
An Efficient Subsequence Similarity Search

on Modern Intel Many-core Processors

for Data Intensive Applications

© Yana Kraeva © Mikhail Zymbler

South Ural State University (national research university), Chelyabinsk, Russia

kraevaya@susu.ru mzym@susu.ru

Abstract. Many time series analytical problems arising in a wide spectrum of data intensive

applications require subsequence similarity search as a subtask. Currently, Dynamic Time Warping (DTW)

is considered as the best similarity measure in most domains. Since DTW is computationally expensive there

are parallel algorithms have been developed for FPGA, GPU, and Intel Xeon Phi. In our previous work, we

accelerated subsequence similarity search with Intel Xeon Phi’s Knights Corner generation by CPU+Phi

computational scheme. Such an approach needs significant changes for the Phi’s second-generation product,

Knights Landing (KNL), which is an independent bootable device supporting only native applications. In this

paper, we present a novel parallel algorithm for subsequence similarity search in time series for the Intel Xeon

Phi KNL many-core processor. In order to efficiently exploit vectorization capabilities of Phi KNL, the

algorithm provides the sophisticated data layout and computational scheme. We performed experiments on

synthetic and real-word datasets, which showed good scalability of the algorithm.

Keywords: time series, subsequence similarity search, dynamic time warping, parallel algorithm,

OpenMP, vectorization, Intel Xeon Phi Knights Landing.

1 Introduction

Nowadays, time series are pervasive in a wide spectrum

of applications with data intensive analytics, e.g. climate

modelling [1], economic forecasting [16], medical

monitoring [6], etc. Many time series analytical

problems require subsequence similarity search as a

subtask, which assumes that a query subsequence and a

longer time series are given, and we are to find a

subsequence of the time series, whose similarity to the

query is the maximum among all the subsequences.

At the present time, Dynamic Time Warping

(DTW) [3] is considered as the best time series

subsequence similarity measure in most domains [5],

since it allows the subsequence to have some stretching,

shrinking, warping, or different length in comparison to

the query. Since computation of DTW is time-consuming

(𝑂(𝑛2) where 𝑛 is length of the query sequence) there

are speedup techniques have been proposed including

algorithmic developments (indexing methods [7], early

abandoning strategies, embedding and computation

reuse strategies [13], etc.) and parallel hardware-based

solutions for FPGA [19] and GPU [14], and Intel Xeon

Phi [21].

In this paper, the Intel Xeon Phi many-core system is

the subject of our efforts. Architecture of Phi provides a

large number of compute cores with a high local memory

bandwidth and 512-bit wide vector processing units.

Being based on the Intel x86 architecture, Phi supports

thread-level parallelism and the same programming tools

as a regular Intel Xeon CPU and serves as an attractive

alternative to FPGA and GPU. Now, Intel offers two

generations of Phi products, namely Knights Corner

(KNC) [4] and Knights Landing (KNL) [15]. The former

is a coprocessor with up to 61 cores, which supports

native applications as well as offloading of calculations

from a host CPU. The latter provides up to 72 cores and

as opposed to predecessor is an independent bootable

device, which runs applications only in native mode.

In our previous works [9] and [21], we accelerated

subsequence similarity search on Phi KNC by means of

the CPU+Phi computational scheme. Such an approach

needs significant changes for Phi KNL because if there

is no CPU, in addition to parallelization, we have to

efficiently vectorize computations in order to achieve

high performance.

In this paper, we address the accelerating

subsequence similarity search on Phi KNL for the case

when time series involved in the computations fit in main

memory. The paper makes the following basic

contributions. We developed a novel parallel algorithm

of subsequence similarity search in time series for the

Intel Xeon Phi KNL processor. The algorithm efficiently

exploits vectorization capabilities of Phi KNL by means

of the sophisticated data layout and computational

scheme. We performed experiments on real-word

datasets, which showed good scalability of the algorithm.

The rest of the paper is organized as follows.

Section 2 discusses related works. Section 3 gives formal

notation and statement of the problem. In Section 4, we

present the proposed parallel algorithm. We describe

experimental evaluation of our algorithm in Section 5.

Finally, in Section 6, we summarize the results obtained

and propose directions for further research.
Proceedings of the XX International Conference

“Data Analytics and Management in Data Intensive

Domains” (DAMDID/RCDL’2018), Moscow, Russia,

October 9-12, 2018

mailto:first@author.email

2 Related works

The problem of subsequence similarity search under the

DTW measure has been extensively studied in recent

decade. Since computation of DTW is time-consuming

there are speedup techniques have been proposed.

Algorithmic developments include indexing

methods [7], early abandoning strategies, embedding and

computation reuse strategies [13], etc. Despite the fact

these techniques focus on reduction of the number of

calls DTW calculation procedure, computation of DTW

distance measure still takes up to 80 percent of the total

run time of the similarity search [20]. Due to this reason

a number of parallel hardware-based solutions have been

developed.

In [17], authors proposed subsequence similarity

search on CPU cluster. Subsequences starting from

different positions of the time series are sent to different

nodes, and each node calculates DTW in the naïve way.

In [18], authors accelerated subsequence similarity

search with SMP system. They distribute different

queries into different cores, and each subsequence is sent

to different cores to be compared with different patterns

in the naïve way. In both implementations, the data

transfer becomes the bottleneck.

In [20], a GPU-based implementation was proposed.

The warping matrix is generated in parallel, but the

warping path is searched serially. Since the matrix

generation step and the path search step are split into two

kernels, this leads to overheads for storage and

transmission of the warping matrix for each DTW

calculation.

