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Abstract. Many time series analytical problems arising in a wide spectrum of data intensive 

applications require subsequence similarity search as a subtask. Currently, Dynamic Time Warping (DTW) 

is considered as the best similarity measure in most domains. Since DTW is computationally expensive there 

are parallel algorithms have been developed for FPGA, GPU, and Intel Xeon Phi. In our previous work, we 

accelerated subsequence similarity search with Intel Xeon Phi’s Knights Corner generation by CPU+Phi 

computational scheme. Such an approach needs significant changes for the Phi’s second-generation product, 

Knights Landing (KNL), which is an independent bootable device supporting only native applications. In this 

paper, we present a novel parallel algorithm for subsequence similarity search in time series for the Intel Xeon 

Phi KNL many-core processor. In order to efficiently exploit vectorization capabilities of Phi KNL, the 

algorithm provides the sophisticated data layout and computational scheme. We performed experiments on 

synthetic and real-word datasets, which showed good scalability of the algorithm. 

Keywords: time series, subsequence similarity search, dynamic time warping, parallel algorithm, 

OpenMP, vectorization, Intel Xeon Phi Knights Landing. 

 

1 Introduction 

Nowadays, time series are pervasive in a wide spectrum 

of applications with data intensive analytics, e.g. climate 

modelling [1], economic forecasting [16], medical 

monitoring [6], etc. Many time series analytical 

problems require subsequence similarity search as a 

subtask, which assumes that a query subsequence and a 

longer time series are given, and we are to find a 

subsequence of the time series, whose similarity to the 

query is the maximum among all the subsequences.  

At the present time, Dynamic Time Warping 

(DTW) [3] is considered as the best time series 

subsequence similarity measure in most domains [5], 

since it allows the subsequence to have some stretching, 

shrinking, warping, or different length in comparison to 

the query. Since computation of DTW is time-consuming 

(𝑂(𝑛2) where 𝑛 is length of the query sequence) there 

are speedup techniques have been proposed including 

algorithmic developments (indexing methods [7], early 

abandoning strategies, embedding and computation 

reuse strategies [13], etc.) and parallel hardware-based 

solutions for FPGA [19] and GPU [14], and Intel Xeon 

Phi [21]. 

In this paper, the Intel Xeon Phi many-core system is 

the subject of our efforts. Architecture of Phi provides a 

large number of compute cores with a high local memory 

bandwidth and 512-bit wide vector processing units. 

Being based on the Intel x86 architecture, Phi supports 

thread-level parallelism and the same programming tools 

as a regular Intel Xeon CPU and serves as an attractive 

alternative to FPGA and GPU. Now, Intel offers two 

generations of Phi products, namely Knights Corner 

(KNC) [4] and Knights Landing (KNL) [15]. The former 

is a coprocessor with up to 61 cores, which supports 

native applications as well as offloading of calculations 

from a host CPU. The latter provides up to 72 cores and 

as opposed to predecessor is an independent bootable 

device, which runs applications only in native mode. 

In our previous works [9] and [21], we accelerated 

subsequence similarity search on Phi KNC by means of 

the CPU+Phi computational scheme. Such an approach 

needs significant changes for Phi KNL because if there 

is no CPU, in addition to parallelization, we have to 

efficiently vectorize computations in order to achieve 

high performance. 

In this paper, we address the accelerating 

subsequence similarity search on Phi KNL for the case 

when time series involved in the computations fit in main 

memory. The paper makes the following basic 

contributions. We developed a novel parallel algorithm 

of subsequence similarity search in time series for the 

Intel Xeon Phi KNL processor. The algorithm efficiently 

exploits vectorization capabilities of Phi KNL by means 

of the sophisticated data layout and computational 

scheme. We performed experiments on real-word 

datasets, which showed good scalability of the algorithm. 

The rest of the paper is organized as follows. 

Section 2 discusses related works. Section 3 gives formal 

notation and statement of the problem. In Section 4, we 

present the proposed parallel algorithm. We describe 

experimental evaluation of our algorithm in Section 5. 

Finally, in Section 6, we summarize the results obtained 

and propose directions for further research. 
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2 Related works 

The problem of subsequence similarity search under the 

DTW measure has been extensively studied in recent 

decade. Since computation of DTW is time-consuming 

there are speedup techniques have been proposed. 

Algorithmic developments include indexing 

methods [7], early abandoning strategies, embedding and 

computation reuse strategies [13], etc. Despite the fact 

these techniques focus on reduction of the number of 

calls DTW calculation procedure, computation of DTW 

distance measure still takes up to 80 percent of the total 

run time of the similarity search [20]. Due to this reason 

a number of parallel hardware-based solutions have been 

developed. 

In [17], authors proposed subsequence similarity 

search on CPU cluster. Subsequences starting from 

different positions of the time series are sent to different 

nodes, and each node calculates DTW in the naïve way. 

