
Scalable Algorithm for Subsequence Similarity
Search in Very Large Time Series Data

on Cluster of Phi KNL

Yana Kraeva and Mikhail Zymbler(&)

South Ural State University, Chelyabinsk, Russia
{kraevaya,mzym}@susu.ru

Abstract. Nowadays, subsequence similarity search under the Dynamic Time
Warping (DTW) similarity measure is applied in a wide range of time series
mining applications. Since the DTW measure has a quadratic computational
complexity w.r.t. the length of query subsequence, a number of parallel algo-
rithms for various many-core architectures have been developed, namely FPGA,
GPU, and Intel MIC. In this paper, we propose a novel parallel algorithm for
subsequence similarity search in very large time series data on computing cluster
with nodes based on the Intel Xeon Phi Knights Landing (KNL) many-core
processors. Computations are parallelized both at the level of all cluster nodes
through MPI, and within a single cluster node through OpenMP. The algorithm
involves additional data structures and redundant computations, which make it
possible to effectively use Phi KNL for vector computations. Experimental
evaluation of the algorithm on real-world and synthetic datasets shows that it is
highly scalable.

Keywords: Time series � Similarity search � Dynamic Time Warping �
Parallel algorithm � Cluster � OpenMP � MPI � Intel Xeon Phi �
Knights Landing � Data layout � Vectorization

1 Introduction

Nowadays, time series are pervasive in a wide spectrum of applications with data
intensive analytics, e.g. climate modelling [1], economic forecasting [21], medical
monitoring [6], etc. Many time series analytical problems require subsequence simi-
larity search as a subtask, which assumes the following. A query subsequence and a
longer time series are given, and a subsequence of the time series should be found,
whose similarity to the query is the maximum among all the subsequences.

Currently, Dynamic Time Warping (DTW) [3] is considered as the best similarity
measure in most domains [5]. Since computation of DTW is time-consuming there are
parallel algorithms for FPGA [25] and GPU [17] have been proposed.

Our research [10–13] addresses the task of accelerating similarity search with the
Intel Xeon Phi many-core system, which can be considered as an attractive alternative
to FPGA and GPU. Phi provides a large number of compute cores with 512-bit wide
vector processing units. Phi is based on the Intel x86 architecture and supports the same
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programming methods and tools as a regular Intel Xeon. The first generation of Phi,
Knights Corner (KNC) [4], is a coprocessor with up to 61 cores, which supports native
applications and offloading of calculations from a host CPU. The second generation
product, Knights Landing (KNL) [20], is a bootable processor with up to 72 cores,
which runs applications only in native mode. In [11–13], we proposed CPU+Phi
computational scheme for subsequence similarity search on Phi KNC. In [10], we
changed such an approach for Phi KNL having implemented advanced data layout and
computational scheme, which allow to efficiently vectorizing computations.

This paper is a revised extended version of [10]. We consider more complicated
case of very large time series when computing cluster system of Phi KNL nodes is
utilized for the similarity search. We propose an advanced parallel algorithm, called
PhiBestMatch, which parallelizes computations both among cluster nodes (through
MPI technology), and within a single cluster node (through OpenMP technology). We
performed additional series of experiments, which showed good scalability of
PhiBestMatch.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 gives formal statement of the problem. In Sect. 4, we present the proposed
algorithm. We describe experimental evaluation of our algorithm in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Related Work

In recent decade, parallel and distributed algorithms for subsequence similarity search
under the DTW measure have been extensively developed for various hardware
platforms.

In [26], a GPU-based implementation was proposed. The warping matrix is gen-
erated in parallel, but the warping path is searched serially. Since the matrix generation
step and the path search step are split into two kernels, this leads to overheads for
storage and transmission of the warping matrix for each DTW calculation.

