier.

Focusing on the subsequence anomaly detection task, we apply the discord concept [6], which is
currently considered one of the best approaches to formalize and discover subsequence anomaly [7, 8].
Discord is intuitively defined as a given-length subsequence that is maximally far away from its

* E-mail: kraevaya@susu.ru
** E-mail: mzym@susu.ru

2 KRAEVA, ZYMBLER

non-overlapping nearest neighbor. We can point out three following key serial discord discovery
algorithms: HOTSAX, DRAG, and MERLIN. HOTSAX [6] discovers discords in a time series, which
is entirely placed in RAM. DRAG [10] introduces the range discord concept (a discord that is at least
a user-defined threshold away from its non-overlapping nearest neighbor) and implements the range
discord discovery for the case when a time series is stored on disk. Finally, MERLIN [11], as opposed
to its predecessors, discovers discords of every possible length in a specified range determining the
above-threshold automatically.

In our latest study, we introduced the PD3 [12] and PALMAD [13] algorithms, which accelerate,
respectively, DRAG and MERLIN on a graphics processing unit (GPU). However, this does not
allow us to discover arbitrary-length discords in a very long time series that is stored on the disk
(and cannot be entirely placed in RAM).

The article pushes our previous research forward and contributes as follows:

• We introduce a novel parallel algorithm called PADDi (PALMAD-based Anomaly Discovery
on Distributed GPUs), which discovers arbitrary-length discords in a very long time series on
a high-performance cluster with nodes, each of which is equipped with multiple GPUs.

• We carry out extensive experiments to evaluate PADDi over real-world and synthetic million-
length time series on various configurations of two high-performance clusters with different
models of GPU, where our algorithm’s scalability remains linear without stagnation or
degradation. We establish a repository [14], which contains the algorithm’s source code
and supplemental data to facilitate the reproducibility of our research.

The remainder of the article is organized as follows. Section 1 briefly discusses related works.
In Section 2, we introduce the notation and formal definitions, along with a short description of
the serial and parallel algorithms our study is based on Section 3 introduces PADDi, our novel
parallel algorithm for discord discovery in the time series. In Section 4, we discuss the results of
the experimental evaluation of PADDi. Finally, in Conclusions, we summarize the results obtained
and suggest directions for further research.

1. RELATED WORK
Currently, the discord concept proposed by Keogh et al. [6], is considered one of the best

approaches to time series anomaly discovery [7, 8]. Discord is intuitively defined as a given-
length subsequence that is maximally far away from its non-overlapping nearest neighbor. In the
above-cited article, Keogh et al. introduced the HOTSAX (Heuristically Ordered Time series using
Symbolic Aggregate ApproXimation) algorithm for discords discovery for the case when a time
series is entirely placed in RAM. The algorithm encodes the time series subsequences by the SAX
transform [9] and scans all the pairs of subsequences. During the scanning, HOTSAX calculates the
distance between subsequences and finds the maximum among the distances to the nearest neighbor.
Herewith, the algorithm discards unpromising subsequences without calculating distances. However,
HOTSAX suffers from the fact that the length of a time series to discover discords in is limited by
the RAM size.

In [10], Keogh et al. proposed the improvement of HOTSAX, the DRAG (Discord Range Aware
Gathering) algorithm, which discovers discords in a time series placed on a disk, not in RAM. DRAG
introduces the range discord concept, where such a discord is at least a user-defined threshold away
from its non-overlapping nearest neighbor. The algorithm performs in two phases, where, on each
phase, it linearly scans the time series at once. In the first phase, candidate selection, DRAG
collects potential range discords, whereas in the second phase, discord refinement, it prunes the
false positives. However, DRAG does not provide a user with a formal way to choose the threshold
to ensure efficient discord discovery. In addition, DRAG (like HOTSAX) discovers discords of a
fixed, not arbitrary length, which would be much more useful for a user who is not an expert in the
subject domain.

In [11], Keogh et al. introduced the MERLIN algorithm, which removes the above-mentioned
limitations of DRAG. MERLIN discovers discords of every possible length in a specified range
through repeated calls of DRAG and adaptive selection of the threshold. However, MERLIN is a
serial algorithm, and its parallelization could significantly increase the efficiency of discord discovery.

LOBACHEVSKII JOURNAL OF MATHEMATICS

PADDI: HIGHLY SCALABLE PARALLEL ALGORITHM FOR DISCORD DISCOVERY 3

Research that addresses the parallelization of the fixed-length discord discovery can be briefly
described as follows. In our previous work [15, 16], we proposed a way to accelerate HOTSAX on
Intel many-core CPUs and GPUs. In [17], we introduced a parallelization scheme for DRAG on a
high-performance cluster with Intel many-core CPUs. As it was shown in the experiments, such an
algorithm significantly outruns two DRAG-based rivals, DDD (Distributed Discord Discovery) [18]
and PDD (Parallel Discord Discovery) [19], since they employ intensive data exchanges between
cluster nodes. We can also point out two following algorithms for GPU: first, by Zhu et al. [20],
which employs the computational patterns, and second, KBF_GPU (Brute-Force for K-distance
discord) [21] that discovers K-distance discords, some modification of the classic discord concept.