In [18], authors accelerated subsequence similarity 

search with SMP system. They distribute different 

queries into different cores, and each subsequence is sent 

to different cores to be compared with different patterns 

in the naïve way. In both implementations, the data 

transfer becomes the bottleneck. 

In [20], a GPU-based implementation was proposed. 

The warping matrix is generated in parallel, but the 

warping path is searched serially. Since the matrix 

generation step and the path search step are split into two 

kernels, this leads to overheads for storage and 

transmission of the warping matrix for each DTW 

calculation. 

In [14], GPU and FPGA implementations of 

subsequence similarity search were presented. The GPU 

implementation is based on the same ideas as [20]. The 

system consists of two modules, namely Normalizer 

(z-normalization of subsequences) and Warper (DTW 

calculation), and is generated by a C-to-VHDL tool, 

which exploits the fine-grained parallelism of the DTW. 

However, this implementation suffers from lacking 

flexibility, i.e. it must be recompiled if length of query is 

changed. 

In [19], authors proposed a framework for FPGA-

based subsequence similarity search, which utilizes the 

data reusability of continuous DTW calculations to 

reduce the bandwidth and exploit the coarse-grain 

parallelism.  

The aforementioned developments, however, cannot 

be directly applied to x86-based many-core systems, 

Intel Xeon Phi KNC [4] and Intel Xeon Phi KNL [15].  

In our previous works [9] and [21], we accelerated 

subsequence similarity search on the Intel Xeon Phi 

KNC many-core coprocessor. A naïve approach when all 

the subsequences of a time series are simply distributed 

across the threads of both CPU and Phi for calculation of 

DTW distance measure, gave unsatisfactory 

performance and speedup. This was because of 

insufficient workload of the coprocessor. We proposed 

                                                           
1 Strictly speaking, DTW allows comparing two time 

series of different lengths. However, for the sake of 

the CPU+Phi computational scheme where the 

coprocessor is exploited only for DTW distance measure 

computations whereas CPU performs lower bounding 

and prepares subsequences for the coprocessor. CPU 

supports a queue of candidate subsequences and offloads 

it to the coprocessor in order to compute DTW. Such a 

scheme significantly outperformed naïve approach. 

This development, however, cannot be directly 

applied to Phi KNL since it is an independent bootable 

many-core processor and supports only native 

applications. Thus, our previous approach needs 

significant changes. Moreover, in order to achieve high 

performance of similarity search on Phi KNL, in addition 

to parallelization, we should provide data layout and 

computational scheme that allow exploiting 

vectorization capabilities of the many-core processor 

thereof in the most efficient way. 

3 Notation and problem background 

3.1 Definitions and notations 

Definition 1. A time series 𝑇 is a sequence of real-valued 

elements: 𝑇 = 𝑡1, 𝑡2, … , 𝑡𝑚. Length of a time series 𝑇 is 

denoted by |𝑇|. 
Definition 2. Given two time series, 𝑋 =

𝑥1, 𝑥2, … , 𝑥𝑚.and 𝑌 = 𝑦1, 𝑦2, … , 𝑦𝑚, the Dynamic Time 

Warping (DTW) distance between 𝑋 and 𝑌 is denoted by 

𝐷𝑇𝑊(𝑋, 𝑌) and defined as below1. 

𝐷𝑇𝑊(𝑋, 𝑌) = 𝑑(𝑚,𝑚) (1) 

𝑑(𝑖, 𝑗) = |𝑥𝑖 − 𝑦𝑗| + 𝑚𝑖𝑛 {

𝑑(𝑖 − 1, 𝑗)

𝑑(𝑖, 𝑗 − 1)

𝑑(𝑖 − 1, 𝑗 − 1)

 (2) 

𝑑(0,0) = 0; 𝑑(𝑖, 0) = 𝑑(0, 𝑗) = ∞; 𝑖 = 𝑗 = 1,… ,𝑚. (3) 

In (2), a set of 𝑑(𝑖, 𝑗) is considered as an 𝑚 ×𝑚 

warping matrix for the alignment of the two respective 

time series. 

A warping path is a contiguous set of warping matrix 

elements that defines a mapping between the two time 

series. The warping path must start and finish in 

diagonally opposite corner cells of the warping matrix, 

the steps in the warping path are restricted to adjacent 

cells, and the points in the warping path must be 

monotonically spaced in time. 

Definition 3. A subsequence 𝑇𝑖,𝑘 of a time series 𝑇 is 

its contiguous subset of 𝑘 elements, which starts from 

position 𝑖: 𝑇𝑖,𝑘 = 𝑡𝑖 , 𝑡𝑖+1, … , 𝑡𝑖+𝑘−1, 1 ≤ 𝑖 ≤ 𝑚 − 𝑘 + 1. 