In [17], GPU and FPGA implementations of subsequence similarity search were
presented. The GPU implementation is based on the same ideas as [26]. The system
consists of two modules, namely Normalizer (z-normalization of subsequences) and
Warper (DTW calculation), and is generated by a C-to-VHDL tool, which exploits the
fine-grained parallelism of the DTW. However, this implementation suffers from
lacking flexibility, i.e. it must be recompiled if length of query is changed. In [25],
authors proposed a framework for FPGA-based subsequence similarity search, which
utilizes the data reusability of continuous DTW calculations to reduce the bandwidth
and exploit the coarse-grain parallelism.

In [22], authors proposed subsequence similarity search on CPU cluster. Subse-
quences starting from different positions of the time series are sent to different nodes,
and each node calculates DTW in the naïve way. In [23], authors accelerated subse-
quence similarity search with SMP system. They distribute different queries into dif-
ferent cores, and each subsequence is sent to different cores to be compared with
different patterns in the naïve way. In both implementations, the data transfer becomes
the bottleneck. In [18], authors proposed an approach to subsequence similarity search
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on Apache Spark cluster. Time series is fragmented and fragments are shared among
cluster nodes as files under HDFS (Hadoop Distributed File System). Each node
processes in parallel as many fragments as its CPU cores where each core implements
the UCR-DTW algorithm [15].

3 Notation and Problem Background

3.1 Definitions and Notation

A time series T is a sequence of real-valued elements: T ¼ ðt1; t2; . . .; tmÞ. Length of a
time series T is denoted by Tj j.

Given two time series, X ¼ x1; x2; . . .; xmð Þ and Y ¼ ðy1; y2; . . .; ymÞ, the Dynamic
Time Warping (DTW) distance between X and Y is denoted by DTW X; Yð Þ and defined
as below.

DTW X; Yð Þ ¼ d m;mð Þ; d i; jð Þ ¼ xi � yj
� �2 þmin

d i� 1; jð Þ
d i; j� 1ð Þ

d i� 1; j� 1ð Þ
;

8><
>:

d 0; 0ð Þ ¼ 0; d i; 0ð Þ ¼ d 0; jð Þ ¼ 1; 1� i�m; 1� j�m:

ð1Þ

In the formulas above, dij
� � 2 R

m�m is considered as a warping matrix for the
alignment of the two respective time series. A warping path is a contiguous set of
warping matrix elements that defines a mapping between two time series. The warping
path must start and finish in diagonally opposite corner cells of the warping matrix, the
steps in the warping path are restricted to adjacent cells, and the points in the warping
path must be monotonically spaced in time.

A subsequence Ti;k of a time series T is its contiguous subset of k elements, which
starts from position i: Ti;k ¼ ðti; tiþ 1; . . .; tiþ k�1Þ, 1� i�m� kþ 1. A set of all sub-
sequences of T with length n is denoted by SnT : Let N ¼ Tj j � nþ 1 ¼ m� nþ 1
denotes a number of subsequences in SnT :

Given a time series T and a time series Q as a user specified query where
m ¼ Tj j � Qj j ¼ n, the best matching subsequence Ti;n meets the property

9Ti;n 2 SnT 8k DTW Q; Ti;n
� ��DTW Q; Tk;n

� �
; 1� i; k�m� nþ 1: ð2Þ

In what follows, where there is no ambiguity, we refer to subsequence Ti;n as C, as
a candidate in match to a query Q.

3.2 The UCR-DTW Serial Algorithm

Currently, UCR-DTW [15] is the fastest serial algorithm of subsequence similarity
search, which integrates a large number of algorithmic speedup techniques. Since our
algorithm is based on UCR-DTW, we briefly describe its basic features.
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Squared Distances. The Euclidean distance (ED) between two subsequences Q and C
where Qj j ¼ Cj j, is defined as below.

ED Q;Cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðqi � ciÞ2

q
: ð3Þ

Instead of use square root in DTW and ED distance calculation, it is possible to use
the squares thereof since it does not change the relative rankings of subsequences.