To the best of our knowledge, no research has addressed the accelerating of the arbitrary-length
discords discovery with GPU or any other parallel hardware architecture except our algorithm
PALMAD (Parallel Arbitrary Length MERLIN-based Anomaly Discovery) introduced earlier in [13].
PALMAD basically follows MERLIN, the original serial algorithm, but employs our derived
recurrent formulas to calculate the mean values and standard deviations of subsequences. Further,
we use such data in calculations of the Euclidean distance between subsequences and, eventually,
significantly reduce the costs of entire calculations. Furthermore, PALMAD repeatedly calls PD3
(Parallel DRAG-based Discord Discovery), our developed parallel version of the original DRAG
algorithm proposed earlier in [12]. However, PALMAD makes it possible to discover arbitrary-length
discords on one GPU just for the case when time series should be entirely placed in RAM, not for
a very long time series that is stored on the disk. This requires modifications to our developments
for a high-performance cluster with nodes, each of which is equipped with several GPUs, thus, in
this article, we consider such a challenging task.

2. PRELIMINARIES
Prior to introducing the proposed algorithm for unsupervised labeling of long time series, below,

in Subsections 2.1 and 2.2, respectively, we first give basic definitions and notation, and then briefly
describe underlying developments our approach is based on.

2.1. Formal Definitions and Notation
Time series and subsequence. A time series is a chronologically ordered sequence of real-

valued numbers
T = {ti}ni=1, ti ∈ R.

A subsequence Ti,m of a time series T is its subset of m successive elements that starts at the ith
position

Ti,m = {tk}i+m−1
k=i , 1 ≤ i ≤ n−m+ 1, 3 ≤ m� n.

Discords. Given a time series T and its two subsequences Ti,m and Tj,m, we say that they are
non-self match to each other at distance Dist(Ti,m, Tj,m) if |i− j| ≥ m. Let us denote a non-self
match of a subsequence C ∈ Sm

T by MC .
Given a time series T , its subsequence D ∈ Sm

T is said to be the discord if D has the largest
distance to its nearest non-self match:

∀C ∈ Sm
T min

MD∈Sm
T

Dist(D, MD) > min
MC∈Sm

T

Dist(C, MC).

Given the positive real number r, the discord at a distance of at least r from its nearest non-self
match is called the range discord. That is, the range discord D ∈ Sm

T w.r.t. the parameter r meets
the following:

min
MD∈Sm

T

Dist(D, MD) ≥ r.

Further, for brevity, we use the term “discord”, meaning range discord, unless otherwise is clearly
indicated.

LOBACHEVSKII JOURNAL OF MATHEMATICS

4 KRAEVA, ZYMBLER

Distance function. A distance function for any two m-length subsequences is a nonnegative
and symmetric function Dist : Rm ×Rm → R. We employ the Euclidean metric that is defined as
follows. Let us have X, Y ∈ Sm

T , then the Euclidean distance between the subsequences is calculated
as below:

ED(X, Y) =

√√√√ m∑
i=1

(xi − yi)2.

In our study, the algorithms deal with subsequences that have been previously z-normalized to
have a mean of zero and a standard deviation of one. The z-normalization of a subsequence X =

{x}mi=1 ∈ Sm
T is defined as a subsequence X̂ = {x̂}mi=1, where

x̂i =
xi − µX
σX

, µX =
1

m

m∑
i=1

xi, σX =

√√√√ 1

m

m∑
i=1

x2i − µ2X .

In our study, to provide the highest possible performance of discord discovery, we employ
the squared z-normalized Euclidean distance as the Dist(· , ·) function. Hereinafter, we denote
by ÊD the Euclidean distance between two z-normalized subsequences: ÊD(X, Y) = ED(X̂, Ŷ).
To compute ÊD

2
(·, ·), we employ the technique proposed in [22] that allows for faster calculation

than in above classic formula:

Dist(X, Y) = ÊD
2
(X, Y) = 2m

(
1− 〈X, Y 〉 −m·µX ·µY

m·σX ·σY

)
.

2.2. Previous building-block algorithms

Serial algorithms: DRAG and MERLIN. DRAG [10] discovers given-length discords and
performs in two phases: candidate selection (collecting potential range discords) and discord
refinement (pruning the false positives). In the first phase, the algorithm scans through the time
series, and for each subsequence it validates each candidate already in the candidate set is a discord.
If a candidate fails the validation, then it is removed from this set. Finally, the new subsequence
is either added to the candidate set, or it is pruned. In the second phase, the algorithm scans
through the time series, calculating the distance between each subsequence and each candidate.
If the distance is less than the given threshold, then the candidate is permanently excluded from
the candidate set as a false positive. If the above distance is less than the best-so-far distance to
the nearest neighbor, then the current distance to the nearest neighbor is updated. MERLIN [11]
discovers discords with length in the range minL..maxL through repeated running DRAG along with
the adaptive selection of the threshold. At each step, MERLIN calculates the arithmetic mean µ and
standard deviation σ of the distances from the last five discords found to their nearest neighbors,
and then calls DRAG with the threshold r = µ− 2σ. If DRAG does not discover a discord, then σ
is subtracted from r until DRAG completes successfully. To set the parameter r for the first five
discord lengths minL..minL + 4, MERLIN employs advanced formulas introduced in [11].

Parallel algorithms: PD3 and PALMAD. Our developed algorithm PD3 [12] accelerates
both phases of DRAG with a GPU. PD3 exploits segment-wise processing of a time series and the
above-mentioned fast calculation of the squared z-normalized Euclidean distance. Each block of
GPU threads treats subsequences of its segment as local candidates and processes the subsequences
located to the right of the segment and do not overlap with the candidates. The thread block scans
the subsequences chunk-wisely, where the number of elements in a chunk is equal to the segment
length. The refinement phase is parallelized similarly, involving, however, only segments with a non-
empty set of local candidates and subsequences located to the left of the segment. PALMAD [13], our
developed algorithm, parallelizes MERLIN on a GPU. PALMAD basically follows the original serial
algorithm and repeatedly calls PD3. However, PALMAD employs our derived recurrent formulas
for calculation of the mean values and standard deviations of subsequences, significantly reducing
the costs of calculation of the distances between subsequences.