Definition 4. Given a time series 𝑇 and a time series 

𝑄 as a user specified query where 𝑚 = |𝑇| ≫ |𝑄| = 𝑛, 

the best matching subsequence 𝑇𝑖,𝑛 meets the property 

∀𝑘 𝐷𝑇𝑊(𝑄, 𝑇𝑖,𝑛) ≤ 𝐷𝑇𝑊(𝑄, 𝑇𝑘,𝑛),   

         1 ≤ 𝑖, 𝑘 ≤ 𝑚 − 𝑛 + 1 (4) 

In what follows, where there is no ambiguity, we 

refer to subsequence 𝑇𝑖,𝑛 as 𝐶, as a candidate in match to 

a query 𝑄. 

Definition 5. The z-normalization of a time series 𝑇 

is defined as a time series 𝑇̂ = 𝑡̂1, 𝑡̂2, … , 𝑡̂𝑚 where 

simplicity, we assume time series of equal lengths due to 

it is possible without losing the generality [12]. 



𝑡̂𝑖 =
𝑡𝑖−𝜇

𝜎
 (5) 

𝜇 =
1

𝑚
∑ 𝑡𝑖
𝑚
𝑖=1  (6) 

𝜎2 =
1

𝑚
∑ 𝑡2𝑖 − 𝜇

2𝑚
𝑖=1  (7) 

Definition 6. The Euclidean distance (ED) between 

two (z-normalized) subsequences 𝑄 and 𝐶 where |𝑄| =
|𝐶|, is defined as below. 

𝐸𝐷(𝑄, 𝐶) = √∑ (𝑞𝑖 − 𝑐𝑖)
2𝑛

𝑖=1  (8) 

3.2 Serial algorithm 

Currently, UCR-DTW [11] is the fastest serial algorithm 

of subsequence similarity search, which integrates a 

large number of algorithmic speedup techniques. Since 

our algorithm is based on UCR-DTW, in this section, we 

briefly describe its basic features that are essentially 

exploited in our approach. 

Squared distances. Instead of use square root in DTW 

and ED distance calculation, it is possible to use the 

squares thereof. Since both functions are monotonic and 

concave, it does not change the relative rankings of 

subsequences. In what follows, where there is no 

ambiguity, we will still use DTW and ED assuming the 

squared versions of them. 

Z-normalization. Both the query subsequence and 

each subsequence of the time series need to be 

z-normalized before the comparison. Z-normalization 

shifts and scales the time series such that the mean is zero 

and the standard deviation is one. 

Cascading Lower Bounds. Lower bound (LB) is an 

easy computable threshold of the DTW distance measure 

to identify and prune clearly dissimilar subsequences [5]. 

In what follows, we refer this threshold as the best-so-far 

distance (or 𝑏𝑠𝑓 for brevity) due to UCR-DTW tries to 

improve (decrease) it while scanning the time series. If 

the lower bound has exceeded 𝑏𝑠𝑓, the DTW distance 

will exceed 𝑏𝑠𝑓 as well, and the respective subsequence 

is assumed to be clearly dissimilar and pruned without 

calculation of DTW. UCR-DTW exploits the following 

LBs, namely LBKimFL [11], LBKeoghEC and 

LBKeoghEQ [7], and they are applied in a cascade. 

The LBKimFL lower bound uses the distances between 

the First (Last) pair of points from 𝐶 and 𝑄 as a lower 

bound, and defined as below. 

𝐿𝐵𝐾𝑖𝑚𝐹𝐿(𝑄, 𝐶) ∶= 𝐸𝐷(𝑞̂1, 𝑐̂1) + ED(𝑞̂𝑛, 𝑐̂𝑛) (9) 

The LBKeoghEC lower bound is the distance from the 

closer of the two so-called envelopes of the query to a 

candidate subsequence,  and defined as below. 

𝐿𝐵𝐾𝑒𝑜𝑔ℎ𝐸𝐶(𝑄, 𝐶) ∶= √∑ {

(𝑐̂𝑖 − 𝑢𝑖)
2, 𝑖𝑓 𝑐̂𝑖 > 𝑢𝑖

(𝑐̂𝑖 − ℓ𝑖)
2, 𝑖𝑓 𝑐̂𝑖 < ℓ𝑖  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑛
𝑖=1  (10) 

In (10), subsequence 𝑈 = 𝑢1, … , 𝑢𝑛 and subsequence 

𝐿 = ℓ1, … , ℓ𝑛 are the upper envelope and lower envelope 

of the query, respectively, and defined as below. 

𝑢𝑖 = max
𝑖−𝑟≤𝑘≤𝑖+𝑟

𝑞̂𝑘 (11) 

ℓ𝑖 = min
𝑖−𝑟≤𝑘≤𝑖+𝑟

𝑞̂𝑘 (12) 

where the parameter 𝑟 (1 ≤ 𝑟 ≤ 𝑛) denotes the Sakoe–

Chiba band constraint [5], which states that the warping 

path cannot deviate more than 𝑟 cells from the diagonal 

of the warping matrix. 

