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Abstract: Crude oil market analysis has become one of the emerging financial markets and the
volatility effect of the market is paramount and has been considered as an issue of utmost importance.
This study examines the dynamics of this volatile market of crude oil by employing a hybrid approach
based on an extreme learning machine (ELM) as a regressor and the improved grey wolf optimizer
(IGWO) for prophesying the crude oil rate for West Texas Intermediate (WTI) and Brent crude oil
datasets. The datasets are augmented using technical indicators (TIs) and statistical measures (SMs)
to obtain better insight into the forecasting ability of this proposed model. The differential evolution
(DE) strategy has been used for evolution and the survival of the fittest (SOF) principle has been
used for elimination while implementing the GWO to achieve better convergence rate and accuracy.
Whereas, the algorithmic simplicity, use of less parameters, and easy implementation of DE efficiently
decide the evolutionary patterns of wolves in GWO and the SOF principle updates the wolf pack
based on the fitness value of each wolf, thereby ensuring the algorithm does not fall into local
optimum. Furthermore, the comparison and analysis of the proposed model with other models,
such as ELM–DE, ELM–Particle Swarm Optimization (ELM–PSO), and ELM–GWO shows that the
predictability evidence obtained substantially achieves better performance for ELM–IGWO with
respect to faster error convergence rate and mean square error (MSE) during training and testing
phases. The sensitivity study of the proposed ELM–IGWO provides better results in terms of the
performance measures, such as Theil’s U, mean absolute error (MAE), average relative variance
(ARV), mean average percentage error (MAPE), and minimal computational time.

Keywords: crude oil forecasting; survival of the fittest (SOF); extreme learning machine (ELM);
differential evolution (DE); particle swarm optimization (PSO); grey wolf optimizer (GWO); improved
grey wolf optimizer (IGWO)

1. Introduction

In the current financial market, the crude oil trading and prophesying of prices provide
excellent opportunities to the world’s economy as the volatility has risen sharply in recent
years and the traders have seen strong trends in producing consistent and good short-term
swings in trades and long-term investment strategies. Crude oil is one of the most important
energy sources used globally and due to its importance, a vast financial market based on
physical trading, as well as derivatives trading, exists. This commodity is especially
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important to the businesses that heavily depend on fuel, and has been one of the major
imports and exports of numerous countries. The importance of crude oil posed a vast
financial trading market and there is a need for some automated and computationally
effective forecasting models to predict the future and options for investments in this
commodity. Stakeholders, such as policymakers, trading companies, businesses, and
investors [1–3], may use precise forecasting to reduce losses and increase revenues in their
transactions. A commodity trading company and a company that utilizes crude oil as a raw
material wishing to profit from commodity markets, require a robust forecasting model
to predict the prices in advance. The outbreak of the COVID-19 pandemic and the recent
crisis among the European nations and Russia casts doubts on the market for crude oil [4].

Crude oil prices suffer from high volatility and fluctuations, which is the key issue of
the related financial market. To address such issues, the investors and traders are coming
up with several new automated models to produce more accurate results with respect to
the forecasting of crude oil prices. As a result, different policy makers, businesses, and
institutions are suspicious about this type of trading, which makes it very hard to accurately
predict the price in such volatile markets. This causes the market to fluctuate more than
previously in the near term. Statistical models were among the first to be exploited to
establish predictive models in crude oil price forecasting. The widely used traditional
autoregressive moving average (ARMA) [5] and autoregressive integrated moving average
(ARIMA) [6–9] models were adopted for forecasting the crude oil price, whereas some
other classical forecasting models are also proposed to address the same problem using gen-
eralized autoregressive conditional heteroscedastic (GARCH) [9–13]. However, when the
forecasting price under investigation is essentially linear or near-linear, the aforementioned
models offer reasonable prediction results and only capture a limited amount of irregulari-
ties observed in crude oil price data. In [6–13], the authors utilized the ARIMA to forecast
crude oil where they predicted the short-term price. GARCH, exponential generalized
autoregressive conditional heteroscedastic (EGARCH), and Glosten–Jagannathan–Runkle
GARCH (GJR–GARCH) forecasting models are also frequently used to tackle the non-
linearity problem, and it was observed that these models suffer from few limitations, such
as the transformation of non-linear data into a smooth linear form, the conversion of
non-stationary data to a stationary form and non-credibility of the obtained results from a
traditional model, as it forecasts the values of transformed data.

The wide use of artificial intelligence (AI) and machine learning (ML) strategies were
also explored for the development of many such forecasting models to resolve the afore-
mentioned irregularities for which the prices of crude oil vary in forecasting markets.
The ML approaches have shown the ability to cope with noisy and irregular patterns of
data problems on their own to address the drawbacks of these aforementioned models
and also can solve the problem of handling the chaotic and nonlinear pattern of data
over traditional approaches [14–20]. It was observed that the support vector machine
(SVM) [17–20], back-propagation neural networks (BPNN) [14,15,21], and extreme learning
machine (ELM) [22–24] along with a few other ML approaches such as random forest, fuzzy
logic, and a few other models are commonly employed while developing the forecasting
models [14–26] to achieve better predictive performance. Recent literature also demon-
strates the use of hybridized models for the purpose wherein, the capability of two or more
models are combined in order to develop hybridized predictive models. Some of these
models utilize the capabilities of nature-inspired optimization techniques to effectively
reduce the difference between real and predicted pricing. The widely used meta-heuristics
techniques to develop the hybridized models are ant colony optimization (ACO) [27–29],
particle swarm optimization (PSO) [30–35], artificial bee colony (ABC) [36], cuckoo search
(CS) [37], differential evolution (DE) [38–41], grey wolf optimization (GWO) [42–46], etc.

It was seen that almost all the prediction forecasting models are complex ones and
none are able to claim to be one hundred percent effective or accurate. The identification
and specification of predictive models pose a big challenge to the research community
because they need to be more precise and clear about the purpose of the model and need
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a process to judge the capability of the designed predictive or forecasting model. The
above-mentioned peculiarities of crude oil market analysis have motivated us to make
an attempt at developing a computational effective experimental model harnessing the
capabilities of ML and nature-inspired optimization techniques to forecast the future price
of crude oil, which may be of some help to aid investors, increase profit, and enhance
competitive advantage.

GWO is one of the meta-heuristic techniques proposed by Mirjalili [42] based on
the inspiration of grey wolves, which mimics the hunting mechanism and leadership
hierarchy of grey wolves. The ease of implementation, less storage, and computational
requirements made the GWO more attractive for researchers. Additionally, GWO has
faster convergence due to the continuous reduction of search spaces and thereby avoids
local minima by controlling only two parameters, making GWO more stable and robust.
Considering the above advantages of GWO [42–46], Jie-Sheng Wang et al. [47] proposed an
improved version of GWO, (IGWO), by utilizing the evolution and elimination mechanisms
for achieving better convergence and accuracy by adapting it to the survival of the fittest
(SOF) principle of the biological updating of nature. In other words, a proper compromise
had been achieved between the exploration and exploitation in IGWO over GWO. Authors
have explored the advantages of DE such as algorithmic simplicity, use of less parameters,
and ease of implementation to select the evolutionary pattern of wolves and they tried to
update the wolf packs based on SOF to get rid of issues associated with getting trapped
in local minima. The basic operations of DE, such as mutation, crossover, and selection,
made IGWO have a strong exploration ability and, in the later stages of convergence, the
difference between individuals and a population with a small value made the algorithm
strong enough with respect to exploitation ability. Authors have explored this IGWO with
twelve benchmark functions and also compared the performance of this IGWO with DE,
PSO, ABC, CS, GWO, etc., and witnessed interesting results with respect to convergence
and accuracy [47].