LOBACHEVSKII JOURNAL OF MATHEMATICS

PADDI: HIGHLY SCALABLE PARALLEL ALGORITHM FOR DISCORD DISCOVERY 5

3. DISCORD DISCOVERY ON MULTI-GPU CLUSTER
Below, we introduce PADDi (PALMAD-based Anomaly Discovery on Distributed GPUs), a

novel parallel algorithm for arbitrary-length discord discovery in a very long time series on a high-
performance cluster with nodes, each of which is equipped with multiple GPUs. In Subsections 3.1
and 3.2, respectively, we describe our algorithm’s data layout and parallelization scheme.

3.1. Data Layout

Figure 1. Data layout in PADDi

In Fig. 1, we show the data layout of our algorithm, which employs two-level data parallelism.
In the first level, we split the given time series T into a set of equal-length fragments T (1), . . . , T (p),
where p is the number of cluster nodes, and place the fragments on disks of the nodes. We suppose
that p is selected in such a way that the fragment and the algorithm’s supplemental data can be
entirely placed in the node RAM. To prevent loss of results at the junction of fragments, we use
overlapping as follows: at the end of each fragment (except for the last one), we add maxL− 1
points taken from the beginning of the next fragment.

In the second level of parallelism, we divide each fragment into equal-length segments according
to the number of GPUs installed on the node. To make segmentation of each fragment T (i), we
employ the above-described overlapping technique, resulting in a set of segments T (i)

1 , . . . , T
(i)
q ,

1 ≤ i ≤ p, where q is the number of GPUs that each cluster node is equipped with. Furthermore,
each segment is aligned to ensure a load balance of the GPU threads processing its segment. The
segment length is chosen as a multiple of the GPU warp size; if this is not the case, then the segment
is padded on the right with dummy points that have the +∞ value.

3.2. Parallelization
In Fig. 2, we show the parallelization scheme of our algorithm. For each discord length within

the given range minL..maxL, PADDi performs in three phases: local selection, local refinement, and
global refinement. Among all cluster nodes, we choose a master node, which further collects the

LOBACHEVSKII JOURNAL OF MATHEMATICS

6 KRAEVA, ZYMBLER

Figure 2. Parallelization scheme in PADDi

discords obtained by other nodes and outputs the final result. To implement data exchanges across
the cluster nodes and calculations on GPUs installed on a node, we employ, respectively, the MPI
and CUDA technologies.

In the first phase, for each fragment T (i), PADDi, applying our earlier developed algorithm
PD3, selects potential discords within each segment T (i)

j and then discards false positives of them,

LOBACHEVSKII JOURNAL OF MATHEMATICS

PADDI: HIGHLY SCALABLE PARALLEL ALGORITHM FOR DISCORD DISCOVERY 7

resulting in the discord set D(i)
j . After that, each GPU transfers its result to the CPU of the cluster

node, where the phase resulting set is obtained as C(i) = ∪qj=1D
(i)
j .

The resulting set of the first phase, however, may contain false positives, since the discords found
in one segment are not compared to the subsequences from other segments of the same fragment,
and thus may not be discords within the entire fragment. This is the reason that we consider C(i)

the fragment candidate set and proceed with the second phase, local refinement, where PADDi
performs as follows. Firstly, C(i) is transferred to each GPU of the cluster node. Next, on each
GPU, we refine C(i) against the segment T (i)

j , resulting in the updated discord set D(i)
j . Finally, each

GPU transfers its result to the CPU of the cluster node, where the phase resulting set is obtained
as an intersection of the partial results, D(i) = ∩qj=1D

(i)
j .

As before, the resulting set of the second phase needs to be refined, since it consists only of
discords discovered in one fragment. In the third phase, PADDi performs global refinement as
follows. First, each fragment discord set D(i) is sent by the respective CPU among the cluster
nodes in an “all-to-all” manner (using the MPI_Allgatherv function), resulting in the whole time
series candidate set, C(i) = ∪pi=1D

(i). Next, as in the previous phase, we send the candidate set to
the GPU of the cluster node and refine it against the respective segment, updating the set D(i)

j .
Then, like in the previous phase, we transfer the partial results from GPU to CPU and obtain their
intersection: C(i) = ∩qj=1D

(i)
j . Finally, we send the updated discord set C(i) to the master node

(using the MPI_Gatherv function), which obtains the m-length discord set of the whole time series
intersecting the received partial results: Dm = ∩pi=1C

(i). In the end, the master node obtains the
all-length discords discovered set as D = ∪maxL

minLDm.
While in the local selection and local refinement phases, we employ our earlier developed

algorithm PD3, we implemented the global refinement from scratch. In this phase, we calculate
the distance between each m-length candidate from the set C(i) and each m-length subsequence in
the fragment T (i) through the advanced formula given in Section 2.1. In the memory of the GPU
installed on the cluster node, we represent the above-mentioned sets as matrices C ∈ R|C(i)|×m

and S ∈ R(n−m+1)×m, respectively. Multiplication of the matrices S and C results in the matrix
P ∈ R(n−m+1)×|C(i)|, where each element represents the scalar product of the corresponding rows of
the matrix S (subsequences) and columns of the transposed matrix Cᵀ (candidates). To calculate the
above multiplication on the GPU, we employ the parallel block-wise algorithm [23]. Further, we use
the elements of the matrix P to calculate the distances between the candidates and subsequences
through the above-mentioned formula. Finally, we take as a result each candidate, where the
distance to its nearest neighbor exceeds the threshold.