The LBKeoghEQ lower bound is the distance from the 

query and the closer of the two envelopes of a candidate 

subsequence. That is, as opposed to LBKeoghEC, the roles 

of the query and the candidate subsequence are reversed: 

𝐿𝐵𝐾𝑒𝑜𝑔ℎ𝐸𝑄(𝑄, 𝐶) ∶= 𝐿𝐵𝐾𝑒𝑜𝑔ℎ𝐸𝐶(𝐶, 𝑄) (13) 

Finally, UCR-DTW performs as follows. Firstly, 

z-normalized version of the query and its envelopes are 

calculated, and 𝑏𝑠𝑓 is assumed to be equal to infinity. 

Then the algorithm scans the input time series applying 

the cascade of LBs to the current subsequence. If the 

subsequence is not pruned, then DTW distance is 

calculated. Next, 𝑏𝑠𝑓 is updated if it is greater than the 

value of DTW distance calculated above. By doing so, in 

the end, UCR-DTW finds the best matching subsequence 

of the given time series. 

4 Method 

In this section, we present a novel computational scheme 

and data layout, which allow efficient parallelization and 

vectorization of subsequence similarity search on Intel 

Xeon Phi KNL. 

Vectorization plays the key role for getting the high 

performance of computations with parallel 

architectures [2]. This means a compiler's ability to 

transform the loops into sequences of vector operations 

and utilize VPUs. Thus, in order to provide the high 

performance of subsequence similarity search on Phi 

KNL, we should organize computations with as many 

auto-vectorizable loops as possible. 

However, many auto-vectorizable loops are not 

enough for the overall good performance of an algorithm. 

Unaligned memory access is one of the basic factors that 

can cause inefficient vectorization due to timing 

overhead for loop peeling [2]. If the start address of the 

processed data is not aligned by the VPU width (i.e. by 

the number of floats that can be loaded in VPU), the loop 

is split into three parts by the compiler. The first part of 

iterations, which access the memory from the start 

address to the first aligned address is peeled off and 

vectorized separately. The rest part of iterations from the 

last aligned address to the end address is split and 

vectorized separately as well. 

According to this argumentation, we propose a data 

layout, which provides an aligned access to 

subsequences of the time series. Applying this data 

layout, we also propose the respective computational 

scheme where as many computations as possible are 

implemented as auto-vectorizable for-loops. 

4.1 Data layout 

Firstly, we provide alignment of the processed 

subsequences. 

Definition 7. Given a subsequence 𝐶 and VPU width 

𝑤, we denote pad length as 𝑝𝑎𝑑 = 𝑤 − (𝑛 mod 𝑤) and 

define alignment of 𝐶 as a subsequence 𝐶̃ as below. 

𝐶̃ ∶= {
𝑐1, 𝑐2, … , 𝑐𝑛 , 0,0, … ,0⏟    

𝑝𝑎𝑑

, 𝑖𝑓 𝑛 𝑚𝑜𝑑 𝑤 > 0

𝐶, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14) 

According to Def. 2, ∀𝑄, 𝐶: |𝑄| = |𝐶| 𝐷𝑇𝑊(𝑄, 𝐶) =



𝐷𝑇𝑊(𝑄̃, 𝐶̃). Thus, in what follows, we still write 𝑄 and 

𝐶 for the query subsequence and a subsequence of the 

input time series, assuming, however, the aligned 

versions thereof. Alignment of subsequences allows to 

avoid timing overheads for loop peeling. 

Next, we store all the (aligned) subsequences of a 

time series as a matrix in order to provide auto-

vectorization of computations. 

Definition 8. Let us denote the number of all the 

subsequences of length  𝑛 of a time series 𝑇 as 𝑁, 𝑁 =
|𝑇| − 𝑛 + 1 = 𝑚 − 𝑛 + 1. We define the subsequence 

matrix (i.e. the matrix of all aligned subsequences of 

length  𝑛 from a time series 𝑇), 𝑆𝑇
𝑛 ∈ ℝ𝑁×(𝑛+𝑝𝑎𝑑) as 

below. 

𝑆𝑇
𝑛(𝑖, 𝑗) ∶= 𝑡̃𝑖+𝑗−1 (15) 

We also establish two more matrices regarding lower 

bounding of all subsequences of the input time series. 

The first matrix stores for each subsequence the values 

of all the LBs in the cascade (cf. Sect. 3.2). The second 

one is bitmap matrix, which stores for each subsequence 

the result of comparison of 𝑏𝑠𝑓 with every LB. 

Definition 9. Let us denote the number of LBs 

exploited by the subsequence similarity search algorithm 

as 𝑙𝑏𝑚𝑎𝑥 and enumerate them according to the order in 

the lower bounding cascade. Given a time series 𝑇, we 

define the LB-matrix of all subsequences of length  𝑛 

from 𝑇, 𝐿𝑇
𝑛 ∈ ℝ𝑁×𝑙𝑏𝑚𝑎𝑥 as below. 