In [14], GPU and FPGA implementations of

subsequence similarity search were presented. The GPU

implementation is based on the same ideas as [20]. The

system consists of two modules, namely Normalizer

(z-normalization of subsequences) and Warper (DTW

calculation), and is generated by a C-to-VHDL tool,

which exploits the fine-grained parallelism of the DTW.

However, this implementation suffers from lacking

flexibility, i.e. it must be recompiled if length of query is

changed.

In [19], authors proposed a framework for FPGA-

based subsequence similarity search, which utilizes the

data reusability of continuous DTW calculations to

reduce the bandwidth and exploit the coarse-grain

parallelism.

The aforementioned developments, however, cannot

be directly applied to x86-based many-core systems,

Intel Xeon Phi KNC [4] and Intel Xeon Phi KNL [15].

In our previous works [9] and [21], we accelerated

subsequence similarity search on the Intel Xeon Phi

KNC many-core coprocessor. A naïve approach when all

the subsequences of a time series are simply distributed

across the threads of both CPU and Phi for calculation of

DTW distance measure, gave unsatisfactory

performance and speedup. This was because of

insufficient workload of the coprocessor. We proposed

1 Strictly speaking, DTW allows comparing two time

series of different lengths. However, for the sake of

the CPU+Phi computational scheme where the

coprocessor is exploited only for DTW distance measure

computations whereas CPU performs lower bounding

and prepares subsequences for the coprocessor. CPU

supports a queue of candidate subsequences and offloads

it to the coprocessor in order to compute DTW. Such a

scheme significantly outperformed naïve approach.

This development, however, cannot be directly

applied to Phi KNL since it is an independent bootable

many-core processor and supports only native

applications. Thus, our previous approach needs

significant changes. Moreover, in order to achieve high

performance of similarity search on Phi KNL, in addition

to parallelization, we should provide data layout and

computational scheme that allow exploiting

vectorization capabilities of the many-core processor

thereof in the most efficient way.

3 Notation and problem background

3.1 Definitions and notations

Definition 1. A time series 𝑇 is a sequence of real-valued

elements: 𝑇 = 𝑡1, 𝑡2, … , 𝑡𝑚. Length of a time series 𝑇 is

denoted by |𝑇|.
Definition 2. Given two time series, 𝑋 =

𝑥1, 𝑥2, … , 𝑥𝑚.and 𝑌 = 𝑦1, 𝑦2, … , 𝑦𝑚, the Dynamic Time

Warping (DTW) distance between 𝑋 and 𝑌 is denoted by

𝐷𝑇𝑊(𝑋, 𝑌) and defined as below1.

𝐷𝑇𝑊(𝑋, 𝑌) = 𝑑(𝑚,𝑚) (1)

𝑑(𝑖, 𝑗) = |𝑥𝑖 − 𝑦𝑗| + 𝑚𝑖𝑛 {

𝑑(𝑖 − 1, 𝑗)

𝑑(𝑖, 𝑗 − 1)

𝑑(𝑖 − 1, 𝑗 − 1)

 (2)

𝑑(0,0) = 0; 𝑑(𝑖, 0) = 𝑑(0, 𝑗) = ∞; 𝑖 = 𝑗 = 1,… ,𝑚. (3)

In (2), a set of 𝑑(𝑖, 𝑗) is considered as an 𝑚 ×𝑚

warping matrix for the alignment of the two respective

time series.

A warping path is a contiguous set of warping matrix

elements that defines a mapping between the two time

series. The warping path must start and finish in

diagonally opposite corner cells of the warping matrix,

the steps in the warping path are restricted to adjacent

cells, and the points in the warping path must be

monotonically spaced in time.

Definition 3. A subsequence 𝑇𝑖,𝑘 of a time series 𝑇 is

its contiguous subset of 𝑘 elements, which starts from

position 𝑖: 𝑇𝑖,𝑘 = 𝑡𝑖 , 𝑡𝑖+1, … , 𝑡𝑖+𝑘−1, 1 ≤ 𝑖 ≤ 𝑚 − 𝑘 + 1.

Definition 4. Given a time series 𝑇 and a time series

𝑄 as a user specified query where 𝑚 = |𝑇| ≫ |𝑄| = 𝑛,

the best matching subsequence 𝑇𝑖,𝑛 meets the property

∀𝑘 𝐷𝑇𝑊(𝑄, 𝑇𝑖,𝑛) ≤ 𝐷𝑇𝑊(𝑄, 𝑇𝑘,𝑛),

 1 ≤ 𝑖, 𝑘 ≤ 𝑚 − 𝑛 + 1 (4)

In what follows, where there is no ambiguity, we

refer to subsequence 𝑇𝑖,𝑛 as 𝐶, as a candidate in match to

a query 𝑄.

Definition 5. The z-normalization of a time series 𝑇

is defined as a time series 𝑇̂ = 𝑡̂1, 𝑡̂2, … , 𝑡̂𝑚 where

simplicity, we assume time series of equal lengths due to

it is possible without losing the generality [12].

𝑡̂𝑖 =
𝑡𝑖−𝜇

𝜎
 (5)

𝜇 =
1

𝑚
∑ 𝑡𝑖
𝑚
𝑖=1 (6)

𝜎2 =
1

𝑚
∑ 𝑡2𝑖 − 𝜇

2𝑚
𝑖=1 (7)

Definition 6. The Euclidean distance (ED) between

two (z-normalized) subsequences 𝑄 and 𝐶 where |𝑄| =
|𝐶|, is defined as below.