4. EXPERIMENTAL EVALUATION
In the experiments, to confirm the efficiency of PADDi, we evaluate the performance and speedup

our algorithm. We designed the experiments to be easily reproducible with our repository [14],
which contains the algorithm’s source code and supplemental data. Below, Section 4.1 describes
the metrics, hardware, and time series employed in the experiments, and Section 4.2 discusses the
experimental results.

4.1. Experimental Setup
Metrics. The algorithm’s performance is interpreted as its running time. For each experiment,

we ran PADDi ten times and took the average value as the final running time. The speedup of
our algorithm employing k graphics processors is calculated as S(k) = t1/tk, where t1 and tk are
the running times of PALMAD on one GPU and PADDi on k GPUs, respectively. We omit the
comparison of our algorithm’s scalability with parallel rivals, since our review of related work (see
Section 1) does not reveal any other discord discovery solution oriented to high-performance clusters
with GPU nodes. We also skip the comparison of PADDi and MERLIN performance results since,

LOBACHEVSKII JOURNAL OF MATHEMATICS

8 KRAEVA, ZYMBLER

Table 1. Time series employed in the experiments

Time

series

Length,

n

Discord

length range,

minL..maxL

Domain

ECG

2 · 106 64..128
ECG of an adult patient

GAP Power demand of a household in France

MGAB
Synthetic time series generated

by the Mackey–Glass equation

obviously, the original serial algorithm is significantly (orders of magnitude) inferior to its parallel
descendant.

Datasets. In our study, we employed the time series listed in Table 1. Each time series consists of
two million points. For all time series, we discover discords with length starting from 64 and ending
by 128. The ECG [24] time series contains the measurements of an adult patient’s electrocardiogram.
The GAP [25] time series represents minute-by-minute indicators of the total energy consumption
of a private house in France in 2006–2010. The MGAB [26] time series is synthetically generated
based on the Mackey—Glass equation (nonlinear differential equation with time delay) [27].

Table 2. Hardware platform of the experiments

Feature GPU-MSU GPU-UNN

N
od

e

Brand and family NVIDIA Tesla NVIDIA Kepler

Model K40 P100 K20X

Number of CUDA cores 2 880 3 584 2 688

Core frequency, GHz 0.745 1.19 0.732

RAM, Gb 11.56 16 6

Peak performance

(double precision), TFLOPS
1.682 4 1.31

C
lu
st
er Number of nodes 48 64 64

GPUs per node 1 2 3

Hardware. Table 2 summarizes the hardware platform we use in the experiments. We
employ two high-performance clusters with multi-GPU nodes, namely Lomonosov-2 [5] and
Lobachevsky [28]. As can be seen, we run our algorithm on the following three configurations
of the above clusters: 48×K40, 64×2×P100, and 64×3×K20X.

4.2. Results and Discussion
Speedup and performance. Figures 3 and 4 depict the scalability of our algorithm over

million-length time series from different subject domains, where the results show a picture common
to all time series and all hardware configurations involved in the experiments. As can be seen,
speedup and performance decrease compared to ideal when the algorithm runs on a configuration

LOBACHEVSKII JOURNAL OF MATHEMATICS

PADDI: HIGHLY SCALABLE PARALLEL ALGORITHM FOR DISCORD DISCOVERY 9

136 12 24 48 64

0

20

40

60

Number of GPUs

S
p
ee

d
u
p

1 x Kepler K20X (node)
3 x Kepler K20X (node)
ideal

124 8 16 32 64

Number of GPUs

1 x Tesla P100 (node)
2 x Tesla P100 (node)
ideal

124 8 16 32 48

Number of GPUs

1 x Tesla K40 (node)
ideal

(a) ECG time series

136 12 24 48 64

0

20

40

60

Number of GPUs

S
p
ee

d
u
p

124 8 16 32 64

Number of GPUs

124 8 16 32 48

Number of GPUs

(b) GAP time series

136 12 24 48 64

0

20

40

60

Number of GPUs

S
p
ee

d
u
p

124 8 16 32 64

Number of GPUs

124 8 16 32 48

Number of GPUs

(c) MGAB time series

Figure 3. Speedup of PADDi

with a larger number of cluster nodes. Nevertheless, the algorithm’s scalability remains linear, and
there is no stagnation or degradation.

Impact of data exchanges on scalability. Fig. 5, depicts the proportion of the algorithm’s
running time between the local and global stages, where the former includes the local selection
and local refinement, and the latter corresponds to the global refinement. In addition, for the
corresponding configurations and time series, we show the size of candidates involved in data
exchanges between cluster nodes. It can be seen that the longer running time of the global stage
corresponds to a larger size of candidates involved in data exchanges between cluster nodes. This,
in turn, results in a lower speedup and performance of the algorithm (cf. Figs. 3, 4 and Fig. 5).

Next, let us discuss the algorithm’s scalability when it is run on a high-performance cluster
configured with different numbers of nodes, where for all the configurations it has the same number
of GPUs in total (for the configurations 64×2×P100 and 64×3×K20X). Fig. 5 shows that when

LOBACHEVSKII JOURNAL OF MATHEMATICS

10 KRAEVA, ZYMBLER

1 3 6 12 24 48 64

102

103

15
05

.6

53
4.

96

27
0.