𝐿𝑇
𝑛 (𝑖, 𝑗) ∶= 𝐿𝐵𝑗(𝑇𝑖,𝑛) (16) 

Definition 10. Given a time series 𝑇, we define the 

bitmap matrix of all subsequences of length  𝑛 from 𝑇, 

𝐵𝑇
𝑛 ∈ 𝔹𝑁×𝑙𝑏𝑚𝑎𝑥 as below. 

𝐵𝑇
𝑛(𝑖, 𝑗) ∶= 𝐿𝑇

𝑛 (𝑖, 𝑗) < 𝑏𝑠𝑓 (17) 

Finally, we establish a matrix to store candidate 

subsequences, i.e. those subsequences from the 𝑆𝑇
𝑛 

matrix, which have not been pruned after the lower 

bounding. This matrix will be processed in parallel by 

calculating of DTW distance measure between each row 

representing the subsequence and the query. 

Definition 11. Let us denote the number of threads 

employed by the parallel algorithm as 𝑝 (𝑝 ≥ 1). Given 

the segment size 𝑠 ∈ ℤ+ (𝑠 ≤ ⌈
𝑁

𝑝
⌉), we define the 

candidate matrix, 𝐶𝑇
𝑛 ∈ ℝ(𝑠∙𝑝)×(𝑛+𝑝𝑎𝑑) as below. 

𝐶𝑇
𝑛(𝑖,∙) ≔ 𝑆𝑇

𝑛(𝑘,∙):  
         ∀𝑗, 1 ≤ 𝑗 ≤ 𝑙𝑏𝑚𝑎𝑥  ,  𝐵𝑇

𝑛(𝑘, 𝑗) = 1 (18) 

4.1 Computational scheme 

We are finally in a position to introduce our approach. 

Figure 1 depicts the overall scheme of the algorithm. 

The algorithm performs as follows. Firstly, the lower 

envelope and the upper envelope of the query are 

calculated, and the query is z-normalized. Then, for each 

subsequence in the subsequence matrix, all the LBs of 

the lower bounding cascade are preliminarily calculated 

(as well as z-normalized version of each subsequence). 

Additionally, in order to start the search, the algorithm 

initializes  𝑏𝑠𝑓 by calculating the DTW distance measure 

between the query and first subsequence. 

After that, the algorithm carries out the following 

loop as long as there are subsequences that have not been 

pruned during the search. At first, lower bounding is 

performed and the bitmap matrix is calculated in parallel. 

Next, promising candidates are added to the candidate 

matrix in serial mode. Then, the DTW distance measure 

between the query and each subsequence of the candidate 

matrix is calculated in parallel, and minimal distance is 

found. By the end of loop, we output the index of the 

subsequence with minimal distance measure. Below, we 

describe these steps in detail. 

Algorithm PHIBESTMATCH 

 Input:  

  𝑇 time series to search 

  𝑄 query subsequence 

  𝑟 warping constraint 

  𝑝 number of threads employed 

  𝑠 segment size 

 Output: 

  𝑏𝑠𝑓 similarity of the best match subsequence 

 Returns: 

  index of the best match subsequence  

1: CALCENVELOPE(𝑄, 𝑟, 𝑈, 𝐿)  

2: CALCLOWERBOUNDS(𝑆𝑇
𝑛, 𝑄, 𝑟,𝐿𝑇

𝑛 ) 

3: 𝑏𝑠𝑓 ← UCRDTW(𝑇1,𝑛, 𝑄, 𝑟, ∞) 

4: numcand ← 𝑁 

5: while numcand > 0 do 

6:  LOWERBOUNDING(𝐿𝑇
𝑛 , 𝑏𝑠𝑓, 𝐵𝑇

𝑛) 

7:  numcand ← FILLCANDMATR(𝑆𝑇
𝑛, 𝐵𝑇

𝑛 , 𝐶𝑇
𝑛, 𝑝, 𝑠) 

8:  if numcand > 0 then 

9:   bestmatch ← CALCCANDMATR(𝐶𝑇
𝑛, 𝑛𝑢𝑚𝑐𝑎𝑛𝑑, 

𝑟, 𝑝, 𝑏𝑠𝑓) 

10: return bestmatch 

Figure 1 Overall computational scheme 

Calculation of LBs. Figure 2 depicts the pseudo-

code for calculation of lower bounds. 