Z-normalization. Both the query subsequence and each subsequence of the time series
need to be z-normalized before the comparison [24]. The z-normalization of a time
series T is defined as a time series T̂ ¼ t̂1; t̂2; . . .; t̂mð Þ where

t̂i ¼ ti � l
r

; l ¼ 1
m

Xm

i¼1
ti; r2 ¼ 1

m

X2

i¼1
t2i � l2: ð4Þ

Cascading Lower Bounds. Lower bound (LB) is an easy computable threshold of the
DTW distance measure to identify and prune clearly dissimilar subsequences [5]. In
what follows, we refer this threshold as the best-so-far distance (or bsf for brevity).
If LB has exceeded bsf , the DTW distance will exceed bsf as well, and the respective
subsequence is assumed to be clearly dissimilar and pruned without calculation of
DTW. UCR-DTW initializes bsf as þ1 and then scans the time series with sliding
window and calculates bsf on the ith step as follows:

bsf ið Þ ¼ min bsf i�1ð Þ;
þ1; LB Q; Ti;n

� �
[ bsf i�1ð Þ

DTW Q; Ti;n
� �

; otherwise

�� �
: ð5Þ

UCR-DTW exploits three LBs, namely LBKimFL [15], LBKeoghEC, LBKeoghEQ [8]
applying them in a cascade.

The LBKimFL lower bound uses the distances between the First (Last) pair of points
from C and Q as a lower bound, and defined as below.

LBKimFLðQ;CÞ :¼ ED q̂1; ĉ1ð ÞþED q̂n; ĉnð Þ ð6Þ

The LBKeoghEC lower bound is the distance from the closer of the two so-called
envelopes of the query to a candidate subsequence, and defined as below.

LBKeoghEC Q;Cð Þ ¼
Xn
i¼1

ĉi � uið Þ2; if ĉi [ ui
ĉi � ‘ið Þ2; if ĉi\‘i
0; otherwise

8<
: : ð7Þ

In the equation above, subsequences U ¼ ðu1; . . .; unÞ and L ¼ ‘1; . . .; ‘nð Þ are the
upper envelope and lower envelope of the query, respectively, and defined as below.

152 Y. Kraeva and M. Zymbler



ui ¼ max
i�r� k� iþ r

q̂k; ‘i ¼ min
i�r� k� iþ r

q̂k; ð8Þ

where the parameter r 1� r� nð Þ denotes the Sakoe–Chiba band constraint [16], which
states that the warping path cannot deviate more than r cells from the diagonal of the
warping matrix.

The LBKeoghEQ lower bound is the distance from the query and the closer of the
two envelopes of a candidate subsequence (i.e. the roles of the query and the candidate
subsequence are reversed as opposed to LBKeoghEC).

LBKeoghEQ Q;Cð Þ :¼ LBKeoghEC C;Qð Þ: ð9Þ

Firstly, UCR-DTW calculates z-normalized version of the query and its envelopes,
and bsf is assumed to be equal to infinity. Then the algorithm scans the input time
series applying the cascade of LBs to the current subsequence. If the subsequence is not
pruned, then DTW distance is calculated. Next, bsf is updated if it is greater than the
value of DTW distance calculated above. By doing so, in the end, UCR-DTW finds the
best matching subsequence of the given time series.

4 The PhiBestMatch Parallel Algorithm

In this section, we present a novel parallel algorithm for subsequence similarity search
in very long time series on computing cluster of Phi KNL nodes, called PhiBestMatch.
PhiBestMatch is based on the following ideas.

Computations are parallelized on two levels, namely at the level of all cluster
nodes, and within a single cluster node. The time series is divided into equal-length
partitions and distributed among cluster nodes. During the search in its own partition,
each node communicates with rest nodes by functions of the MPI standard to improve
local bsf and reduce the amount of computations.

Within a single cluster node, computations are performed by the thread-level
parallelism and the OpenMP technology. In addition, data structures are aligned in
main memory, and computations are organized with as many vectorizable loops as
possible. Vectorization means a compiler’s ability to transform the loops into
sequences of vector operations [2] of VPUs. We should avoid unaligned memory
access since it can cause inefficient vectorization due to timing overhead for loop
peeling [2]. Within a single cluster node, the algorithm involves additional data
structures and redundant computations [10].