𝐸𝐷(𝑄, 𝐶) = √∑ (𝑞𝑖 − 𝑐𝑖)
2𝑛

𝑖=1 (8)

3.2 Serial algorithm

Currently, UCR-DTW [11] is the fastest serial algorithm

of subsequence similarity search, which integrates a

large number of algorithmic speedup techniques. Since

our algorithm is based on UCR-DTW, in this section, we

briefly describe its basic features that are essentially

exploited in our approach.

Squared distances. Instead of use square root in DTW

and ED distance calculation, it is possible to use the

squares thereof. Since both functions are monotonic and

concave, it does not change the relative rankings of

subsequences. In what follows, where there is no

ambiguity, we will still use DTW and ED assuming the

squared versions of them.

Z-normalization. Both the query subsequence and

each subsequence of the time series need to be

z-normalized before the comparison. Z-normalization

shifts and scales the time series such that the mean is zero

and the standard deviation is one.

Cascading Lower Bounds. Lower bound (LB) is an

easy computable threshold of the DTW distance measure

to identify and prune clearly dissimilar subsequences [5].

In what follows, we refer this threshold as the best-so-far

distance (or 𝑏𝑠𝑓 for brevity) due to UCR-DTW tries to

improve (decrease) it while scanning the time series. If

the lower bound has exceeded 𝑏𝑠𝑓, the DTW distance

will exceed 𝑏𝑠𝑓 as well, and the respective subsequence

is assumed to be clearly dissimilar and pruned without

calculation of DTW. UCR-DTW exploits the following

LBs, namely LBKimFL [11], LBKeoghEC and

LBKeoghEQ [7], and they are applied in a cascade.

The LBKimFL lower bound uses the distances between

the First (Last) pair of points from 𝐶 and 𝑄 as a lower

bound, and defined as below.

𝐿𝐵𝐾𝑖𝑚𝐹𝐿(𝑄, 𝐶) ∶= 𝐸𝐷(𝑞̂1, 𝑐̂1) + ED(𝑞̂𝑛, 𝑐̂𝑛) (9)

The LBKeoghEC lower bound is the distance from the

closer of the two so-called envelopes of the query to a

candidate subsequence, and defined as below.

𝐿𝐵𝐾𝑒𝑜𝑔ℎ𝐸𝐶(𝑄, 𝐶) ∶= √∑ {

(𝑐̂𝑖 − 𝑢𝑖)
2, 𝑖𝑓 𝑐̂𝑖 > 𝑢𝑖

(𝑐̂𝑖 − ℓ𝑖)
2, 𝑖𝑓 𝑐̂𝑖 < ℓ𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑛
𝑖=1 (10)

In (10), subsequence 𝑈 = 𝑢1, … , 𝑢𝑛 and subsequence

𝐿 = ℓ1, … , ℓ𝑛 are the upper envelope and lower envelope

of the query, respectively, and defined as below.

𝑢𝑖 = max
𝑖−𝑟≤𝑘≤𝑖+𝑟

𝑞̂𝑘 (11)

ℓ𝑖 = min
𝑖−𝑟≤𝑘≤𝑖+𝑟

𝑞̂𝑘 (12)

where the parameter 𝑟 (1 ≤ 𝑟 ≤ 𝑛) denotes the Sakoe–

Chiba band constraint [5], which states that the warping

path cannot deviate more than 𝑟 cells from the diagonal

of the warping matrix.

The LBKeoghEQ lower bound is the distance from the

query and the closer of the two envelopes of a candidate

subsequence. That is, as opposed to LBKeoghEC, the roles

of the query and the candidate subsequence are reversed:

𝐿𝐵𝐾𝑒𝑜𝑔ℎ𝐸𝑄(𝑄, 𝐶) ∶= 𝐿𝐵𝐾𝑒𝑜𝑔ℎ𝐸𝐶(𝐶, 𝑄) (13)

Finally, UCR-DTW performs as follows. Firstly,

z-normalized version of the query and its envelopes are

calculated, and 𝑏𝑠𝑓 is assumed to be equal to infinity.

Then the algorithm scans the input time series applying

the cascade of LBs to the current subsequence. If the

subsequence is not pruned, then DTW distance is

calculated. Next, 𝑏𝑠𝑓 is updated if it is greater than the

value of DTW distance calculated above. By doing so, in

the end, UCR-DTW finds the best matching subsequence

of the given time series.

4 Method

In this section, we present a novel computational scheme

and data layout, which allow efficient parallelization and

vectorization of subsequence similarity search on Intel

Xeon Phi KNL.

Vectorization plays the key role for getting the high

performance of computations with parallel

architectures [2]. This means a compiler's ability to

transform the loops into sequences of vector operations

and utilize VPUs. Thus, in order to provide the high

performance of subsequence similarity search on Phi

KNL, we should organize computations with as many

auto-vectorizable loops as possible.

However, many auto-vectorizable loops are not

enough for the overall good performance of an algorithm.

Unaligned memory access is one of the basic factors that

can cause inefficient vectorization due to timing

overhead for loop peeling [2]. If the start address of the

processed data is not aligned by the VPU width (i.e. by

the number of floats that can be loaded in VPU), the loop

is split into three parts by the compiler. The first part of

iterations, which access the memory from the start

address to the first aligned address is peeled off and

vectorized separately. The rest part of iterations from the

last aligned address to the end address is split and

vectorized separately as well.

According to this argumentation, we propose a data

layout, which provides an aligned access to

subsequences of the time series. Applying this data

layout, we also propose the respective computational

scheme where as many computations as possible are

implemented as auto-vectorizable for-loops.