Due to the increase in complexity level and prevalence of non-linear patterns, short-
term predictions are a more challenging task in the case of crude oil price forecasting. This
is basically due to the different types and grades of crude oil and benchmarks that are being
utilized as a pricing reference. West Texas Intermediate (WTI), Brent Blend, and Dubai
Crude are the most often used benchmark datasets found in the literature [48–50]. In this
work, ELM was explored as a predictive network considering its fast and efficient learning
speed, fast convergence, good generalization ability, easy implementation mechanism,
because it does not require adjusting the input weights and hidden layer biases during the
implementation of the algorithm and it produces only one optimal solution. However, as
ELM is memory-heavy and suffers from high space and time complexity, the traditional
ELMs need to be optimized. The proposed hybrid forecasting model in this study was
motivated by the improved version of GWO (IGWO) [47] to develop an empirical compu-
tational forecasting model. The IGWO [47] method is utilized to achieve the right balance
between exploration and exploitation, as well as to speed up the convergence rate and
enhance the accuracy of the ELM network. The main contributions of this paper can be
stated as follows;

(a). A hybrid ELM [22–24] based on a short-term (1-day, 3-day, 5-day, 7-day, 15-day,
and 30-day) forecasting model ELM–IGWO is proposed, which effectively combined
ELM’s potential with the grey wolf multi-population search strategy.

(b). The hybridizing optimization methods offer their own set of benefits and also need
meticulous readjustment of specific parameters of the algorithm. In the ELM network,
the global best is regarded as the least objective value (error), whereas, the global
worst is considered the greatest objective value (error). To start with, the biases
and weights are chosen randomly, and the weight is modified using optimization
techniques in the following iteration, and so on until the process is complete.
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(c). The IGWO [47] method is utilized to achieve the right balance between exploration
and exploitation, as well as to speed up the convergence rate and thereby enhance the
accuracy of the ELM network.

(d). In the proposed model of IGWO, where DE speeds up the convergence rate, the SOF
principle in IGWO [47] is capable of handling the non-linearity nature of the crude
oil price.

(e). Two datasets, the WTI crude oil and the Brent future oil datasets [48,51], were ex-
perimented on and were used to expand the model’s feasibility by augmenting the
original crude oil datasets with a few technical indicators (Tis) and statistical measures
(SMs) to increase the dimensionality of the original datasets [52,53]. These were finally
given as inputs into the proposed ELM–IGWO crude oil forecasting model.

(f). The proposed forecasting model is compared based on mean squared error (MSE)
with other hybrid ELM-based forecasting models such as ELM–DE, ELM–PSO, and
ELM–GWO to validate the superiority of the results obtained.

(g). The forecasting ability of the proposed model is established based on actual price
vs. predicted price for both datasets for the three combinations of the augmented
form of datasets such as original dataset +Tis, original dataset +SMs, and original
dataset + Tis + SMs.

(h). Finally, the model’s validation was performed based on MSE, Theil’s U, mean absolute
error (MAE), average relative variance (ARV) and mean absolute percentage error
(MAPE), and comparison based on CPU time utilization (in seconds) [53].

The rest of the paper is organized as follows: brief discussions on the different crude
oil prediction models are presented as a literature survey in Section 2. The methodologies
adopted in this approach are discussed in Section 3, which includes the ELM, DE, PSO,
GWO, and IGWO. The experimental scenario is discussed in Sections 4 and 5 discusses the
results of this study. Finally, Section 6 concludes this work with the future scope.

2. The Literature Review

In this article, different econometric models are studied to forecast the price of crude
oil. GARCH models are used to characterize crude oil price variations. Wang and Wu used
GARCH family models to estimate the volatility of four distinct energy commodities in
2012 [9–13]. Many statistical forecasting models were proposed that show a better accuracy
using ARIMA [5–9]. In another approach, the authors have used the Markov-switching
AR–ARCH model to predict three distinct crude oil prices [54]. It was observed that
better results can be obtained by using a self-exciting threshold auto regressive algorithm as
suggested by the authors in [55] when the data are stationary and linear in nature. However,
they cannot account for the nonlinearity and complexities of crude oil pricing. Due to those
challenges, some researchers have used AI and ML in their research to achieve the same
objective [14–20]. Furthermore, various artificial neural network-based models were also
proposed as these technologies can handle intricacy and nonlinearity data and hence can
provide a better accuracy over traditional approaches of forecasting crude oil price [56].

The authors in [57] have investigated and observed that the parameter sensitivity and
overfitting of the data utilized can influence the use of a single technique for the prediction
of oil prices. In order to improve the accuracy of forecasting models, researchers have
created hybrid techniques based on optimization strategies to predict crude oil prices. To
forecast the WTI crude oil spot prices, a hybrid model was proposed where the deconstruc-
tion of data takes place using the Harr-A-Trous wavelet transform before applying it to
the BPNN algorithm and this hybrid technique appears to beat the benchmark models,
according to researchers [14,15,21]. Some hybrid works were also carried out by merging
the genetic algorithm (GA) with the SVM which was proven to give better results than the
traditional approaches [58]. In another approach, the author utilized value at risk (VAR)
for determining the determinants of the price, and the determinant value is fed to the GA
for optimizing the parameters of the SVM to accurately predict crude oil price named as
VARSVM [59]. The authors in [48] used a mix of variational mode decomposition (VMD)
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and an ARIMA model to forecast crude oil prices. VMD is used to extract risk variables,
which are then modeled with ARMA–GARCH [60].

The optimal parameters are obtained using optimization methods of the forecasting
techniques such as ANN and SVM with the much-generalized optimizations techniques
such as; GA, PSO, ABC, etc. to discover the model’s best parameters. The PSO optimizer is
one of the most prominent computational algorithms used in forecasting research. Finding
the best settings via conventional PSO proved perplexing, and it also resulted in local
minima [30–35,61]. However, an adaptive PSO technique was developed to address the flaw
identified by the authors in [62] which aids in the discovery of the best system and control
parameters. Another approach was also developed using poly-hybrid PSO for intelligent
parameter modification. A hybrid model was proposed where a computational technique
was dubbed the flower pollination algorithm (FPA), which can optimize parameters of
the forecasting models very well. In terms of resolving optimization difficulties, this FPA
technique outperforms GA and PSO [63,64]. In another approach, the author combines FPA
and BPNN to create a hybrid model that forecasts OPEC nations’ petroleum consumption.
By providing fewer forecast errors, this model beats other hybrid models [54]. The trade
patterns were changed due to the tight oil revolution along with worldwide demand and
supply. To analyze movements of the Brent–WTI spread over 15 years (2005–2020), Isabella
Ruble et al. [49] developed three scenarios using ARIMAX–GARCH and Markov-switching
models, which estimate the impact of crude oil trader’s decisions on the Brent–WTI spread.
In order to identify the decoupling and recoupling between WTI and Brent crude oil prices,
Loretta Mastroeni et al. [50] proposed a dynamic time warping (DTW) algorithm. Authors
have presented DTW-based indexes considering relative alignment index and wrapping
index, which show the greatest decoupling between WTI and Brent occurs because of
WTI local market conditions. Overall, the existing literature shows that academicians and
researchers have attempted to estimate crude oil prices using traditional models for a long
time. Because of the shifting of trading conditions, oil market participants must be aware
of new approaches for predicting oil prices. The investigation in this study looks at how
automated learning approaches along with nature-inspired algorithms may be used to
predict future crude oil prices.

Additionally, we extracted the statistics of research carried out in crude oil forecasting
performed by academicians and researchers worldwide during 1975–2023 from the Scopus
database. These data were extracted on 1 March 2022 using the keyword “crude oil
forecasting”, which is shown in Figure 1a–c and represents the research carried out in this
particular application from the year 1975–2023, which also indicated that more research was
carried out during the years 2018–2022 in a source of publications such as journal articles,
conference proceedings, reviews, book chapters, books, etc., and in different subject areas
that include crude oil forecasting. Additionally, here, we discussed a few recent ML-based
hybrid crude oil forecasting models during 2019–2022 and these are summarized in Table 1.
To be in line with studied and presented literature in this section, this current work aims at
the development of an accurate and computational effective crude oil forecasting model
which captures the irregularities of this volatile and risky financial market [1–4,65–67] by
exploring ELM with an IGWO optimization algorithm for WTI and Brent crude oil.
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Figure 1. (a). Yearly representation of crude oil prediction; (b). Type of documents published
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oil prediction.