18

14
0.

43

74
.1

5

51
.1

2

39
.7

9

15
05

.6

52
7.

18

25
9.

71

13
3.

31

69
.7

9

47
.4

1

37
.3

4
Number of GPUs

R
u
nt

im
e,

se
c

(l
og

sc
al

e)
1 x Kepler K20X (node)
3 x Kepler K20X (node)

1 2 4 8 16 32 64

15
05

.2
2

96
4.

2

46
7.

11

23
6.

93

12
0.

77

71
.0

1

45
.5

9

15
05

.2
2

86
0.

9

44
2.

35

22
2.

75

11
2.

46

66
.7

1

38
.9

6

Number of GPUs

1 x Tesla P100 (node)
2 x Tesla P100 (node)

1 2 4 8 16 32 48

29
90

.9

16
60

.6
9

77
6.

28

38
7.

34

21
1.

32

11
1.

31

85
.3

8

Number of GPUs

1 x Tesla K40 (node)

(a) ECG time series

1 3 6 12 24 48 64

102

103

17
29

.4
1

75
9.

19

49
0.

31

24
2.

13

12
0.

98

62
.4

9

53
.3

7

17
29

.4
1

71
2.

55

37
2.

53

23
8.

6

96
.5

7

53
.4

2

43
.3

7

Number of GPUs

R
u
nt

im
e,

se
c

(l
og

sc
al

e)

1 2 4 8 16 32 64

16
62

.4
1

84
9.

07

42
2.

64

22
0.

15

12
4.

43

75
.8

4

49
.2

3

16
62

.4
1

74
9.

5

42
0.

5

21
9.

09

11
5.

39

63
.3

6

44
.9

8
Number of GPUs

1 2 4 8 16 32 48

28
89

.4
7

15
33

.1

75
4.

1

39
7.

7

21
8.

37

11
6.

2

82
.9

1

Number of GPUs

(b) GAP time series

1 3 6 12 24 48 64

102

103

13
38

.7
1

45
5.

25

23
6.

92

13
3.

34

69
.0

2

42
.0

6

30
.8

3

13
38

.7
1

45
0.

13

22
5.

76

12
9.

2

64
.3

2

36
.6

6

29
.4

8

Number of GPUs

R
u
nt

im
e,

se
c

(l
og

sc
al

e)

1 2 4 8 16 32 64

13
49

.5
5

75
2.

07

37
0.

94

19
4.

98

10
5.

25

55
.5

2

33
.4

7

13
49

.5
5

67
9.

83

34
8.

81

18
4.

93

96
.0

5

51
.7

3

30
.7

9

Number of GPUs
1 2 4 8 16 32 48

29
90

.9

16
60

.6
9

77
6.

28

38
7.

34

21
1.

32

11
1.

31

85
.3

8
Number of GPUs

(c) MGAB time series

Figure 4. Performance of PADDi

PADDi runs on cluster nodes with the highest possible number of GPUs, it is more scalable compared
to the case of a larger number of cluster nodes with one GPU on each node. The reason is that one
GPU discards fewer candidates in its fragment. This, in turn, increases the size of the data to be
sent, and the time spent on the refinement phase due to the larger amount of calculations.

It is worth noting that discord discovery on a hardware architecture with distributed memory
cannot avoid exchanges of candidates. Candidates selected in some fragment of a time series, but
refined within that fragment without involving the candidates of other fragments of the time series,
obviously do not have to be true positive discords w.r.t. the definition in Section 2 [6].

LOBACHEVSKII JOURNAL OF MATHEMATICS

PADDI: HIGHLY SCALABLE PARALLEL ALGORITHM FOR DISCORD DISCOVERY 11

0 0 0100 100 1006 14 10
94

86 90
8 18 13

92
82 87

10 20 15
90

80 85

11 23 15
89

77
85

11 22 16
89

78
84

12 24 18
88

76
82

Kepler K20X Tesla P100 Tesla K40
0

50

100
12 24
88

76

R
u
n
n
in

g
ti

m
e

d
is

tr
ib

u
ti

on
,
%

1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs 32 GPUs 48 GPUs 64 GPUs
Local Local Local Local Local Local Local Local

Global Global Global Global Global Global Global

1 3 6 12 24 48 64
0

1

2

0

0.
91 1.
09 1.
25 1.
42

1.
82 1.
96

0 0

0.
91 1.
09 1.
25 1.
42

1.
82

Number of GPUs

C
an

d
id

at
e

si
ze

,
M

b

1 x Kepler K20X (node)
3 x Kepler K20X (node)

1 2 4 8 16 32 64

0

0.
74 0.
93 1.

14 1.
29 1.
42

1.
96

0 0

0.
74 0.
93 1.

14 1.
29 1.
42

Number of GPUs

1 x Tesla P100 (node)
2 x Tesla P100 (node)

1 2 4 8 16 32 48

0.
54 0.

74 0.
93 1.

14

1.
16 1.