4.1 Data layout

Firstly, we provide alignment of the processed

subsequences.

Definition 7. Given a subsequence 𝐶 and VPU width

𝑤, we denote pad length as 𝑝𝑎𝑑 = 𝑤 − (𝑛 mod 𝑤) and

define alignment of 𝐶 as a subsequence 𝐶̃ as below.

𝐶̃ ∶= {
𝑐1, 𝑐2, … , 𝑐𝑛 , 0,0, … ,0⏟

𝑝𝑎𝑑

, 𝑖𝑓 𝑛 𝑚𝑜𝑑 𝑤 > 0

𝐶, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14)

According to Def. 2, ∀𝑄, 𝐶: |𝑄| = |𝐶| 𝐷𝑇𝑊(𝑄, 𝐶) =

𝐷𝑇𝑊(𝑄̃, 𝐶̃). Thus, in what follows, we still write 𝑄 and

𝐶 for the query subsequence and a subsequence of the

input time series, assuming, however, the aligned

versions thereof. Alignment of subsequences allows to

avoid timing overheads for loop peeling.

Next, we store all the (aligned) subsequences of a

time series as a matrix in order to provide auto-

vectorization of computations.

Definition 8. Let us denote the number of all the

subsequences of length 𝑛 of a time series 𝑇 as 𝑁, 𝑁 =
|𝑇| − 𝑛 + 1 = 𝑚 − 𝑛 + 1. We define the subsequence

matrix (i.e. the matrix of all aligned subsequences of

length 𝑛 from a time series 𝑇), 𝑆𝑇
𝑛 ∈ ℝ𝑁×(𝑛+𝑝𝑎𝑑) as

below.

𝑆𝑇
𝑛(𝑖, 𝑗) ∶= 𝑡̃𝑖+𝑗−1 (15)

We also establish two more matrices regarding lower

bounding of all subsequences of the input time series.

The first matrix stores for each subsequence the values

of all the LBs in the cascade (cf. Sect. 3.2). The second

one is bitmap matrix, which stores for each subsequence

the result of comparison of 𝑏𝑠𝑓 with every LB.

Definition 9. Let us denote the number of LBs

exploited by the subsequence similarity search algorithm

as 𝑙𝑏𝑚𝑎𝑥 and enumerate them according to the order in

the lower bounding cascade. Given a time series 𝑇, we

define the LB-matrix of all subsequences of length 𝑛

from 𝑇, 𝐿𝑇
𝑛 ∈ ℝ𝑁×𝑙𝑏𝑚𝑎𝑥 as below.

𝐿𝑇
𝑛 (𝑖, 𝑗) ∶= 𝐿𝐵𝑗(𝑇𝑖,𝑛) (16)

Definition 10. Given a time series 𝑇, we define the

bitmap matrix of all subsequences of length 𝑛 from 𝑇,

𝐵𝑇
𝑛 ∈ 𝔹𝑁×𝑙𝑏𝑚𝑎𝑥 as below.

𝐵𝑇
𝑛(𝑖, 𝑗) ∶= 𝐿𝑇

𝑛 (𝑖, 𝑗) < 𝑏𝑠𝑓 (17)

Finally, we establish a matrix to store candidate

subsequences, i.e. those subsequences from the 𝑆𝑇
𝑛

matrix, which have not been pruned after the lower

bounding. This matrix will be processed in parallel by

calculating of DTW distance measure between each row

representing the subsequence and the query.

Definition 11. Let us denote the number of threads

employed by the parallel algorithm as 𝑝 (𝑝 ≥ 1). Given

the segment size 𝑠 ∈ ℤ+ (𝑠 ≤ ⌈
𝑁

𝑝
⌉), we define the

candidate matrix, 𝐶𝑇
𝑛 ∈ ℝ(𝑠∙𝑝)×(𝑛+𝑝𝑎𝑑) as below.

𝐶𝑇
𝑛(𝑖,∙) ≔ 𝑆𝑇

𝑛(𝑘,∙):
 ∀𝑗, 1 ≤ 𝑗 ≤ 𝑙𝑏𝑚𝑎𝑥 , 𝐵𝑇

𝑛(𝑘, 𝑗) = 1 (18)

4.1 Computational scheme

We are finally in a position to introduce our approach.

Figure 1 depicts the overall scheme of the algorithm.

The algorithm performs as follows. Firstly, the lower

envelope and the upper envelope of the query are

calculated, and the query is z-normalized. Then, for each

subsequence in the subsequence matrix, all the LBs of

the lower bounding cascade are preliminarily calculated

(as well as z-normalized version of each subsequence).

Additionally, in order to start the search, the algorithm

initializes 𝑏𝑠𝑓 by calculating the DTW distance measure

between the query and first subsequence.

After that, the algorithm carries out the following

loop as long as there are subsequences that have not been

pruned during the search. At first, lower bounding is

performed and the bitmap matrix is calculated in parallel.

Next, promising candidates are added to the candidate

matrix in serial mode. Then, the DTW distance measure

between the query and each subsequence of the candidate

matrix is calculated in parallel, and minimal distance is

found. By the end of loop, we output the index of the

subsequence with minimal distance measure. Below, we

describe these steps in detail.