Table 1. Summary of the recent studies on crude oil price forecasting during 2019–2022.

Source Year Objective(s) Model(s) Adopted Finding(s) Pros Cons

Kaijian Hea
et al. [68] 2022

To calculate the
value at risk

factor of crude oil

Md VaR based risk
forecasting model

using multiple
mode

decomposition
model and Quantile

regression neural
network

The proposed model is
used to calculate VaR by
using a semi-parametric
data-driven approach for
both normal market and

transient market
conditions.

The VaR estimated by
the proposed MD VaR

model gives more
reliability and

accuracy

The complex
risk structure
has not been

analyzed.

Zhonglu Chen
et al. [69] 2022

To predict the
realized volatility
of China’s crude

oil futures

Mixed data
sampling (MIDAS)

modeling
framework:

MIDAS–RV Model

In this work, both the
jump and leverage effects
are used to predict the RV

of Chinese crude oil
futures, where jump is
used for the short-term

and leverage effects used
for long-term prediction.

The model is robust
and economic.

During the COVID-19
epidemic, the model
is used to guide the
investors as well as
market participants.
It also reduces the
investment risks

-
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Table 1. Cont.

Source Year Objective(s) Model(s) Adopted Finding(s) Pros Cons

Yuan Zhao
et al. [70] 2021

To improve the
accuracy of online

real-time price
forecasting for

crude oil.

PSO–VMD
algorithm and the
and PVMD–SVM–

ARMA
model

In this paper, an improved
variational mode

decomposition is used
with PSO to optimize the
parameters and then the
proposed hybrid model

established the
characteristics of

sub-sequences, and the
interval prediction model

is constructed with the
combination of point
prediction model and

Bootstrap sampling and
finally, these can be used
as a predictor to predict

the online real-time price
of crude oil.

The model poses
flexibility and

accuracy, which can
give more

information for
people working

with oil.

The method
used for

prediction is
only mint
for small

samples and
short-term

periods.

Binrong Wu
et al. [71] 2021 Effective crude oil

price predicting

Convolutional
neural network
(CNN), VMD

In order to predict the
crude oil price, here, a
combined approach of

Google trends and news
text information was

proposed which applied
the following

methodologies:
relationship investigation,
deep learning techniques,

and decomposition
techniques.

This approach
provides satisfactory
accuracy for crude oil

price prediction.
Google trends and

news text information
can promote
each other.

The Google
trends used in
this approach
are a complex

process.
Except for

VMD, no other
decomposition

techniques
were used to
improve the

accuracy.

Taiyong Li
et al. [72] 2021

To reduce the
complexity rises

in Crude oil price
forecasting

VMD and random
sparse Bayesian
learning (RSBL)

VMD–RSBL

Here the authors have
introduced random

samples and random lags
(features) into SBL and

built an individual
forecasting model with

the combination of VMD
and RSBL.

The proposed
VMD–RSBL model is
effective and efficient

The method is
not applied for

multivariate
price

forecasting

Hooman
Abdollahi [73] 2020

To improve the
accuracy of crude

oil price
prediction by

considering the
characteristics

that exist in the
oil price

time series

Model by
hybridizing the
methods such as

complete ensemble
empirical mode
decomposition,
support vector

machine, particle
swarm

optimization, and
Markov-switching

generalized
autoregressive

conditional
heteroskedasticity

The algorithm is used as
an effective tool for

predicting nonlinear
components and both the

forecasted nonlinear
components and volatile
components result in the

reliable forecast of the
oil price.

The model predicted
the volatile

components with
appropriate accuracy

and gives the best
performance while

forecasting the
component with

low volatility.

The model was
not applied to
forecast other

energy
commodities in
order to prove
the robustness
and generaliz-

ability.

Ling Lin
et al. [74] 2020

To forecast crude
oil price by

considering the
long memory,
asymmetric,
heavy-tail

distribution,
nonlinear, and
non-stationary

characteristics of
crude oil price.

The model
combined the
complex long

memory
GARCH-M with
wavelet analysis

The model can forecast
the crude oil price during

periods of extreme
incidents. MS–DR method
and crude oil volatility are
being used here to model
large fluctuations within
the forecasting interval.

The model proposed
can provide beneficial
information required

for the process of
forecasting and

Helps the investors to
determine overall
trends in oil prices

reduce the
market risks.

-
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Table 1. Cont.

Source Year Objective(s) Model(s) Adopted Finding(s) Pros Cons

Shangkun
Deng et al. [75] 2019

To predict the
changes of crude
oil price, as well

as execute
simulated
trading.

Hybrid model
based on multiple

timeframes
dynamic time

wrapping and GA
is developed for

direction
forecasting and

simulation trading

The proposed method
includes four components

such as;
(1) Data Pre-processing,
(2) Multiple timeframes

DTW prediction,
(3) GA parameters

optimization, and (4)
Prediction, trading,

and evaluation

The model gives high
performances in
terms of hit ratio,

accumulated return,
and Sharpe ratio, and

the results are
significantly superior
to that of benchmark
methods. It can also
provide beneficial

information to
investors,

energy-related
enterprises, and

government officers
engaged in policy

decisions.

The model
should work

with short
term data

3. Methodologies Adopted

The various methodologies adopted for experimentation of the proposed forecasting
model such as ELM and a few nature-inspired optimization techniques used for experi-
mentation such as DE, PSO, standard GWO, and IGWO are discussed in detail.

3.1. Extreme Learning Machine (ELM)

In this forecasting model, randomly selected input parameters and a hidden layer
parameters-based ML algorithm are firstly presented by [22–24] named ELM. They pro-
posed this algorithm based on the single hidden layer feed-forward network. The advan-
tage of using this algorithm is that it does not require any fine-tuning of parameters at
each iteration, which makes for faster convergence of error, and also the ELM has a faster
learning rate and higher speculation execution than gradient-based learning techniques,
such as back-propagation. In this algorithm, a generalized inverse operation is applied
to the hidden layer to get the weights of the output. Customary gradient-based learning
has various issues including neighborhood minima, over-fitting, and erroneous parameter
setting, which can be avoided by utilizing the ELM. To overcome those, the parameters of
ELM were optimized using IGWO, which had been motivated by the work of Jie-Sheng
Wang et al. [47].

3.2. Differential Evolution (DE)

DE is one of the extensively used evolutionary algorithms in areas addressing op-
timization issues. Based on Darwin’s theory of evolution, this algorithm finds scope in
problems that are characterized by nonlinearity, discontinuity, multimodality, and non-
differentiability. Being an evolutionary algorithm, DE is capable of generating new off-
springs by perturbing the solutions with scaled difference vectors and new offsprings are
generated by recombining solutions pertaining to different values using genetic operators
such as mutation selection and crossover [39]. In every generation the current individual
solution is replaced with a new offspring with a better solution and this optimization algo-
rithm’s implementation is considerably simpler and more straightforward than many of the
other meta-heuristic search algorithms, which is perhaps the reason why many researchers
have studied it extensively [40]. DE is considerably different from other evolutionary algo-
rithms as it mutates the secondary parents with distinct members of the current population
with ascended differences, which is a property called self-referential mutation [41]. The first
step in this algorithm is to initialize a random population Np, which is characterized by
d number of real-valued decision vectors. Here, each vector is a genome/chromosome and
is a candidate solution to the d—dimensional optimization problem. After initialization,
the mutation is performed. There are many mutation strategies available and a generic con-
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vention of naming mutation strategies is DE/x/y/z, where DE represents DE, x represents
the string with the vector that is perturbed, y indicates the number of vectors considered
for perturbation and z represents the type of crossover operation that is to be used.