42

1.
82

Number of GPUs

1 x Tesla K40 (node)

(a) ECG time series

0 0 0

1
0
0

1
0
0

1
0
0

2
7

1
7

1
1

7
3 8
3 8
93

8

2
2

1
5

6
2

7
8 8
5

3
9

2
5

1
7

6
1

7
5 8
3

3
9

2
6

1
8

6
1

7
4 8
2

4
2

3
1

3
1

5
8 6

9

6
9

3
9

2
9

2
5

6
1 7
1 7
5

Kepler K20X Tesla P100 Tesla K40
0

50

100

4
2

3
0

5
8 7

0

R
u
n
n
in

g
ti

m
e

d
is

tr
ib

u
ti

on
,
%

1 3 6 12 24 48 64
0

5

10

0

8.
16

8.
36

8.
61

8.
77 9.
73 11

.5
4

0 0

8.
16

8.
36

8.
61

8.
77 9.
73

Number of GPUs

C
an

d
id

at
e

si
ze

,
M

b

1 2 4 8 16 32 64
0

2

4

0 0.
71 0.
99 1.
21 1.
5

3.
2

4.
32

0 0 0.
71 0.
99 1.
21 1.
5

3.
2

Number of GPUs
1 2 4 8 16

0

1

2
0.

59 0.
71 0.

99 1.
21 1.

5
Number of GPUs

(b) GAP time series

0 0 0

1
0
0

1
0
0

1
0
06

1
3 9

9
4

8
7 9
1

6

1
5

1
0

9
4

8
5 9
0

9

1
9

1
2

9
1

8
1 8
8

9

1
9

1
3

9
1

8
1 8
7

8

1
8

1
3

9
2

8
2 8
7

8

1
8

1
3

9
2

8
2 8
7

Kepler K20X Tesla P100 Tesla K40
0

50

100

2

1
9

9
8

8
1

R
u
n
n
in

g
ti

m
e

d
is

tr
ib

u
ti

on
,
%

1 3 6 12 24 48 64
0

0.2

0.4

0.6

0.8

1

0

0.
17 0.
25

0.
68

2

0.
66

0.
68

4

0.
72

0 0

0.
17 0.
25

0.
68

2

0.
66

0.
68

4

Number of GPUs

C
an

d
id

at
e

si
ze

,
M

b

1 2 4 8 16 32 64

0 0.
16

8

0.
23

0.
7

0.
71

5

0.
71

6

0.
72

1

0 0 0.
16

8

0.
23

0.
7

0.
71

5

0.
71

6

Number of GPUs
1 2 4 8 16 32 48

0.
17

0.
17 0.
23

0.
7

0.
72

0.
72

0.
68

Number of GPUs
(c) MGAB time series

Figure 5. Proportion of the local and global stages in running time of PADDi

LOBACHEVSKII JOURNAL OF MATHEMATICS

12 KRAEVA, ZYMBLER

64..71 72..79 80..87 88..95 96..103 104..111 112..119 120..128
0

200

400

600

50
4

16
0

14

15
5 22

2

18
1

15
4

16
6

13
1

37
4

25
4

12
9 18

6

19
3

20
3

16
1

75

31 28

65 78 73 60 43

Discord length range

ECG
GAP

MGAB

Figure 6. Total number of discovered discords

Correctness of discord discovery. In the experiments, we do not evaluate our algorithm’s
accuracy of anomaly discovery, since it requires a time series with anomalies manually marked by an
expert in the subject domain. However, such a markup is hardly ever possible for the million-length
time series involved in our experiments. Anyway, in the experiments, we confirmed that PADDi
produces the correct results as follows. We employ SCAMP [29], which is currently the fastest
parallel algorithm to calculate the matrix profile (MP) [30] of a time series. MP is defined as an
array, where the ith element is the distance from the ith subsequence of the original time series
to its non-overlapping nearest neighbor. Since discords can be found as local maxima of MP, we
verified that discords discovered by PADDi are the same as those obtained as a by-product of the
MP calculation. In addition, Fig. 6 depicts the statistical results and shows that the discords found
have approximately the same distribution by length. For any length, the number of discords found
is less than 0.08% of the total number of subsequences in the time series, confirming the intuitive
idea that anomalies are very rare.

CONCLUSIONS
In this article, we address the subsequence anomaly discovery in a very long time series, which

cannot be entirely placed in RAM. Such a problem remains one of the most topical issues for
researchers and practitioners in a wide spectrum of subject domains. Our study is based on the
discord concept by Keogh et al. [6], which is currently considered one of the best approaches to
formalize and discover subsequence anomalies. Discord is defined as a given-length subsequence that
is maximally far away from its non-overlapping nearest neighbor. We also employ the algorithms by
Keogh et al., DRAG [10] and MERLIN [11], which implements, respectively, fixed- and arbitrary-
length discord discovery in a time series stored on disk.

In the article, we propose a novel parallel algorithm called PADDi (PALMAD-based Anomaly
Discovery on Distributed GPUs), which discovers arbitrary-length discords in a very long time series
on a high-performance cluster with nodes, each of which is equipped with multiple GPUs. PADDi
employs our earlier developed parallel algorithms PD3 [12] and PALMAD [13], which accelerate,
respectively, DRAG and MERLIN on a GPU.

Our algorithm exploits two-level data parallelism. At the first level, the time series is divided
into equal-length fragments distributed over disks associated with the nodes of the high-performance
cluster. The second level of parallelism is implemented by splitting each fragment into equal-length
segments, which are processed by GPUs installed on the cluster node. Both fragments and segments
are formed with overlapping to prevent loss of results at junctions of fragments and segments,
respectively. We employ MPI and CUDA to implement data exchanges between cluster nodes and
calculations on GPUs within a node, respectively. PADDi iterates the specified range of discord
lengths, where at each iteration, it performs parallel preprocessing and discord discovery for the
respective length. The discord discovery is performed in two following phases by each cluster node.
In the first phase, through our PD3 parallel algorithm, in each segment processed by a separate
GPU installed on the node, we select potential discords and then discard false positive of them,
resulting in the local candidate set. In the second phase, local candidate sets are sent among cluster
nodes in an “all-to-all” discipline, resulting in a global candidate set. Next, each cluster node refines
the global candidates within its fragment based on the parallel block multiplication of the matrix of

LOBACHEVSKII JOURNAL OF MATHEMATICS

PADDI: HIGHLY SCALABLE PARALLEL ALGORITHM FOR DISCORD DISCOVERY 13

candidates and the matrix of segment subsequences, obtaining the local resulting set of true positive
discords. Finally, each cluster node sends the local resulting set to a master node, which outputs
the end result as the intersection of the received local resulting sets.