Algorithm PHIBESTMATCH

 Input:

 𝑇 time series to search

 𝑄 query subsequence

 𝑟 warping constraint

 𝑝 number of threads employed

 𝑠 segment size

 Output:

 𝑏𝑠𝑓 similarity of the best match subsequence

 Returns:

 index of the best match subsequence

1: CALCENVELOPE(𝑄, 𝑟, 𝑈, 𝐿)

2: CALCLOWERBOUNDS(𝑆𝑇
𝑛, 𝑄, 𝑟,𝐿𝑇

𝑛)

3: 𝑏𝑠𝑓 ← UCRDTW(𝑇1,𝑛, 𝑄, 𝑟, ∞)

4: numcand ← 𝑁

5: while numcand > 0 do

6: LOWERBOUNDING(𝐿𝑇
𝑛 , 𝑏𝑠𝑓, 𝐵𝑇

𝑛)

7: numcand ← FILLCANDMATR(𝑆𝑇
𝑛, 𝐵𝑇

𝑛 , 𝐶𝑇
𝑛, 𝑝, 𝑠)

8: if numcand > 0 then

9: bestmatch ← CALCCANDMATR(𝐶𝑇
𝑛, 𝑛𝑢𝑚𝑐𝑎𝑛𝑑,

𝑟, 𝑝, 𝑏𝑠𝑓)

10: return bestmatch

Figure 1 Overall computational scheme

Calculation of LBs. Figure 2 depicts the pseudo-

code for calculation of lower bounds.

Algorithm CALCLOWERBOUNDS

 Input:

 𝑆𝑇
𝑛 subsequence matrix

 𝑄 query subsequence

 𝑟 warping constraint

 𝑝 number of threads employed

 Output:

 𝐿𝑇
𝑛 LB-matrix

1: #pragma omp parallel for num_threads(𝑝)
2: for i from 1 to 𝑁 do

3: ZNORMALIZE(𝑆𝑇
𝑛(𝑖,∙))

4: 𝐿𝑇
𝑛 (i,1) ← LBKIMFL(𝑄, 𝑆𝑇

𝑛(𝑖,∙))
5: 𝐿𝑇

𝑛 (i,2) ← LBKEOGHEC(𝑄, 𝑆𝑇
𝑛(𝑖,∙))

6: CALCENVELOPE(𝑆𝑇
𝑛(𝑖,∙), 𝑟, 𝑈, 𝐿)

7: 𝐿𝑇
𝑛 (i,3) ← LBKEOGHEQ(𝑆𝑇

𝑛(𝑖,∙), 𝑄, 𝑈, 𝐿)

Figure 2 Calculation of lower bounds

Strictly speaking, this step brings redundant

calculations to our algorithm. In contrast, UCR-DTW

calculates the next LB in the cascade only if a current

subsequence is clearly dissimilar after the calculation of

the previous LB. As opposed to UCR-DTW, we calculate

all the LBs and z-normalized versions for all the

subsequences because of the following reasons. Firstly,

it is possible to perform such computations once and

before the scanning of all the subsequences. Secondly,

these computations are parallelizable in a simple way

based on the data parallelism paradigm. Finally, being

combined, these computations can be efficiently

vectorized by the compiler.

Lower bounding. Figure 3 depicts the pseudo-code

for lower bounding of subsequences. The algorithm

performs lower bounding by scanning the LB-matrix and

calculating the respective row of the bitmap matrix. In

the next step of the algorithm, a subsequence

corresponding to the row of the bitmap matrix where

each element equals to one, will be added to the

candidate matrix in order to further calculate DTW

distance measure.

Algorithm LOWERBOUNDING

 Input:

 𝐿𝑇
𝑛 LB-matrix

 𝑏𝑠𝑓 best-so-far similarity distance

 𝑝 number of threads employed

 Output:

 𝐵𝑇
𝑛 bitmap matrix

1: #pragma omp parallel num_threads(𝑝)
2: whoami ← omp_get_thread_num()

3: for i from 𝑝𝑜𝑠𝑤ℎ𝑜𝑎𝑚𝑖 to ⌈
𝑁

𝑤ℎ𝑜𝑎𝑚𝑖∙𝑝
⌉ do

4: for j from 1 to 𝑙𝑏𝑚𝑎𝑥 do

5: 𝐵𝑇
𝑛(𝑖, 𝑗) ← 𝐿𝑇

𝑛 (𝑖, 𝑗) < 𝑏𝑠𝑓

Figure 3 Lower bounding of subsequences

During the search, we perform many scans of the

LB-matrix in parallel as long as subsequences that are

not clearly dissimilar exist. Parallel processing is based

on the following technique. The LB-matrix is logically

divided into 𝑝 equal-sized segments, and each thread

scans its own segment. In order to avoid scanning of each

segment from scratch, we establish the segment index as

an array of 𝑝 elements where each element keeps the

index of the most recent candidate subsequence in the

respective segment, i.e. 𝑆𝑒𝑔𝐼𝑛𝑑𝑒𝑥 = (𝑝𝑜𝑠1, … , 𝑝𝑜𝑠𝑝)

where

𝑝𝑜𝑠𝑖 : =

{

0, 𝑏𝑠𝑓 = ∞

𝑘: 𝑝 ∙ (𝑖 − 1) + 1 ≤ 𝑘 ≤ ⌈
𝑁

𝑖∙𝑝
⌉ ∧

∀𝑗, 1 ≤ 𝑗 ≤ 𝑙𝑏𝑚𝑎𝑥 ,

 𝐿𝐵𝑇
𝑛(𝑘, 𝑗) < 𝑏𝑠𝑓, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (19)

The candidate matrix filling. Figure 4 depicts the

pseudo-code for the procedure of filling the candidate

matrix.