3.3. Particle Swarm Optimization (PSO)

The PSO is a meta-heuristic algorithm based on the concept of swarm intelligence. It
was proposed by Kennedy and Eberhart in 1995 and solves complex engineering problems
effectively. The principle of this algorithm is to find a place for a swarm of flying birds
to land where the availability of food is maximized as well as the risk of the existence of
predators is minimized. The PSO is a population-based distributed learning scheme. The
key steps of this algorithm are presented in a concise manner [30–33]. The various appli-
cation areas of PSO are forecasting, classification, clustering, and function approximation.
The PSO is applied to the fields of sensory networks, security, smart grids, the financial
sector, healthcare, and manufacturing. The PSO is a simple optimization algorithm but
performance-wise is slower in learning and accuracy-wise is satisfactory. Many variants of
PSO were reported to improve on these two shortcomings. Multi-objective PSO was also
developed to solve multi-objectives, multi-variables, and multi-constraint optimization
problems [34,35].

3.4. Standard GWO Algorithm

In [42], the author presented a populace knowledge framework known as the GWO, as
given in Figure 2, motivated by grey wolf predation conduct for optimization of parameters.
This algorithm is proposed by Mirjalili based on the inspiration of grey wolves, which
mimics the hunting mechanism and leadership hierarchy of grey wolves. The leadership
hierarchy is simulated by alpha, beta, delta, and omega wolves.
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The fittest solution is alpha, the second- and third-best solutions are beta and delta. The
rest of each member of the population is represented by omega. The GWO involves three
main steps of hunting such as prey searching, prey encircling, and prey attacking [42–46].
During the searching and hunting phases, all omega wolves are guided by the alpha, beta,
and delta wolves. When prey is found, the process begins. Then, the alpha, beta, and delta
wolves lead and guide the omega wolves so that the prey is encircled. The GWO involves a
smaller number of search parameters but provides competitive performance compared to
other meta-heuristic methods.

Assuming that in d-dimensional space, the grey wolf pack {Qi. i = 1, 2, 3, . . . , n} con-
sists of n grey wolves. The GWO algorithm is described as follows:

(a). Enclosure stage: In this stage, they initially circle the prey after the wolf determines
the situation of their prey. Numerically it can be presented using Equations (1) and
(2). The distance between the prey and the wolf is represented by Dgp, whereas the
position of the prey and the wolf after the tth iteration is represented by Qp(t) and
Q(t), respectively. The coefficient factors M.N are illustrated in Equations (2) and (3),
respectively.

Dgp =
∣∣N.Qp(t)−Q(t)

∣∣ (1)

Q(t + 1) = Qp(t)−M.Dgp (2)

M = 2e× Rn1 − e (3)

N = 2× Rn2 (4)

In Equations (3) and (4), the values of random numbers are kept between [0, 1] and
are represented as Rn1 and Rn2, respectively. In this algorithm, t is the iteration number,
max represents the maximum number of iterations. Here, with an increase in iterations, the
e value decreases from 2 to 0 as given in Equation (5).

e = 2− 2
(

t
max

)
(5)

(b). Hunting stage: During this stage, the alpha wolf will rapidly discover the situation
of the prey and quest for the prey. At the point when the alpha wolf discovers the
situation of the prey, the wolves alpha, beta, and delta have a specific comprehension
of the situation of the prey and expect w to move toward the situation of the prey.
This is the prey cycle of wolves. After the attack stage is finished, the alpha wolf
leads wolves beta and delta to chase down their prey. During the time spent hunting,
the situation of individual wolves will move with the getaway of the prey. Where
Qaplha, Qbeta and Qdelta represent the current positions of wolves alpha, beta, and delta
as mentioned in Equations (6)–(8), respectively, and Q(t) indicates the current grey
wolf position. N1, N2 and N3 are random vectors and the location of the wolf was
updated using Equation (9).

Q1 = Qalpha − A1

∣∣∣N1Qalpha(t)−Q(t)
∣∣∣ (6)

Q2 = Qbeta − A2|N2Qbeta(t)−Q(t)| (7)

Q3 = Qdelta − A3|N3Qdelta(t)−Q(t)| (8)

Q(t + 1) =
Q1 + Q2 + Q3

3
(9)

In GWO, exploration means that the wolf leaves the original search path and searches
for a new search space and exploitation refers to searching for a direction in an unknown
region. In other words, wolves try to continue for a search by exploiting the original search
space to a certain extent with a detailed search in a region that is explored. Therefore, the
GWO is good at obtaining a compromise between exploration and exploitation [65].
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3.5. Improved Grey Wolf Optimizer (IGWO)

The SOF principle is the key factor in the proposed IGWO algorithm, which had been
proposed by Jie-Sheng Wang et al. [47]. The detailed idea of this approach is that the IGWO
is proposed to expand the GWO’s exploitation with the SOF feature and is explained in this
section, this motivated us to hybridize this IGWO with ELM for developing a forecasting
model to predict the future price of crude oil datasets. The SOF idea of the organic refreshing
of nature and organic advancement is added to the traditional GWO in the IGWO. The
differential advancement strategy was picked as the developmental example of wolves
in this work since it enjoys the benefits of a straightforward idea, has less calculation
boundaries, and is simple to execute. Therefore, the algorithm does not fall into the local
optimal solution, and the wolf pack is refreshed by the SOF standard. That is, sorting the
wellness esteems that relate to each wolf that rises after every cycle of the algorithm. The
evolution operation with GWO was stated clearly in [47]. The SOF development law causes
wolves to become stronger over time. In addition, the development activity is added to
fundamental GWO to work on the algorithm’s looking through speed. DE was picked up
as an advanced method to adopt the difference among the individuals to recombine the
population and obtain intermediate individuals to obtain the next generation’s population
through a competition between parent and offspring based on three basic operations:
mutation, crossover, and selection and finally, the wolf’s position is updated after this
evolution operation.

(a) Mutation Operation

In differential development, the most conspicuous aspect is the mutation operation
as the offsprings are dependent on this. When a person is chosen, two weight disparities
are added to the individual to achieve variety. The difference vector of the parents is the
core variation element of differential development, and each vector comprises two distinct
individuals

(
Qt

r1, Qt
r2
)

of the parent (the tth generation). The following is the definition of
the difference vector. Mutation activity is the most prominent part of differential develop-
ment. At the point when an individual is picked, two weight disparities are added to the
person to accomplish the assortment. The distinction vector of the parents is the center va-
riety component of differential development, and every vector contains two unmistakable
people

(
Qt

r1, Qt
r2
)

of the parent (the tth generation). Coming up next is the meaning of the
distinction vector.

Dd12 = Qt
r1 −Qt

r2 (10)

where r1 and r2 are the index numbers of two distinct populations. As a result, the mutation
operation may be summarized in Equation (11). To ensure that wolves can advance in the
way that is best for their development, an ideal variety factor should be made. Therefore,
this paper chooses magnificent wolves as guardians. Beta and delta are picked up as
two parents after countless reproduction preliminaries and afterward converged with the
alpha wolf to create a variety factor. Accordingly, Equation (12) is utilized to develop the
variety factor. A unique scaling factor is utilized to give the calculation a solid investigation
capacity in the beginning phases to fall into local optima and a high double-dealing capacity
in the last stages to accelerate the combination. Thus, the scaling factor F changes from
large to small contingent upon the number of cycles in Equation (13). The scaling factors
are represented by fmin and fmax.