Algorithm CALCLOWERBOUNDS 

 Input:  

  𝑆𝑇
𝑛 subsequence matrix 

  𝑄 query subsequence 

  𝑟 warping constraint 

  𝑝 number of threads employed 

 Output: 

  𝐿𝑇
𝑛  LB-matrix 

1: #pragma omp parallel for num_threads(𝑝) 
2: for i from 1 to 𝑁 do 

3:  ZNORMALIZE(𝑆𝑇
𝑛(𝑖,∙)) 

4:  𝐿𝑇
𝑛 (i,1) ← LBKIMFL(𝑄, 𝑆𝑇

𝑛(𝑖,∙)) 
5:  𝐿𝑇

𝑛 (i,2) ← LBKEOGHEC(𝑄, 𝑆𝑇
𝑛(𝑖,∙)) 

6:  CALCENVELOPE(𝑆𝑇
𝑛(𝑖,∙), 𝑟, 𝑈, 𝐿) 

7:  𝐿𝑇
𝑛 (i,3) ← LBKEOGHEQ(𝑆𝑇

𝑛(𝑖,∙), 𝑄, 𝑈, 𝐿) 

Figure 2 Calculation of lower bounds 

Strictly speaking, this step brings redundant 

calculations to our algorithm. In contrast, UCR-DTW 

calculates the next LB in the cascade only if a current 

subsequence is clearly dissimilar after the calculation of 

the previous LB. As opposed to UCR-DTW, we calculate 

all the LBs and z-normalized versions for all the 



subsequences because of the following reasons. Firstly, 

it is possible to perform such computations once and 

before the scanning of all the subsequences. Secondly, 

these computations are parallelizable in a simple way 

based on the data parallelism paradigm. Finally, being 

combined, these computations can be efficiently 

vectorized by the compiler. 

Lower bounding. Figure 3 depicts the pseudo-code 

for lower bounding of subsequences. The algorithm 

performs lower bounding by scanning the LB-matrix and 

calculating the respective row of the bitmap matrix. In 

the next step of the algorithm, a subsequence 

corresponding to the row of the bitmap matrix where 

each element equals to one, will be added to the 

candidate matrix in order to further calculate DTW 

distance measure. 

Algorithm LOWERBOUNDING 

 Input:  

  𝐿𝑇
𝑛  LB-matrix 

  𝑏𝑠𝑓 best-so-far similarity distance 

  𝑝 number of threads employed 

 Output: 

  𝐵𝑇
𝑛 bitmap matrix 

1: #pragma omp parallel num_threads(𝑝) 
2: whoami ← omp_get_thread_num() 

3: for i from 𝑝𝑜𝑠𝑤ℎ𝑜𝑎𝑚𝑖  to ⌈
𝑁

𝑤ℎ𝑜𝑎𝑚𝑖∙𝑝
⌉ do 

4:  for j from 1 to 𝑙𝑏𝑚𝑎𝑥  do 

5:   𝐵𝑇
𝑛(𝑖, 𝑗) ← 𝐿𝑇

𝑛 (𝑖, 𝑗) < 𝑏𝑠𝑓 

Figure 3 Lower bounding of subsequences 

During the search, we perform many scans of the 

LB-matrix in parallel as long as subsequences that are 

not clearly dissimilar exist. Parallel processing is based 

on the following technique. The LB-matrix is logically 

divided into 𝑝 equal-sized segments, and each thread 

scans its own segment. In order to avoid scanning of each 

segment from scratch, we establish the segment index as 

an array of 𝑝 elements where each element keeps the 

index of the most recent candidate subsequence in the 

respective segment, i.e.  𝑆𝑒𝑔𝐼𝑛𝑑𝑒𝑥 = (𝑝𝑜𝑠1, … , 𝑝𝑜𝑠𝑝) 

where 

𝑝𝑜𝑠𝑖 : =

{
 
 

 
 

0, 𝑏𝑠𝑓 = ∞ 

𝑘: 𝑝 ∙ (𝑖 − 1) + 1 ≤ 𝑘 ≤ ⌈
𝑁

𝑖∙𝑝
⌉  ∧

∀𝑗, 1 ≤ 𝑗 ≤ 𝑙𝑏𝑚𝑎𝑥  ,

 𝐿𝐵𝑇
𝑛(𝑘, 𝑗) < 𝑏𝑠𝑓, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (19) 

The candidate matrix filling. Figure 4 depicts the 

pseudo-code for the procedure of filling the candidate 

matrix. 

The algorithm performs scanning the bitmap matrix 

along the segments. We start scanning not from the 

beginning of a segment but from the respective 

segment’s index, which stores the number of the most 

recent candidate subsequence in the segment. If a 

subsequence is promising, it is added to the candidate 

matrix.  
In order to output index of the best match 

subsequence, we establish the candidate subsequence 

index as an array of 𝑠 ∙ 𝑝 elements where each element 

keeps the starting position of a candidate subsequence in 

the input time series, i.e. 𝐼𝑛𝑑𝑒𝑥 = (𝑖𝑑𝑥1, … , 𝑖𝑑𝑥𝑠∙𝑝) 

where 

𝑖𝑑𝑥𝑖 ≔ 𝑘:  1 ≤ 𝑘 ≤ 𝑚 − 𝑛 + 1 ∧ ∃𝑆𝑇
𝑛(𝑖,∙) ⟺ 

          ∃𝑇𝑖,𝑛 ⟺  𝑘 = (𝑖 − 1) ∙ 𝑛 + 1 (20) 