4.1 Partitioning of the Time Series

We partition the time series among cluster nodes as follows. Let F is a number of
fragments and T kð Þ is k-th 0� k�F � 1ð Þ partition of T , then T kð Þ is defined as a
subsequence Tstart;len as below.
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start ¼ k � N
F

� 	
þ 1; len ¼

N
F


 �þ N mod Fð Þþ n� 1; k ¼ F � 1
N
F


 �þ n� 1; otherwise

�
: ð10Þ

This means the head part of every partition except first overlaps with the tail part of
the previous partition in n� 1 data points, where n is the query length. Such a tech-
nique prevents us from loss of the resulting subsequences in the junctions of two
neighbor partitions.

4.2 Data Layout

We propose data layout aiming to provide organize computations over aligned data
with as many auto-vectorizable loops as possible.

Given a subsequence C and VPU width w, we denote pad length as pad ¼
w� nmod wð Þ and define aligned subsequence ~Ti;n as below:

~Ti;n ¼
ðti; tiþ 1; . . .; tiþ n�1; 0; 0; . . .; 0Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

pad

; if n mod w[ 0

ðti; tiþ 1; . . .; tiþ n�1Þ; otherwise:

8><
>: ð11Þ

According to (1), 8Q;C : Qj j ¼ Cj j DTW Q;Cð Þ ¼ DTW ~Q; ~C
� �

. Thus, in what
follows, we will assume the aligned versions of the query and a subsequence of the
input time series.

Next, we store all (aligned) subsequences of a time series in the subsequence matrix
SnT 2 R

N� nþ padð Þ, which is defined as below.

SnT i; jð Þ :¼ ~tiþ j�1� ð12Þ

Let us denote the number of LBs exploited by the algorithm as lbmax lbmax � 1ð Þ,
and denote these LBs as LB1; LB2; . . .; LBlbmax , enumerating them according to the order
in the lower bounding cascade. Given a time series T , we define the LB-matrix of all
subsequences of length n from T , LnT 2 R

N�lbmax as below.

LnT i; jð Þ :¼ LBj Ti;n;Q
� �

: ð13Þ

The bitmap matrix is a vector-column Bn
T 2 B

N , which for all subsequences of
length n from T stores the logical conjunction of bsf and every LB:

Bn
T ið Þ :¼

l̂bmax

j¼1

LnT i; jð Þ\bsf
� �

: ð14Þ

We establish the candidate matrix to store those subsequences from the SnT matrix,
which have not been pruned after the lower bounding. The candidate matrix will be
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processed in parallel by calculating of DTW distance measure between each row of the
matrix and the query. Then the minimum of DTW distances is used as bsf.

To provide parallel calculations of the candidate matrix, we denote the segment size
of the matrix as s 2 N ðs� N

p where p is the number of threads employed by the

parallel algorithm) and define the candidate matrix, Cn
T 2 R

s�pð Þ� nþ padð Þ as below.

Cn
T i; �ð Þ :¼ SnT k; �ð Þ : Bn

T ið Þ ¼ TRUE: ð15Þ

In further experiments, we take the segment size s ¼ 100.

4.3 Computational Scheme

Figure 1 depicts the PhiBestMatch pseudo-code, and Fig. 2 shows data structures of
the algorithm. At initialization, the algorithm assigns the number of the current process
to myrank by the MPI function. In what follows, each process deals with the subse-
quence matrix SnT myrankð Þ of the T myrankð Þ partition. The variable bsf is initialized by the
DTW distance between the query and a random subsequence of the partition.

Then we perform preprocessing by forming the subsequence matrix of the aligned
subsequences, z-normalizing each subsequence, and calculating each LB of the lower
bounding cascade. Strictly speaking, the latter step brings redundant calculations. In
contrast, UCR-DTW calculates the next LB in the cascade only if a current subsequence

Fig. 1. PhiBestMatch pseudo-code
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is not clearly dissimilar after the calculation of the previous LB. However, we perform
precomputations once and parallelize them keeping in mind they further can be effi-
ciently vectorized by the compiler since the absence of data dependencies in LBs.