Vt+1
i = Qt

r1 −Qt
r2 (11)

Vt+1
i = Qt

a + F× (Qt
r1 −Qt

r2) (12)

F = fmin + ( fmax − fmin)×
Max_iteration− (iteration− 1)

Max_iteration
(13)

(b) Crossover Operation
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This operation makes the wolves’ objective vector individual Qt
i go through a hybrid

activity with the variety vector Vt+1
i , bringing about a test individual Ut+1

i . To guarantee
that every individual Qt

i advances, an irregular picking approach is utilized to guarantee
that somewhere around the slightest bit of Ut+1

i is provided by Ut+1
i . The hybrid likelihood

factor, CR, is used to figure out what piece of Ut+1
i is provided by Vt+1

i and what touch
is contributed by Qt

i for the excess pieces of Ut+1
i . The mathematical formulation of the

crossover operation is given in Equation (14).

Ut+1
ij =

{
Vt+1

i , rand(j) ≤ CR or j = randn(i)
Qt

i , rand(j) ≥ CR or j 6= randn(i)
j = 1, 2, 3, . . . . . . D (14)

The random uniform distribution is obeyed by rand(j) ∈ [0, 1], j is the jth variable,
CR is the crossing probability and rand(i) ∈ [1, 2, 3, . . . .D]. When the CR is more than one,
Vt+1

i is able to contribute more to Ut+1
i , as shown in Equation (14). When the CR is equal

to one, Ut+1
i = Vt+1

i . If the CR is lower, Qt
i will be able to contribute more to Ut+1

i .

(c) Selection Operation

The selection procedure employs the greedy choice approach and it creates the experi-
mental individual Ut+1

i after the mutation and crossover operations, and then completes it
with Qt

i and is expressed in Equation (15). In this equation, the fitness function is repre-
sented by f and Qt+1

i is the tth generation individual. The person with the best fitness is
chosen as an individual of (t + 1) generation from Ut+1

i and Qt
i , and the individual of the

tth generation is replaced.

Qt+1
ij =

{
Ut+1

i , f
(
Ut+1

i
)
< f

(
Qt

i
)

Qt
i , f

(
Ut+1

i
)
< f

(
Qt

i
) i = 1, 2, 3, . . . . . . n (15)

The basic operations of DE, such as mutation, crossover, and selection, made this
IGWO have a strong exploration ability and in the later stages of convergence, the dif-
ference between individuals and a population with a small value made the algorithm
strong enough with respect to exploitation ability. The updating mechanism based on the
SOF principle for IGWO suggested by authors in [47] can be stated as follows. “As it is
known that, in reality some of the vulnerable wolves need to be eliminated or discarded to
overcome the challenges associated with uneven distribution of prey, hunger, disease and
few other specific reasons and new wolves must undergo the SOF principle and join the
wolf community or wolf pack”. This SOF principle updates the wolf pack and makes the
algorithm stronger so as not to fall into the local optima problem. The key principles of this
IGWO [47] can be stated as:

(a). The strength of the wolves with respect to fitness value is measured by keeping the
number of wolves fixed in a wolf pack and the concept says the wolf with the largest
fitness value is chosen as the better one.

(b). In this way, at each iteration, the fitness values of the wolves are sorted in ascending
order thereby eliminating the wolves with a larger fitness value, and random new
wolves are generated matching the number of wolves eliminated.

(c). It can be observed that, when the numbers of wolves with a high fitness value are
large, that leads to generating the same large number of new wolves and this type
of case leads to slow convergence speed because of large search space. Similarly,
if the fitness value is chosen to be too small, the diversity of the population is not
guaranteed, which results in the inability of exploring new solution spaces. Therefore,
the authors have proposed to have a random fitness value.
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(d). In this work, the fitness value was chosen to be between the range [n/ε, n/0.75× ε]
using Equation (16), where the total number of wolves is represented as n, and the
wolf updating scaling parameter is termed as ε.

R = [n/ε, n/0.75× ε] (16)

The following are the major steps in the procedure for the IGWO algorithm:

(1) Creating the population of grey wolves by defining the factors such as e, M, and N
for a randomly generated wolf location Qi(I = 1, 2, . . . n).

(2) Determining each wolf’s fitness and, based on the fitness value, defining the best three
wolves as alpha, beta, and delta, respectively.

(3) Making necessary adjustments and updating the positions of the other wolves, i.e.,
the w wolf, according to Equations (5)–(11).

(4) The evolution of the proposed algorithm is carried out based on constructing a
variation factor, using alpha, beta, and delta as described in Equation (12). After the
crossover and selection operations, choosing a fit animal to be the next generation’s
wolf, selecting the top three of them, and defining them as alpha, beta, and delta, in
that order.

(5) Sorting the wolves’ fitness values by eliminating the wolves with the highest fitness
value and creating random R wolves using Equation (16).

(6) Making necessary changes to factors e, M, and N using Equations (3)–(5).
(7) Determining the alpha’s position and fitness value if the termination condition is

satisfied. If optimal position is not obtained, go back to step one (2).

4. Experimentation and Result Analysis

This section outlines the schematic representation of the proposed ELM–IGWO fore-
casting model (shown in Figure 3), the datasets description, and its’ preliminary statistics.
In this approach, the comparison of the proposed ELM–IGWO was carried out with ELM–
DE, ELM–PSO, and ELM–GWO. The datasets WTI future crude oil and Brent future crude
oil dataset were utilized for forecasting [51]. Here, the short-term dynamics of the crude oil
future price were predicted for 1 day, 3 days, 5 days, 7 days, 15 days, and one month ahead
and the simulation of the proposed work is carried out on MatLab 2017a with an i5 11th
generation processor.
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4.1. Model Description

A crude oil forecasting model based on ELM–IGWO was proposed in this study. The
TIs and SMs [52,53] were used to increase the dimensionality of the original datasets and
to get an augmented form of the datasets. These augmented datasets were given as the
input to the proposed forecasting model. Figure 3 depicts an exchange rate price prediction
model utilizing IGWO for crude oil datasets. The model was trained as a prediction model
using ELM, with a time frame of a few days ahead as the output. The result for a one-day
forecast contained the value for the following day, the output for a three-day prediction
contained the value for the next three days, and so on. The result of the ELM’s calculation
is analyzed with the expected value to reflect the errors. Randomly produced weights and
bias have a significant impact on the predictive model, as well as resulting in non-optimal
solutions. As a result, the IGWO [47] was used to optimize the weights and bias.

This proposed ELM–IGWO forecasting model has four stages of operation. In the first
phase, two crude oil datasets such as WTI crude oil spot cost and Brent oil futures [51]
were collected for the last five years from 2016 to 2021. Three variations datasets were
reconstructed by augmenting TIs (original dataset + TIs), SMs (original datasets + SMs),
and TIs and SMs (original dataset + TIs + SMs), and then those augmented datasets were
divided into training and testing sets with a 70:30 ratio in the second phase.

In the third phase, the ELM–DE, ELM–PSO, ELM–GWO, and ELM–IGWO models
were experimented with and finally, in the fourth phase, a well-defined comparison was
made among all the experimented forecasting models and learning curves, convergence
speed was recorded along with the predicted value of the opening price. The proposed
ELM–IGWO was validated based on Theil’s U, MAE, ARV, and MAPE. Finally, the overall
improvement of the proposed forecasting model and time complexity was measured over
ELM–DE, ELM–PSO, and ELM–GWO.

4.2. Parameters Considered

The various parameters chosen for ELM, DE, PSO, GWO, and IGWO during experi-
mentation are shown in Table 2.

Table 2. Various parameters and their experimental settings.

Forecasting Models Parameters Values

ELM
Hidden Neurons 10

Weight Range [0, 1]

DE
Crossover Probability 0.25

Scaling factor range [Max, Min] [0.2, 0.9]

PSO

Search coefficient C1 2.5

Search coefficient C2 1.3

Inertia Weight 0.8

GWO e (Decreased linearly) 2.0

IGWO
e (Decreased linearly) 2.0

Crossover probability 0.2

Scaling factor range [Max, Min] [0.2, 0.9]
The population size and maximum iteration were both considered as 100 for all optimization algorithms.