Algorithm FILLCANDMATR 

 Input:  

  𝑆𝑇
𝑛 subsequence matrix 

  𝐵𝑇
𝑛 bitmap matrix 

  𝑝 number of threads employed 

  𝑠 segment size 

 Output: 

  𝐶𝑇
𝑛 candidate matrix  

 Returns: 

  number of subsequences added  

  to the candidate matrix 
1: numcand ← 0 

2: for i from 1 to 𝑝 do 

3:  for k from 1 to 𝑠 do 

4:   if ⋀ 𝐵𝑇
𝑛(𝑝𝑜𝑠𝑖 + 𝑘, 𝑗)

𝑙𝑏𝑚𝑎𝑥
𝑗=1  = 1 then 

5:    if numcand < 𝑠 ∙ 𝑝 then 

6:     numcand ← numcand + 1 

7:     𝑝𝑜𝑠𝑖 ← 𝑝𝑜𝑠𝑖 + 𝑘 

8:     𝐶𝑇
𝑛(𝑛𝑢𝑚𝑐𝑎𝑛𝑑 ,∙) ← 𝑆𝑇

𝑛(𝑝𝑜𝑠𝑖 ,∙) 
9:     𝑖𝑑𝑥𝑛𝑢𝑚𝑐𝑎𝑛𝑑 ← (𝑝𝑜𝑠𝑖 − 1) ⋅ 𝑛 + 1 

10:    else 

11:     break 

12:  if numcand = 𝑠 ∙ 𝑝 then 

13:   break 
14: return numcand 

Figure 4 The candidate matrix filling 

Processing of the candidate matrix. Figure 5 

depicts the pseudo-code for calculating DTW distance 

measure of candidate subsequences. 

Algorithm CALCCANDMATR 

 Input:  

  𝐶𝑇
𝑛 candidate matrix 

  numcand number of candidate subsequences 

  𝑄 query subsequence 

  𝑟 warping constraint 

  𝑝 number of threads employed 

 Output: 

  𝑏𝑠𝑓 similarity of the best-so-far subsequence 

 Returns: 

  index of the best-so-far subsequence 
1: #pragma omp parallel for num_threads(𝑝) 
2:  shared (𝑏𝑠𝑓, idx) private (distance) 
3: for i from 1 to numcand do 

4:  distance ← UCRDTW(𝐶𝑇
𝑛(𝑖,∙), 𝑄, 𝑟, 𝑏𝑠𝑓) 

5:  #pragma omp critical 
6:  if  𝑏𝑠𝑓 > distance then 

7:   𝑏𝑠𝑓 ← distance 

8:   bestmatch ← 𝑖𝑑𝑥𝑖  
9: return bestmatch 

Figure 5 Processing of the candidate matrix 



The algorithm performs as follows. For each row of 

the candidate matrix, we calculate DTW distance 

measure between the respective candidate and the query 

by means of the UCR-DTW algorithm. If this distance is 

less than 𝑏𝑠𝑓 then 𝑏𝑠𝑓 is updated. The loop is 

parallelized by means of the OpenMP pragma where 𝑏𝑠𝑓 

is indicated as a variable shared across all threads while 

the distance variable is indicated as a private for each 

thread. In order to correctly update the shared variable, 

we use pragma with critical section. 

5 Experiments 

5.1 Experimental setup 

Objectives. In the experiments, we compared the 

performance of our algorithm in comparison with UCR-

DTW. We also evaluated the scalability of our algorithm 

on Intel Xeon Phi for different datasets. We measured the 

run time (after deduction of I/O time) and calculated the 

algorithm’s speedup and parallel efficiency. Here we 

understand these characteristics of parallel algorithm 

scalability as follows. Speedup and parallel efficiency of 

a parallel algorithm employing 𝑝 threads are calculated, 

respectively, as 𝑠(𝑝) =
𝑡1

𝑡𝑝
 and 𝑒(𝑝) =

𝑠(𝑝)

𝑝
,  where 𝑡1 and 

𝑡𝑝 are the run times of the algorithm when one and 𝑝 

threads are employed, respectively. 

Hardware. We performed our experiments on a node 

of the Tornado SUSU supercomputer [8] with the 

characteristics summarized in Table 1. 