After that, the algorithm improves the bsf threshold by the following loop until each
node completes its partition. At first, the bitmap matrix is calculated in parallel based
on the pre-calculated LB-matrix. Then each subsequence with TRUE in the respective
element of the bitmap matrix is added to the candidate matrix. After the candidate
matrix is filled, we calculate in parallel the DTW distance measure between each
candidate and the query and find the minimum distance. If the minimum distance is less
than bsf then bsf is updated. Then, we find the minimum value of bsf among all the
partitions by the MPI_Allreduce global reduction operation. Finally, the latter operation
is used to check if each node completes its partition.

5 Experiments

In order to evaluate the developed algorithm, we performed experiments on two
platforms, namely a single cluster node and a whole cluster system.

5.1 Experimental Setup

Objectives. In the experiments on a single cluster node, we studied performance and
scalability of the algorithm with respect to the r warping constraint and the n query

Fig. 2. Data flow of PhiBestMatch
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length. In the experiments on the cluster system, we studied the algorithm’s scaled
speedup with respect to the query length. Finally, we compare PhiBestMatch perfor-
mance with analogous algorithm [18].

Measures. In the experiments, we investigated the algorithm’s performance (mea-
suring the run time after deduction of the I/O time) and scalability. We calculated the
algorithm’s speedup and parallel efficiency, which are defined as follows. Speedup and
parallel efficiency of a parallel algorithm employing k threads are calculated, respec-
tively, as

s kð Þ ¼ t1
tk
; e kð Þ ¼ s kð Þ

k
; ð16Þ

where t1 and tk are run times of the algorithm when one and k threads are employed,
respectively.

In the experiments on the cluster system, we investigated scaled speedup of the
parallel algorithm, which refers to linear increasing of the problem size proportionally
with the number of computational nodes added to the system, and is calculated as
follows:

sscaled ¼ p � m
tp p�mð Þ

; ð17Þ

where p is the number of nodes, m is the problem size, and tp p�mð Þ is the algorithm’s run
time when a problem of size p � m is processed on p nodes.

Hardware. We performed our experiments on two supercomputers, namely Tor-
nado SUSU [9] and NKS-1P [19] with the characteristics summarized in Table 1.

For the experiments on a single node, we used the simplified version of Phi-
BestMatch [10], which treats the time series as one partition.

Table 1. Specifications of hardware

Specifications Tornado SUSU NKS-1P
Host Node Host Node

Model, Intel Xeon 2 � X5680 Phi KNC,
SE10X

2 � E5-
2630v4

Phi KNL
7290

Physical cores 2 � 6 61 2 � 10 72
Hyper threading factor 2 4 2 4
Logical cores 24 244 40 288
Frequency, GHz 3.33 1.1 2.2 1.5
VPU width, bit 128 512 256 512
Peak performance,
TFLOPS

0.371 1.076 0.390 3.456
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Datasets. In the experiments, we used datasets summarized in Table 2. RW-SN, RW-
CS, and RW-SN are the datasets generated according to the Random Walk model [14].
The EPG (Electrical Penetration Graph) dataset is a series of signals, which was used
by entomologists to study of Aster leafhopper (macrosteles quadrilineatus) behavior
[17]. The ECG dataset [7] represents electrocardiogram signals digitized at 128 Hz.

5.2 Evaluation on a Single Cluster Node

Figures 3 and 4 depict the performance of PhiBestMatch depending on r and n,
respectively. As we can see, at lower values of the parameters (approximately,
0\r� 0:5n and n\512), the algorithm runs slightly faster or about the same way on
two Intel Xeon host than on Intel Xeon Phi. At high values of the parameters
(0:5n\r� n and n� 512), the algorithm is faster on Intel Xeon Phi. It means that
PhiBestMatch better utilizes vectorization capabilities of Intel Xeon Phi with greater
computational load.