4.3. Data Description and Data Augmentation

The detailed descriptions of the used TIs and SMs are mentioned in Table 3. The
literature suggests that short-term forecasting mostly uses 10–30 days of crossover and for
long-term forecasting, it is advisable to consider the window of 50–200 days, though in
reality there is no set combination for choosing window sizes. In this study, the data of
the corresponding analytical measures are determined using historical exchange rate data
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and a window size of 12 days [20]. The idea behind choosing this 12-day window size is
that it reacts more quickly to the changes in price trends than the previous pair rather than
choosing a longer-term of 50–200 days, which may be more susceptible to whipsaws.

Table 3. Formula for TIs and SMs.

Technical Indicators and
Statistical Measures Formula

Simple Moving Average (SMA) SMA = Summation o f n days open price
n

Del C Del C =
(
ith + 1

)
open price− ith open price

Momentum Momentum = Open Price (p)
Open Price (p−n)×100

Exponential Moving Average (EMA)
EMA =

(
PriceToday × SF

)
+ (EMAYeasterday × (1− SF)

SF(Smoothing f actor) = 2
k+1 , k = the length o f EMA

Average True Range (ATR) ATR =
ATRt−1X(n−1)+TR

n
TR = Max((Today′sHigh− Today′sLow), (Today′sHigh− Today′sOpen), (Today′sOpen− Today′sLow))

Relative Strength Index (RSI) RSI = 100− 100
(1+RS) where RS = AVG n′Days upOpen

AVG n′days down Open

William’s %R %R = HIghest High−Open
Highest High−Lowest low × 100

Moving average convergence
divergence (MACD) MACD = 12 days EMA− 26 days EMA

Stochastic Oscillator (%K)

%K = 100× (O−L12)
(H12−L12)

where O is most recent opening price, L12 is the lowest price o f

the t previous trading session and

H12 is the highest price o f the t previous trading session

Mean
Mean = 1

N

N
∑

i=1
ai

where a1, a2, a3 are the values that contained in dataset.

Standard Deviation (StdDev) Standard Deviation =
√

1
N

N
∑

i=1
(xi − µ)2

The WTI crude petroleum spot cost and Brent crude oil spot cost (in US dollars per
barrel) series from [48–50] is utilized as the trial test in this experiment to obtain the
information for the exchange rate projection. A total of 70% of the dataset was utilized for
training and 30% was utilized for testing in this experiment. Table 4 depicts the datasets
along with their data range. The dimensionality of the dataset was augmented based on
TIs and SMs as discussed above, such as SMA, Del C, Momentum, EMA, ATR, RSI, Williams
%R, MACD, stochastic oscillator %K, and statistical measures such as StdDev and mean
were computed on the datasets, as mentioned in Table 3.

Table 4. Description of data samples and data range.

Datasets Total Samples Data Range Training Sample Test Sample

WTI Crude Oil
Spot Cost 1341 25 July 2016 to

23 August 2021 940 401

Brent Oil Futures 1311 25 July 2016 to
23 August 2021 917 394

In this proposed approach, all the common parameters were kept constant for all
experimental findings. Here, the common parameters were population size and the number
of iterations and both were set to 100 in this experiment. The algorithm-specific parameters
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for ELM have a single hidden layer, with fifteen nodes taken into account to deliver a
reasonable output of the required data.

5. Result Analysis

This section focuses on the results obtained for the ELM–IGWO forecasting model.
The comparative error rate of ELM–DE, ELM–PSO, EM–GWO with ELPM–IGWO, and also
the convergence rate with respect to short-term predictive days of different intervals for
both the datasets of ELM–IGWO are discussed. The actual vs. predicted results obtained
for those two datasets for three different combinations of datasets are also presented for
short-term forecasting. The validation of the proposed model based on MSE, Theil’s U,
MAE, ARV, MAPE, and also the time taken for all the experimented forecasting models are
recorded to validate and get better insight into the proposed model.

5.1. Description and Analysis of Error Convergence Graphs

The hybrid optimization methods offer their own set of benefits and also need meticu-
lous readjustment for specific parameters of the algorithm. Algorithm-specific parameters,
each of which is unique to the algorithm, have a significant impact on its performance.
A local best solution is the outcome of improper tuning specific parameters used in the
algorithm. In the proposed approach, due to the parametric non-tuning capability of ELM,
this is used as an objective function. The global best is regarded as the least objective value
(error), whereas, the global worst is considered the greatest objective value (error). The
network architecture used in this study has fifteen nodes in the ELM hidden layer. For the
first iteration, the biases and weights are chosen randomly, and the weight is modified using
optimization techniques in the following iteration, and so on until the process is complete.

The convergence of error for each of the discussed optimization algorithms along
with some previous approaches are presented in this study for both of the datasets. The
error convergence graph of ELM–DE, ELM–PSO, ELM–GWO, and ELM–IGWO is given
in Figure 4a,b for WTI and Brent crude oil datasets, respectively. The convergence speed
during the training processes for the WTI crude oil dataset, shown in Figure 4a, can be
observed as the proposed ELM–IGWO is converging at approximately the 45th iteration
whereas, ELM–PSO and ELM–GWO are converging at approximately the 87th and 50th
iteration. Though ELM–DE is converging at the 25th iteration the error rate is high in
comparison to the rest of other models and the proposed ELM–IGWO. The convergence
error observation for the Brent crude oil dataset during the training phase from Figure 4b
can be stated as: the proposed ELM–IGWO is converging at the 24th iteration, whereas,
ELM–DE, ELM–PSO, and ELM–GWO are converging at the 78th, 80th, and 80th iterations,
respectively. It can be summarized that the proposed ELM–IGWO is really outperform-
ing with respect to MSE in both the training and testing phases of experimentation in
comparison to the other three compared forecasting models.

Figure 5a–d illustrate the error convergence graphs for the WTI crude oil rate dataset
using the ELM–DE, ELM–PSO, ELM–GWO, and ELM–IGWO models, respectively, for
different intervals of days. From those figures, it can be inferred that the proposed ELM–
IGWO is converged at the 60th iteration with <0.047 MSE, and ELM–GWO is somehow
being converged at the same iteration with an MSE of <0.49 for 30 days ahead of prediction.
Similarly, it can be observed that the proposed ELM–IGWO is showing good performance
over the rest of the compared models for all the days of predictions made and is converging
at approximately the 60th iteration with an MSE < 0.05 for all six days of predictions ahead.
The ELM–DE and EML–PSO are converging approximately at the 65th iteration with an
MSE < 0.18 and an MSE < 0.14 for all six days of prediction timeframes. The ELM–GWO is
converging at approximately the 60th iteration for all six days of predictions made with
an approximate MSE < 0.14. From this figure, it can be seen that in all cases, the proposed
ELM–IGWO has a good convergence rate for all six days of predictions made with less
error during the training phase for the WTI crude oil rate dataset.
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Figure 6a,d represent the error convergence graphs using different models, i.e., ELM–
DE, ELM–PSO, ELM–GWO, and ELM–IGWO, respectively, for different days of interval.
The suggested ELM forecasting model utilizing IGWO converges better than ELM–PSO
in the case of Brent crude oil, which can be understood from those figures. The proposed
ELM–IGWO is outperforming the rest of all the other models with respect to the rate of
convergence and error rate for all six timeframes of forecasting made, and all the curves
are converging very well from the 5th iterations (only 30-day curves are from the 55th
iteration) with an MSE < 0.05. However, the rest of the models were converging from the
20th, 10th, and 6th iterations with an MSE < 0.15, MSE < 0.13, and MSE < 0.10 for ELM–DE,
ELM–PSO, and ELM–GWO, respectively, for six days of forecasting made for the Brent
crude oil dataset during the training phase.
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5.2. Forecasting Results and Discussions