We carry out extensive experiments to evaluate PADDi over real-world and synthetic million-
length time series on two high-performance clusters, Lomonosov-2 (Moscow State University, Russia)
and Lobachevsky (State University of Nizhny Novgorod, Russia), which have up to 64 nodes with
different models of GPU. The results are common to all time series and all hardware configurations
involved in the experiments: our algorithm’s performance and speedup remain linear without
stagnation or degradation; the more GPUs are installed on one node of the cluster, the greater
speedup we obtain. To facilitate the reproducibility of our study, we establish a repository [14],
which contains the algorithm’s source code and supplemental data.

In our further research, we plan to implement the above-described approach for the case of
high-performance cluster based on nodes with multiple Intel many-core CPU.

FUNDING
This work was financially supported by the Russian Science Foundation (grant no. 23-21-00465).

The study was carried out using the equipment of the shared research facilities of HPC computing
resources at Lomonosov Moscow State University and at Lobachevsky State University of Nizhny
Novgorod.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

REFERENCES
1. P. Boniol, J. Paparrizos, and T. Palpanas, “New Trends in Time Series Anomaly Detection,” in

Proceedings of the 26th International Conference on Extending Database Technology, EDBT 2023,
March 28–31, 2023, Ioannina, Greece (OpenProceedings.org, 2023), pp. 847–850. https://doi.org/
10.48786/EDBT.2023.80

2. S. Kumar, P. Tiwari, and M. L. Zymbler, “Internet of Things is a revolutionary approach for
future technology enhancement: A review,” J. Big Data, 6, 111 (2019). https://doi.org/10.1186/
s40537-019-0268-2

3. S. Ivanov, K. Nikolskaya, G. Radchenko, L. Sokolinsky, and M. Zymbler, “Digital twin of city: Concept
overview,” Proc. of 2020 Global Smart Industry Conf., GloSIC 2020, Chelyabinsk, Russia, November 17-
19, 2020, 178–186. https://doi.org/10.1109/GloSIC50886.2020.9267879

4. M. Zymbler, Y. Kraeva, E. Latypova, S. Kumar, D. Shnayder, and A. Basalaev, “Cleaning sensor data in
smart heating control system,” Proc. of 2020 Global Smart Industry Conf., GloSIC 2020, Chelyabinsk,
Russia, November 17-19, 2020, 375–381. https://doi.org/10.1109/GloSIC50886.2020.9267813

5. V. V. Voevodin, A. S. Antonov, D. A. Nikitenko, P. A. Shvets, S. I. Sobolev, I. Y. Sidorov, K. S. Stefanov,
Vad. V. Voevodin, and S. A. Zhumatiy, “Supercomputer Lomonosov-2: Large scale, deep monitoring
and fine analytics for the user community,” Supercomput. Front. Innov. 6 (2), 4–11 (2019). https:
//doi.org/10.14529/jsfi190201

6. E. J. Keogh, J. Lin, and A. W. Fu, “HOT SAX: Efficiently Finding the Most Unusual Time Series
Subsequence,” in Proceedings of the 5th IEEE International Conference on Data Mining, ICDM 2005,
November 27–30, 2005, Houston, Texas, USA (IEEE Comput. Soc., 2005), pp. 226–233. https:
//doi.org/10.1109/ICDM.2005.79

7. V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput. Surv. 41 (3),
15:1–15:58 (2009). https://doi.org/10.1145/1541880.1541882

8. A. Blázquez-Garćıa, A. Conde, U. Mori, and J. A. Lozano, “A Review on Outlier/Anomaly Detection in
Time Series Data,” ACM Comput. Surv. 54 (3), 56:1–56:33 (2022). https://doi.org/10.1145/3444690

9. J. Lin, E. J. Keogh, S. Lonardi, and B. Y. Chiu, “A symbolic representation of time series, with
implications for streaming algorithms,” in Proceedings of the 8th ACM SIGMOD workshop on Research
issues in data mining and knowledge discovery, DMKD 2003, June 13, 2003, San Diego, California,
USA (ACM, 2003), pp. 2–11. https://doi.org/10.1145/882082.882086

10. D. Yankov, E. J. Keogh, and U. Rebbapragada, “Disk aware discord discovery: Finding unusual time
series in terabyte sized datasets,” in Proceedings of the 7th IEEE International Conference on Data
Mining (ICDM 2007), October 28–31, 2007, Omaha, Nebraska, USA. (IEEE, 2007), pp. 381–390.
https://doi.org/10.1109/ICDM.2007.61

LOBACHEVSKII JOURNAL OF MATHEMATICS

14 KRAEVA, ZYMBLER

11. T. Nakamura, M. Imamura, R. Mercer, and E. J. Keogh, “MERLIN: Parameter-free discovery of
arbitrary length anomalies in massive time series archives,” in Proceedings of the 20th IEEE International
Conference on Data Mining, ICDM 2020, November 17–20, 2020, Sorrento, Italy (IEEE, 2020),
pp. 1190–1195. https://doi.org/10.1109/ICDM50108.2020.00147

12. Y. Kraeva and M. Zymbler, “A parallel discord discovery algorithm for a graphics processor,”
Pattern Recognition and Image Analysis 33 (2), 101–112 (2023). https://doi.org/10.1134/
S1054661823020062

13. M. Zymbler and Ya. Kraeva, “High-Performance Time Series Anomaly Discovery on Graphics Proces-
sors,” Mathematics 11 (14), 3193 (2023). https://doi.org/10.3390/math11143193

14. Y. Kraeva, PADDi: PALMAD-based Anomaly Discovery on Distributed GPUs. https://github.com/
kraevaya/PADDi. Accessed Dec 10, 2023.