Figures 5 and 6 depict the experimental results on the synthetic (RW-SN) and the
real (EPG) datasets, respectively. As we can see, PhiBestMatch shows speedup closer
to linear and efficiency closer to 100%, if the number of threads matches the number of

Table 2. Datasets used in experiments

Platform Dataset Type Tj j ¼ m Qj j ¼ n

Single cluster node RW-SN Synthetic 106 128
Single cluster node EPG Real 2.5 � 105 360, 432, 512, 1024
Cluster system RW-CS Synthetic 12.8 � 107 128, 512, 1024
Cluster system ECG Real 12.8 � 107 432, 512, 1024
Cluster system RW-SH Synthetic 2.2 � 108 128

Fig. 3. PhiBestMatch performance w.r.t. the warping constraint
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physical cores the algorithm is running on. When more than one thread per physical
core is used, speedup became sub-linear, and parallel efficiency decreases accordingly.
The best speedup and efficiency are achieved when the r parameter ranges from 0.8 to 1
of n.

Fig. 4. PhiBestMatch performance w.r.t. the query length

Fig. 5. PhiBestMatch speedup and parallel efficiency on synthetic data (RW-SN dataset)
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5.3 Evaluation on a Cluster System

In the experiments studying PhiBestMatch scaled speedup, we utilized from 16 to 128
nodes of the Tornado SUSU supercomputer. We varied the query length while took the
parameter r ¼ n. Figures 7 and 8 depict the performance of PhiBestMatch on synthetic
and real data, respectively.

Fig. 6. PhiBestMatch speedup and parallel efficiency on real data (EPG dataset, n ¼ 360)

Fig. 7. PhiBestMatch scaled speedup on synthetic data (RW-CS dataset, r ¼ 0:8n)
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As we can see, PhiBestMatch shows closer to linear scaled speedup. At the same
time, the similarity search for a subsequence of greater length demonstrates a higher
scaled speedup, since it provides a greater amount of computations on a single node.

5.4 Comparison with Analogue

In [18], Shabib et al. presented the hybrid search algorithm, which exploits Apache
Spark cluster of multi-core nodes. The algorithm was evaluated on six cluster nodes
each with Intel Xeon E3-1200 (4-core at 3.1 GHz) CPU onboard for the RW-SH
dataset with the parameter r ¼ 0:05n. We compared the performance of Shabib et al.
algorithm and PhiBestMatch performance on six nodes of Tornado SUSU for the same
dataset and parameter r. Table 4 depicts the results.

6 Conclusion

In this paper, we presented PhiBestMatch, a novel parallel algorithm for subsequence
similarity search in very large time series data on computing cluster of the modern Intel
Xeon Phi Knights Landing (Phi KNL) nodes. Phi KNL is many-core system with 512-
bit wide vector processing units, which supports the same programming methods and
tools as a regular Intel Xeon, and can be considered as an alternative to FPGA and
GPU.

PhiBestMatch performs parallel computations on two levels, namely at the level of
all cluster nodes, and within a single cluster node. The time series is divided into equal-
length partitions and distributed among cluster nodes. During the search in its own
partition, each node communicates with rest nodes by functions of the MPI standard to
improve local best-so-far similarity threshold and reduce the amount of computations.
Within a single cluster node, PhiBestMatch exploits the thread-level parallelism and the

Fig. 8. PhiBestMatch scaled speedup on real data (ECG-CS dataset, r ¼ 0:8n)

Table 4. Performance of PhiBestMatch in comparison with Shabib et al. algorithm

PhiBestMatch, sec Algorithm of Shabib et al., sec

24.2 32
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OpenMP technology. The algorithm involves additional data structures, which are
aligned in main memory, and redundant computations. Computations are organized
with as many vectorizable loops as possible to provide the highest performance of
Phi KNL.

We performed experiments on synthetic and real-word datasets, which showed
good scalability of PhiBestMatch. Within a single cluster node, the algorithm
demonstrates closer to linear speedup when the number of threads matches the number
of Phi KNL physical cores the algorithm is running on. On the whole cluster system,
PhiBestMatch showed close to linear scaled speedup. The algorithm better utilizes
vectorization capabilities of Phi KNL with greater computational load (i.e. with longer
query length and greater value of the Sakoe–Chiba band constraint).
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