In this section, the results obtained from different TIs and the SMs are presented and
discussed and compared with each other and the proposed algorithm. A technical analysis
graph of the ELM–IGWO algorithm is presented in Figure 7 for different intervals of days
based on TIs (original datasets + TIs). Furthermore, the price forecasting graphs are also
presented in Figure 8 for different intervals of days, which show the actual values along
with the projected values of the WTI crude oil based on SMs (original dataset + TSMs). To
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have a better picture of the result obtained from Figures 7 and 8, a comparative analysis
is presented in Figure 9 including the TIs as well as SMs (original dataset + TIs + SMs).
Figure 10 shows the predicted and actual opening price of crude oil utilizing the Brent future
oil dataset for different day frames based on TIs (original dataset + TIs). Whereas, Figure 11
presents the forecasting curves of the predicted and actual crude oil price for different
day frames utilizing the Brent future oil dataset based on SMs (original dataset + SMs).
Furthermore, the combined impact of the TIs and SMs original dataset + TIs+ SMs) are
shown in Figure 12, utilizing the Brent future oil dataset.
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In the classical ELM approach, a randomly generated bias, weights for the input, and
the hidden layer are selected. Generally, the output weights are selected iteratively but,
in this case, analytically, the output weights are calculated. This approach works on the
principle of the pseudo-inverse approach. In this approach, the b value is calculated for a
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single term and hence this will reduce the computational timing and extra tuning effort
of the parameters in the hidden layer. The b value is calculated after collecting all the
training data and hence the testing is carried out upon that b value and, in the testing
phase, the MSE value is obtained. In a conventional ELM approach, the memory demand
is more as the model has to train with all the training data being taken into consideration.
Furthermore, it also takes more time for the computation. In this approach, the node in
the hidden layer is more and another drawback is that a non-optimal solution may be
incorporated, reducing the model’s performance as the output weights are more reliant on
the input weights and the hidden bias, which is chosen randomly.

Thus, to have a better result, the optimal biasing and the weights have to be selected.
To achieve the best results, this study employs the ELM with the proposed improved version
of GWO, i.e., IGWO [47]. In this approach, the convergence curve is simulated and it shows
that the convergence of the IGWO in comparison to the other three algorithms, i.e., DE,
PSO, and GWO have a quicker response. The outputs of these two algorithms can fall into
the local minima within the current search space as, due to the multimodal functions, it has
a number of local minima. Thus, to overcome these drawbacks, an integrated mechanism
of IGWO discussed earlier, was used which helped to overcome it falling into the lower
function value. This helps to obtain a quicker convergence rate from the earlier result.

The results of the conventional ELM optimized with DE, PSO, GWO, and IGWO
are presented in this study. Another comparison is made between the simulation results
of TIs and SMs. Furthermore, to extend the search result, this paper also carried out a
simulation of the above using a combination of TIs and SMs. The WTI crude oil rate
datasets are used in the simulations. In this experiment, a total of 1341 samples were used
for simulation. The samples were obtained between 25 July 2016 and 23 August 2021. The
window size of 12 is chosen for different intervals of days within a month when windowing
the process. To determine the algorithm’s generalization potential, the WTI crude oil rate
datasets and Brent future oil dataset were each categorized into two halves, i.e., a training
dataset and testing dataset, which was carried out at a ratio of 7:3. Initially, the model is
trained using the training dataset, which comprised 70 percent of the total data samples,
i.e., 940, and the remaining portion of the data samples, i.e., 401 were used for testing the
model for predicting the crude oil price on the WTI dataset. Likewise, out of 1311 samples,
917 samples were utilized for training and the rest were utilized for testing purposes.

5.3. Validation and Discussion

In this work, the goal function for ELM–DE, ELM–PSO, ELM–GWO, and ELM–IGWO,
and the activation functions for ELM are rectified as a linear unit and the MSE fitness func-
tion was used to train all of the models. Furthermore, the assessment of the performance of
the proposed algorithm is carried out using some of the measurement tools such as MSE,
Theil’s U, MAE, ARV, MAPE, etc. For ease of visualization and simplicity of understanding,
the MSE values of each model are grouped by SMs, TIs, and a mix of TIs and SMs, and are
presented in Tables 5 and 6 for the WTI and Brent datasets, respectively. From those tables,
it can be observed that the performance of TI is obtaining a better result in the case of the
ELM compared to the performance of SM and the combined TIs and SMs. In this proposed
model, the MSE is calculated for the entire dataset, i.e., for the training and testing datasets,
and for the testing datasets, the remaining performance matrices are used.

An empirical comparison of the performance measures obtained is reflected in Table 7.
The use of ELM is readily indicated in this table of performance measurements. This
table clearly shows that the performance of ELM with IGWO has an advantage over the
other three ELM-based hybrid approaches. Furthermore, a comparative statement of time
consumed during the execution of the previous state-of-the-art methods, i.e., ELM–DE,
ELM–PSO, ELM–GWO with ELM–IGWO is presented in Figures 13 and 14 and clearly
depicts that the proposed hybrid method outperforms the other hybrid models in terms
of execution time measured in seconds for the WTI crude oil and Brent crude oil datasets,
respectively.



Mathematics 2022, 10, 1121 26 of 33

Table 5. Comparison of MSE for WTI crude oil rate based on ELM–DE, ELM–PSO, ELM–GWO, and ELM–IGWO.

No. of Days
ELM–DE ELM–PSO ELM–GWO ELM–IGWO

TIs SMs TIs and SMs TIs SMs TIs and SMs TIs SMs TIs and SMs TIs SMs TIs and SMs

1 Day 3.262 × 10−4 3.136 × 10−4 6.076 × 10−4 3.494 × 10−4 4.136 × 10−4 5.076 × 10−4 1.368 × 10−4 1.572 × 10−4 5.248 × 10−4 1.053 × 10−4 1.08 × 10−4 5.042 × 10−4

3 Days 3.591 × 10−4 3.438 × 10−4 7.664 × 10−4 3.671 × 10−4 3.988 × 10−4 7.664 × 10−4 2.986 × 10−4 1.575 × 10−4 9.347 × 10−4 2.872 × 10−4 1.48 × 10−4 9.52 × 10−4

5 Days 2.357 × 10−4 2.433 × 10−4 2.182 × 10−4 3.883 × 10−4 3.937 × 10−4 4.178 × 10−4 1.714 × 10−4 1.643 × 10−4 2.178 × 10−4 1.744 × 10−4 1.4 × 10−4 2.1 × 10−4

7 Days 3.493 × 10−4 3.769 × 10−4 3.452 × 10−4 3.992 × 10−4 4.169 × 10−4 4.478 × 10−4 1.421 × 10−4 4.232 × 10−4 1.82 × 10−4 1.038 × 10−4 4.16 × 10−4 1.64 × 10−4

15 Days 3.263 × 10−4 4.832 × 10−4 7.097 × 10−4 4.247 × 10−4 4.832 × 10−4 6.563 × 10−4 1.691 × 10−4 4.48 × 10−4 1.164 × 10−4 1.26 × 10−4 4.32 × 10−4 1.07 × 10−4

30 Days 11.44 × 10−4 11.64 × 10−4 14.58 × 10−4 9.42 × 10−4 9.67 × 10−4 12.49 × 10−4 9.374 × 10−4 8.771 × 10−4 11.61 × 10−4 8.52 × 10−4 8.47 × 10−4 11.57 × 10−4

Table 6. Comparison of MSE for Brent crude oil rate based on ELM–DE, ELM–PSO, ELM–GWO, and ELM–IGWO.