15. M. Zymbler, A. Polyakov, and M. Kipnis, “Time series discord discovery on Intel many-core systems,”
in 13th International Conference, PCT 2019, Kaliningrad, Russia, April 2-4, 2019, Revised Selected
Papers. Communications in Computer and Information Science 1063, 168–182. https://doi.org/10.
1007/978-3-030-28163-2_12

16. M. Zymbler, “A parallel discord discovery algorithm for time series on many-core accelerators,” Numerical
Methods and Programming 20 (3), 211–223 (2019). https://doi.org/10.26089/NumMet.v20r320

17. M. Zymbler, A. Grents, Y. Kraeva, and S. Kumar, “A parallel approach to discords discovery in
massive time series data,” Computers, Materials & Continua 66 (2), 1867–1878 (2021). https:
//doi.org/10.32604/cmc.2020.014232

18. Y. Wu, Y. Zhu, T. Huang, and et al., “Distributed discord discovery: Spark based anomaly detection in
time series,” in Proceedings of the 17th IEEE International Conference on High Performance Computing
and Communications, HPCC 2015, Proceedings of the 7th IEEE International Symposium on Cyberspace
Safety and Security, CSS 2015, and Proceedings of the 12th IEEE International Conference on Embedded
Software and Systems, ICESS 2015, August 24–26, 2015, New York, NY, USA (IEEE, 2015), pp. 154–
159. https://doi.org/10.1109/HPCC-CSS-ICESS.2015.228

19. T. Huang, Y. Zhu, Y. Mao, and et al., “Parallel discord discovery,” in Advances in Knowledge
Discovery and Data Mining: 20th Pacific-Asia Conference, PAKDD 2016, April 19–22, 2016, Auck-
land, New Zealand, Proceedings, Part II (Springer, 2016), pp. 233–244. https://doi.org/10.1007/
978-3-319-31750-2_19

20. B. Zhu, Y. Jiang, M. Gu, and Y. Deng, “A GPU acceleration framework for motif and discord
based pattern mining,” IEEE Trans. Parallel Distributed Syst. 32 (8), 1987–2004 (2021). https:
//doi.org/10.1109/TPDS.2021.3055765

21. T. Huang, Y. Zhu, Y. Wu, and W. Shi, “J-distance discord: An improved time series discord definition
and discovery method,” in Proc. of 2015 IEEE International Conference on Data Mining Workshop,
ICDMW (IEEE, 2015), pp. 303–310. https://doi.org/10.1109/ICDMW.2015.120

22. A. Mueen, S. Nath, and J. Liu, “Fast approximate correlation for massive time-series data,” in Proc. of
the ACM SIGMOD Int. Conf. on Management of Data, SIGMOD 2010, June 6–10, 2010, Indianapolis,
Indiana, USA (ACM Press, 2010), pp. 171–182. https://doi.org/10.1145/1807167.1807188

23. NVIDIA. CUDA C++ Best Practices Guide. Release 12.3. 2023. https://docs.nvidia.com/cuda/
pdf/CUDA_C_Best_Practices_Guide.pdf. Accessed Apr 18, 2023.

24. A. L. Goldberger, L. A. N. Amaral, L. Glass, and et al., ”PhysioBank, PhysioToolkit, and PhysioNet
components of a new research resource for complex physiologic signals,” Circulation 101 (23), 215–220
(2000). https://doi.org/10.1161/01.CIR.101.23.e215

25. G. Hebrail and A. Berard, Individual household electric power consumption. https://doi.org/10.
24432/C58K54. Accessed Apr 18, 2023.

26. M. Thill, W. Konen, and T. Bäck, Markus-Thill/MGAB: The Mackey–Glass anomaly benchmark.
Version v1.0.1. https://doi.org/10.5281/ZENODO.3762385. Accessed Apr 18, 2023.

27. M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control systems,” Science 197 (4300),
287–289 (1977). https://doi.org/10.1126/science.267326

28. Lobachevsky supercomputer. https://hpc-education.unn.ru/en/resources. Accessed Dec 01, 2023.
29. Z. Zimmerman, K. Kamgar, N. S. Senobari, and et al., “Matrix profile XIV: Scaling time series motif

discovery with GPUs to break a quintillion pairwise comparisons a day and beyond,” in Proceedings of
the ACM Symposium on Cloud Computing, SoCC 2019, November 20–23, 2019, Santa Cruz, CA, USA
(ACM, 2019), pp. 74–86. https://doi.org/10.1145/3357223.3362721

30. C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, Z. Zimmerman, D. F. Silva, A. Mueen,
and E. Keogh, ”Time series joins, motifs, discords and shapelets: A unifying view that exploits
the matrix profile,” Data Min. Knowl. Discov. 32 (1), 83–123 (2018). https://doi.org/10.1007/
s10618-017-0519-9

LOBACHEVSKII JOURNAL OF MATHEMATICS