The algorithm performs scanning the bitmap matrix

along the segments. We start scanning not from the

beginning of a segment but from the respective

segment’s index, which stores the number of the most

recent candidate subsequence in the segment. If a

subsequence is promising, it is added to the candidate

matrix.
In order to output index of the best match

subsequence, we establish the candidate subsequence

index as an array of 𝑠 ∙ 𝑝 elements where each element

keeps the starting position of a candidate subsequence in

the input time series, i.e. 𝐼𝑛𝑑𝑒𝑥 = (𝑖𝑑𝑥1, … , 𝑖𝑑𝑥𝑠∙𝑝)

where

𝑖𝑑𝑥𝑖 ≔ 𝑘: 1 ≤ 𝑘 ≤ 𝑚 − 𝑛 + 1 ∧ ∃𝑆𝑇
𝑛(𝑖,∙) ⟺

 ∃𝑇𝑖,𝑛 ⟺ 𝑘 = (𝑖 − 1) ∙ 𝑛 + 1 (20)

Algorithm FILLCANDMATR

 Input:

 𝑆𝑇
𝑛 subsequence matrix

 𝐵𝑇
𝑛 bitmap matrix

 𝑝 number of threads employed

 𝑠 segment size

 Output:

 𝐶𝑇
𝑛 candidate matrix

 Returns:

 number of subsequences added

 to the candidate matrix
1: numcand ← 0

2: for i from 1 to 𝑝 do

3: for k from 1 to 𝑠 do

4: if ⋀ 𝐵𝑇
𝑛(𝑝𝑜𝑠𝑖 + 𝑘, 𝑗)

𝑙𝑏𝑚𝑎𝑥
𝑗=1 = 1 then

5: if numcand < 𝑠 ∙ 𝑝 then

6: numcand ← numcand + 1

7: 𝑝𝑜𝑠𝑖 ← 𝑝𝑜𝑠𝑖 + 𝑘

8: 𝐶𝑇
𝑛(𝑛𝑢𝑚𝑐𝑎𝑛𝑑 ,∙) ← 𝑆𝑇

𝑛(𝑝𝑜𝑠𝑖 ,∙)
9: 𝑖𝑑𝑥𝑛𝑢𝑚𝑐𝑎𝑛𝑑 ← (𝑝𝑜𝑠𝑖 − 1) ⋅ 𝑛 + 1

10: else

11: break

12: if numcand = 𝑠 ∙ 𝑝 then

13: break
14: return numcand

Figure 4 The candidate matrix filling

Processing of the candidate matrix. Figure 5

depicts the pseudo-code for calculating DTW distance

measure of candidate subsequences.

Algorithm CALCCANDMATR

 Input:

 𝐶𝑇
𝑛 candidate matrix

 numcand number of candidate subsequences

 𝑄 query subsequence

 𝑟 warping constraint

 𝑝 number of threads employed

 Output:

 𝑏𝑠𝑓 similarity of the best-so-far subsequence

 Returns:

 index of the best-so-far subsequence
1: #pragma omp parallel for num_threads(𝑝)
2: shared (𝑏𝑠𝑓, idx) private (distance)
3: for i from 1 to numcand do

4: distance ← UCRDTW(𝐶𝑇
𝑛(𝑖,∙), 𝑄, 𝑟, 𝑏𝑠𝑓)

5: #pragma omp critical
6: if 𝑏𝑠𝑓 > distance then

7: 𝑏𝑠𝑓 ← distance

8: bestmatch ← 𝑖𝑑𝑥𝑖
9: return bestmatch

Figure 5 Processing of the candidate matrix

The algorithm performs as follows. For each row of

the candidate matrix, we calculate DTW distance

measure between the respective candidate and the query

by means of the UCR-DTW algorithm. If this distance is

less than 𝑏𝑠𝑓 then 𝑏𝑠𝑓 is updated. The loop is

parallelized by means of the OpenMP pragma where 𝑏𝑠𝑓

is indicated as a variable shared across all threads while

the distance variable is indicated as a private for each

thread. In order to correctly update the shared variable,

we use pragma with critical section.

5 Experiments

5.1 Experimental setup

Objectives. In the experiments, we compared the

performance of our algorithm in comparison with UCR-

DTW. We also evaluated the scalability of our algorithm

on Intel Xeon Phi for different datasets. We measured the

run time (after deduction of I/O time) and calculated the

algorithm’s speedup and parallel efficiency. Here we

understand these characteristics of parallel algorithm

scalability as follows. Speedup and parallel efficiency of

a parallel algorithm employing 𝑝 threads are calculated,

respectively, as 𝑠(𝑝) =
𝑡1

𝑡𝑝
 and 𝑒(𝑝) =

𝑠(𝑝)

𝑝
, where 𝑡1 and

𝑡𝑝 are the run times of the algorithm when one and 𝑝

threads are employed, respectively.

Hardware. We performed our experiments on a node

of the Tornado SUSU supercomputer [8] with the

characteristics summarized in Table 1.

Table 1 Specifications of hardware

Specification Xeon

Phi

2×Xeon

CPU

Model, Intel SE10X X5680

physical cores 61 2×6

Hyper threading 4 2×

logical cores 244 24

Frequency, GHz 1.1 3.33

VPU width, bit 512 128

Peak performance, TFLOPS 1.076 0.371

RAM, Gb 8 8

Datasets. In the experiments, we used the following

datasets (cf. Table 2). The Random Walk is a dataset that

was synthetically generated according to the model of the

same name [10] and used in [11]. The EPG dataset [14]

is a set of signals from the so-called Electrical

Penetration Graph reflecting the behavior of the Aster

leafhopper (macrosteles quadrilineatus). A critical task

that researchers perform is to search for patterns in such

time series, because in the US agriculture, for one state

and one crop, this insect causes losses more than two

million dollars a year [14].