Table 1 Specifications of hardware 

Specification Xeon 

Phi 

2×Xeon 

CPU 

Model, Intel SE10X X5680 

# physical cores 61 2×6 

Hyper threading 4 2× 

# logical cores 244 24 

Frequency, GHz 1.1 3.33 

VPU width, bit 512 128 

Peak performance, TFLOPS 1.076 0.371 

RAM, Gb 8 8 

Datasets. In the experiments, we used the following 

datasets (cf. Table 2). The Random Walk is a dataset that 

was synthetically generated according to the model of the 

same name [10] and used in [11]. The EPG dataset [14] 

is a set of signals from the so-called Electrical 

Penetration Graph reflecting the behavior of the Aster 

leafhopper (macrosteles quadrilineatus). A critical task 

that researchers perform is to search for patterns in such 

time series, because in the US agriculture, for one state 

and one crop, this insect causes losses more than two 

million dollars a year [14]. 

Table 2 Specifications of datasets 

Dataset Type 𝑚 𝑛 

Random Walk Synthetic 106 128 

EPG Real 2.5∙105 360 

5.2 Results and discussion 

Figure 6 depicts the performance of PHIBESTMATCH in 

comparison with the UCR-DTW algorithm. As we can 

see, our algorithm is two times faster for both EPG and 

Random Walk datasets when UCR-DTW runs on one 

CPU core and PHIBESTMATCH runs on 240 cores of Intel 

Xeon Phi. Being run on Intel Xeon Phi, UCR-DTW is 

obviously slower than PHIBESTMATCH (from 10 to 15 

times).  

Figure 7 and Figure 8 depict the experimental results 

on the Random Walk dataset and the EPG dataset, 

respectively. On Random Walk data, both speedup and 

parallel efficiency are linear when the number of threads 

matches of physical cores the algorithm is running on. 

However, when more than one thread per physical core 

is used, speedup became sub-linear, and efficiency 

decreases accordingly. That is, speedup stops increasing 

from 80 when 120 threads are employed, and efficiency 

drops from 60 percent for 120 threads to 30 percent for 

240 threads. 

On EPG data, the algorithm shows closer to linear 

speedup and efficiency (up to 50 and at least 80 percent, 

respectively) if the number of threads employed is up to 

the number of physical cores. When more than one 

thread per physical core is used, speedup slowly 

increases up to 78, and efficiency drops accordingly 

(similar to the picture for the Random Walk dataset). 

We can conclude that the proposed algorithm 

demonstrates closer to linear scalability when the 

number of threads it runs on is up to the number of 

physical cores of the Intel Xeon Phi many-core 

processor. However, when more than one thread per 

physical core is used, speedup and parallel efficiency 

decrease significantly.  

There are two possible reasons for this. Firstly, our 

algorithm is not completely parallel, and the candidate 

matrix filling is its serial part, which limits speedup. 

Secondly, according to its nature, DTW calculations (cf. 

Def. 2) can hardly ever be auto-vectorized. Thus, if 

during the (seamlessly auto-vectorizable) lower 

bounding step many subsequences have not been pruned 

as clearly dissimilar then they will be processed by many 

threads in the DTW calculation step but without auto-

vectorization as it might be expected. 

6 Conclusion 

In this paper, we address the problem of accelerating 

subsequence similarity search on the modern Intel Xeon 

Phi system of Knights Landing (KNL) generation. Phi 

KNL is an independent bootable device, which provides 

up to 72 compute cores with a high local memory 

bandwidth and 512-bit wide vector processing units. 

Being based on the x86 architecture, the Intel Phi KNL 

many-core processor supports thread-level parallelism 

and the same programming tools as a regular Intel Xeon 

CPU, and serves as an attractive alternative to FPGA and 

GPU. We consider the case when time series involved in 

the computations fit in main memory. 

 



 

a) Random Walk dataset 

 

b) EPG dataset 

Figure 6 Algorithm’s performance 

 

a) Speedup 

 

b) Parallel efficiency 

Figure 7 Algorithm’s scalability on the Random Walk dataset 

 

a) Speedup 

 

b) Parallel efficiency 

Figure 8 Algorithm’s scalability on the EPG dataset 

We developed a novel parallel algorithm of 

subsequence similarity search for Intel Xeon Phi KNL, 

called PHIBESTMATCH. Our algorithm is based on UCR-

DTW [11], which is the fastest serial algorithm of 

subsequence similarity search due to it integrates cascade 

lower bounding and many other algorithmic speedup 

techniques. PHIBESTMATCH efficiently exploits 

vectorization capabilities of Phi KNL by means of the 

sophisticated data layout and computational scheme. 

We performed experiments on synthetic and real-

word datasets, which showed the following. 

PHIBESTMATCH being run on Intel Xeon Phi is two times 

faster than UCR-DTW being run on Intel Xeon. The 

proposed algorithm demonstrates closer to linear both 

speedup and parallel efficiency when the number of 

threads it runs on is up to the number of physical cores 

of Intel Xeon Phi. 

In further research, we plan to move on our approach 



in the following directions: advance the parallelization of 

the UCR-DTW algorithm for Intel Xeon Phi KNL, and 

extend our algorithm for the computer cluster system 

with nodes equipped with Intel Xeon Phi KNL. 
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