Table 2 Specifications of datasets

Dataset Type 𝑚 𝑛

Random Walk Synthetic 106 128

EPG Real 2.5∙105 360

5.2 Results and discussion

Figure 6 depicts the performance of PHIBESTMATCH in

comparison with the UCR-DTW algorithm. As we can

see, our algorithm is two times faster for both EPG and

Random Walk datasets when UCR-DTW runs on one

CPU core and PHIBESTMATCH runs on 240 cores of Intel

Xeon Phi. Being run on Intel Xeon Phi, UCR-DTW is

obviously slower than PHIBESTMATCH (from 10 to 15

times).

Figure 7 and Figure 8 depict the experimental results

on the Random Walk dataset and the EPG dataset,

respectively. On Random Walk data, both speedup and

parallel efficiency are linear when the number of threads

matches of physical cores the algorithm is running on.

However, when more than one thread per physical core

is used, speedup became sub-linear, and efficiency

decreases accordingly. That is, speedup stops increasing

from 80 when 120 threads are employed, and efficiency

drops from 60 percent for 120 threads to 30 percent for

240 threads.

On EPG data, the algorithm shows closer to linear

speedup and efficiency (up to 50 and at least 80 percent,

respectively) if the number of threads employed is up to

the number of physical cores. When more than one

thread per physical core is used, speedup slowly

increases up to 78, and efficiency drops accordingly

(similar to the picture for the Random Walk dataset).

We can conclude that the proposed algorithm

demonstrates closer to linear scalability when the

number of threads it runs on is up to the number of

physical cores of the Intel Xeon Phi many-core

processor. However, when more than one thread per

physical core is used, speedup and parallel efficiency

decrease significantly.

There are two possible reasons for this. Firstly, our

algorithm is not completely parallel, and the candidate

matrix filling is its serial part, which limits speedup.

Secondly, according to its nature, DTW calculations (cf.

Def. 2) can hardly ever be auto-vectorized. Thus, if

during the (seamlessly auto-vectorizable) lower

bounding step many subsequences have not been pruned

as clearly dissimilar then they will be processed by many

threads in the DTW calculation step but without auto-

vectorization as it might be expected.

6 Conclusion

In this paper, we address the problem of accelerating

subsequence similarity search on the modern Intel Xeon

Phi system of Knights Landing (KNL) generation. Phi

KNL is an independent bootable device, which provides

up to 72 compute cores with a high local memory

bandwidth and 512-bit wide vector processing units.

Being based on the x86 architecture, the Intel Phi KNL

many-core processor supports thread-level parallelism

and the same programming tools as a regular Intel Xeon

CPU, and serves as an attractive alternative to FPGA and

GPU. We consider the case when time series involved in

the computations fit in main memory.

a) Random Walk dataset

b) EPG dataset

Figure 6 Algorithm’s performance

a) Speedup

b) Parallel efficiency

Figure 7 Algorithm’s scalability on the Random Walk dataset

a) Speedup

b) Parallel efficiency

Figure 8 Algorithm’s scalability on the EPG dataset

We developed a novel parallel algorithm of

subsequence similarity search for Intel Xeon Phi KNL,

called PHIBESTMATCH. Our algorithm is based on UCR-

DTW [11], which is the fastest serial algorithm of

subsequence similarity search due to it integrates cascade

lower bounding and many other algorithmic speedup

techniques. PHIBESTMATCH efficiently exploits

vectorization capabilities of Phi KNL by means of the

sophisticated data layout and computational scheme.

We performed experiments on synthetic and real-

word datasets, which showed the following.

PHIBESTMATCH being run on Intel Xeon Phi is two times

faster than UCR-DTW being run on Intel Xeon. The

proposed algorithm demonstrates closer to linear both

speedup and parallel efficiency when the number of

threads it runs on is up to the number of physical cores

of Intel Xeon Phi.

In further research, we plan to move on our approach

in the following directions: advance the parallelization of

the UCR-DTW algorithm for Intel Xeon Phi KNL, and

extend our algorithm for the computer cluster system

with nodes equipped with Intel Xeon Phi KNL.

Acknowledgments. This work was financially

supported by the Russian Foundation for Basic Research

(grant No. 17-07-00463), by Act 211 Government of the

Russian Federation (contract No. 02.A03.21.0011) and

by the Ministry of education and science of Russian

Federation (government order 2.7905.2017/8.9).

References

[1] Abdullaev, S.M., Zhelnin, A.A., Lenskaya, O.Y.:

The structure of mesoscale convective systems in

central Russia. Russian Meteorology and

Hydrology. 37(1), pp. 12-20 (2012).

[2] Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler

transformation for high-performance computing.

ACM Computing Surveys. 26, pp. 345-420

(1994). doi: 10.1145/197405.197406

[3] Berndt, D.J., Clifford, J.: Using dynamic time

warping to find patterns in time series. In:

Fayyad, U.M., Uthurusamy, R. (eds.) KDD

Workshop, pp. 359-370. AAAI Press (1994)

[4] Chrysos, G.: Intel Xeon Phi coprocessor

(codename Knights Corner). In: 2012 IEEE Hot

Chips 24th Symposium (HCS), pp. 1-31 (2012).

doi: 10.1109/HOTCHIPS.2012.7476487

[5] Ding, H., Trajcevski, G., Scheuermann, P.,

Wang, X., Keogh, E.J.: Querying and mining of

time series data: experimental comparison of

representations and distance measures. PVLDB

1(2), 1542-1552 (2008)

[6] Epishev, V., Isaev, A., Miniakhmetov, R. et al.:

Physiological data mining system for elite sports.

Bull. of South Ural State University. Series:

Comput. Math. and Soft. Eng., 2(1):44-54, 2013.

(in Russian) doi: 10.14529/cmse130105

[7] Keogh, E., Ratanamahatana, C.: Exact indexing of

dynamic time warping. Knowl. Inf. Syst. 2005:

vol. 7, no. 3, pp. 406-417.

[8] Kostenetskiy, P., Safonov, A.: SUSU

supercomputer resources. In: L. Sokolinsky,

I. Starodubov (eds.) PCT'2016, pp. 561-573.

CEUR-WS, vol. 1576 (2016)

[9] Miniakhmetov, R., Movchan, A., Zymbler, M.:

Accelerating time series subsequence matching on

the Intel Xeon Phi many-core coprocessor. In:

Biljanovic, P., Butkovic, Z. et al. (eds.) MIPRO

2015, pp. 1399-1404 (2015).

doi: 10.1109/MIPRO.2015.7160493

[10] Pearson, K.: The problem of the random walk.

Nature 72(1865), 342 (1905).

doi: 10.1038/072342a0

[11] Rakthanmanon, T., Campana, B.J.L., Mueen, A.,
Batista, G.E.A.P.A., Westover, M.B., Zhu, Q.,
Zakaria, J., Keogh, E.J.: Searching and mining
trillions of time series subsequences under
dynamic time warping. In: Yang, Q., Agarwal, D.,

Pei, J. (eds.) KDD, pp. 262-270. ACM (2012).
doi: 10.1145/2339530.2339576

[12] Ratanamahatana, C., Keogh, E.J.: Three myths

about Dynamic Time Warping Data Mining. In:

Kargupta, H., Srivastava, J., Kamath, C.,

Goodman, A. (eds.), SDM 2005. pp. 506-510.

doi: 10.1137/1.9781611972757.50

[13] Sakurai, Y., Faloutsos, C., Yamamuro, M.: Stream

monitoring under the time warping distance. In:

Chirkova, R., Dogac, A., Tamer Ozsu, M., Sellis,

T.K. (eds.) ICDE 2007, pp. 1046-1055. IEEE

Computer Society (2007).

doi: 10.1109/ICDE.2007.368963

[14] Sart, D., Mueen, A., Najjar, W.A., Keogh, E.J.,

Niennattrakul, V.: Accelerating dynamic time

warping subsequence search with GPUs and

FPGAs. In: Webb, G.I., Liu, B., Zhang, C.,

Gunopulos, D., Wu, X. (eds.) ICDM 2010,

pp. 1001-1006. IEEE Computer Society (2010).

doi: 10.1109/ICDM.2010.21

[15] Sodani, A.: Knights Landing (KNL): 2nd

generation Intel Xeon Phi processor. In: 2015

IEEE Hot Chips 27th Symposium (HCS), pp. 1-

24. IEEE Computer Society (2015)

[16] Sokolinskaya, I., Sokolinsky, L.B.: Scalability

evaluation of NSLP algorithm for solving non-

stationary linear programming problems on cluster

computing systems. In: Voevodin, V., Sobolev, S.

(eds.) RuSCDays 2017. CCIS, vol. 793, pp. 40-53.

Springer, Heidelberg (2017).

doi: 10.1007/978-3-319-71255-0_4

[17] Srikanthan, S., Kumar, A., and Gupta, R.:

Implementing the dynamic time warping

algorithm in multithreaded environments for real

time and unsupervised pattern discovery. In: IEEE

ICCCT, pp. 394-398. IEEE Computer Society

(2011). doi: 10.1109/ICCCT.2011.6075111

[18] Takahashi, N., Yoshihisa, T., Sakurai, Y.,

Kanazawa, M.: A parallelized data stream

processing system using Dynamic Time Warping

distance. In: Barolli, L., Xhafa, F., Hsu, H.-H.

(eds.) CISIS, pp. 1100-1105 (2009).

doi: 10.1109/CISIS.2009.77

[19] Wang, Z., Huang, S., Wang, L., Li, H., Wang, Yu,

Yang, H.: Accelerating subsequence similarity

search based on dynamic time warping distance

with FPGA. In: Hutchings, B.L., Betz, V. (eds.)

ACM/SIGDA FPGA’13, pp. 53-62. ACM (2013).

doi: 10.1145/2435264.2435277

[20] Zhang, Y., Adl, K., Glass, J.: Fast spoken query

detection using lower-bound Dynamic Time

Warping on Graphical Processing Units. In:

ICASSP, pp. 5173-5176. (2012).

doi: 10.1109/ICASSP.2012.6289085

[21] Zymbler, M.: Best-Match time series subsequence
search on the Intel Many Integrated Core
architecture. In: Morzy, T. Valduriez, P.,
Bellatreche, L. (eds.) ADBIS 2015. LNCS,
vol. 9282. pp. 275-286. Springer, Heidelberg
(2015). doi: 10.1007/978-3-319-23135-8_19

	1 Introduction
	2 Related works
	3 Notation and problem background
	3.1 Definitions and notations
	3.2 Serial algorithm
	4 Method
	4.1 Data layout
	4.1 Computational scheme
	5 Experiments
	5.1 Experimental setup
	5.2 Results and discussion
	6 Conclusion
	References