No. of Days
ELM–DE ELM–PSO ELM–GWO ELM–IGWO

TIs SMs TIs and SMs TIs SMs TIs and SMs TIs SMs TIs and SMs TIs SMs TIs and SMs

1 Day 2.962 × 10−4 3.467 × 10−4 5.189 × 10−4 2.653 × 10−4 3.457 × 10−4 5.136 × 10−4 1.276 × 10−4 1.837 × 10−4 4.567 × 10−4 1.103 × 10−4 1.238 × 10−4 4.308 × 10−4

3 Days 3.191 × 10−4 3.892 × 10−4 6.738 × 10−4 2.897 × 10−4 3.324 × 10−4 6.438 × 10−4 2.583 × 10−4 1.983 × 10−4 5.462 × 10−4 2.387 × 10−4 1.948 × 10−4 4.987 × 10−4

5 Days 4.556 × 10−4 4.896 × 10−4 5.344 × 10−4 3.988 × 10−4 4.231 × 10−4 4.874 × 10−4 1.897 × 10−4 2.278 × 10−4 3.773 × 10−4 1.664 × 10−4 2.086 × 10−4 3.479 × 10−4

7 Days 6.278 × 10−4 6.395 × 10−4 7.378 × 10−4 4.994 × 10−4 5.362× 10−4 5.436 × 10−4 1.354 × 10−4 3.256 × 10−4 2.321 × 10−4 1.203 × 10−4 4.325 × 10−4 2.089 × 10−4

15 Days 5.839 × 10−4 5.852 × 10−4 6.997 × 10−4 4.667 × 10−4 4.875 × 10−4 5.573 × 10−4 2.479 × 10−4 3.988 × 10−4 2.658 × 10−4 2.263 × 10−4 3.132 × 10−4 2.019 × 10−4

30 Days 9.563 × 10−4 10.187 × 10−4 11.158 × 10−4 8.347 × 10−4 9.246 × 10−4 11.473 × 10−4 8.894 × 10−4 9.093 × 10−4 10.568 × 10−4 8.224 × 10−4 8.787 × 10−4 9.588 × 10−4
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Table 7. Comparison of different performance evaluation measures.

Methods Theil’s U MAE ARV MAPE

ELM–DE 0.0014587 0.1356 0.004985 0.42578

ELM–PSO 0.0002784 0.0687 0.001256 0.12586

ELM–GWO 0.0001658 0.0027 0.000653 0.07842

ELM–IGWO 0.0001013 0.0009 0.000854 0.02967
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Figure 14. Comparison of execution time (in seconds) for different days for ELM–DE, ELM–PSO,
ELM–GWO, and ELM–IGWO for Brent crude oil dataset.
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6. Conclusions and Future Scope

ELM was explored as a predictive network considering its fast and efficient learning
speed, fast convergence, good generalization ability, and easy implementation mechanism.
Additionally, it does not require any adjustment to the input weights and hidden layer
biases during the implementation of the algorithm and it produces only one optimal so-
lution. However, as the ELM is memory-heavy and suffers from high space and time
complexity, the traditional ELMs need to be optimized. Therefore, in this study, an in-
tegrated ELM model based on IGWO (ELM–IGWO) was presented for prophesying the
crude oil future price for short-term intervals such as for 1 day, 3 days, 5 days, 7 days,
15 days, and 30 days for the WTI crude oil and Brent crude oil datasets. The datasets
are augmented using TIs and SMs to get better insight into the forecasting ability. Those
augmented forms of the datasets, such as original dataset + Tis, original dataset + SMs,
and original dataset + Tis+ SMs, are given as the input to the proposed ELM–IGWO crude
oil forecasting model using a window size of 12 days. The idea behind choosing this
12-day window size is that it reacts more quickly to the changes in price trends than the
previous pair.

The IGWO [47] method is utilized to achieve the right balance between exploration
and exploitation, as well as to speed up the convergence rate and enhance the accuracy
of the ELM network. The key advantages of the traditional GWO are its simple structure,
ease of implementation, less memory and computational requirements, faster convergence
due to continuous reduction of search space and fewer decision variables (alpha, beta, and
delta wolves), ability to avoid local minima, and having only two control parameters to
tune the algorithmic performance has made us realize how to improve the GWO and to
make use of IGWO for optimizing the ELM and developing a forecasting model. The
IGWO undergoes two phases of improvement from GWO to acquire a better searching
performance by influencing the exploration and exploitation ability of the DE and the SOF
principle. The weakness of falling into local optimum was greatly improved by adding the
DE and SOF mechanisms to the standard GWO.

The DE was used to decide the evolutionary pattern of wolves by adding the evolution
operation to the standard GWO. The basic operators of DE, such as mutation, crossover,
and selection, are explored and added to obtain the difference among individuals to
recombine the population and obtain intermediate individuals to get the population of the
next generation, which evolves through a competition between the parent and offspring
individuals, leading to the selection of outstanding individuals of wolves as parents through
a form of variation factor. This variation factor ensures that the wolves can evolve towards
a generation of good wolves, which is performed by selecting the beta and delta wolves
as parents and then combining them with the alpha wolf. Additionally, a dynamic scaling
factor is used to make the algorithm have high exploration and exploitation abilities and
increase computational speed. After the mutation operation, the crossover operator with
variation vector produces test individuals and the selection operation chooses the best
individual with the best fitness value.

The SOF principle originated from Darwinian evolutionary theory to describe the
mechanism of natural selection. The biological concept of the fitness (reproductive success)
mechanism was added to the standard GWO to update the wolf pack by measuring the
fitness value. In order to update the wolf pack, the fitness values are sorted in ascending
order at each iteration of the algorithm and the wolves with the high fitness values are
kept. The wolves with lower fitness values are eliminated and new wolves are randomly
generated. The controlling factor for the generation of new wolves is randomly chosen
between the range [n/ε, n/0.75× ε] because, if the numbers of wolves with a high fitness
value are large, that leads to generating the same large number of new wolves and this type
of case leads to slow convergence speed because of the large search space and similarly, if
the fitness value is chosen to be too small, the diversity of the population is not guaranteed,
which results in an inability to explore new solution spaces.
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The proposed model was compared with ELM–DE, ELM–PSO, and ELM–GWO based
on the error convergence rate for both datasets. Figure 4a,b show the error convergence
graph of ELM–DE, ELM–PSO, ELM–GWO, and ELM–IGWO for both the WTI and Brent
crude oil datasets, respectively, during the training phase. Similarly, the convergence
speed is measured and recorded, which are depicted in Figure 5a,d for WTI crude oil and
Figure 6a,d for Brent crude oil datasets, respectively. From those two sets of figures, it can
be observed that, in all the cases, the proposed ELM–IGWO has a good convergence rate
for all short-term forecasting made, with less error during the training phase for the WTI
crude oil rate dataset and for the Brent crude oil ELM–IGWO and is outperforming the
rest of all the other models with respect to the rate of convergence and error rate for all six
timeframes of forecasts made. Moreover, all the curves are converging very well from the
5th iteration (only 30-days curves are from the 55th iteration) with an MSE < 0.05. During
the validation phase, the MSE, Theil’s U, MAE, ARV, and MAPE are used as performance
measures and the measured values are given in Tables 5–7 for the WTI and Brent datasets,
respectively. From those tables it can be observed that the performance of the TIs (original
dataset + TIs) is obtaining a better result in the case of ELM over the performance of the
SMs (original dataset + SMs) and the combined TIs and SMs (original dataset +TIs + SMs).
Finally, a comparison based on CPU time utilization (in seconds) was recorded for both
the datasets based on the augmented form of original datasets + Tis, which are shown in
Figures 13 and 14. The proposed model effectively combined ELM’s potential with the
grey wolf multi-population search strategy. The simulation results show that the suggested
model beats the other three predictive models when it comes to projecting the WTI crude oil
rate value and the Brent crude oil rate value. A comparison of TIs, SMs, and a combination
of TIs and SMs was constructed. The performance of the TIs is excellent when compared to
the SMs and with the combined measures, as shown in the results obtained from figures
and error comparison tables.

As an enhancement of this study, the proposed model’s ability could be checked by
capturing the time shift, i.e., whether the knowledge of the WTI crude oil prices would
improve the forecasting of the Brent crude oil prices or not. Moreover, while augmenting
the datasets by TIs and SMs, a window size of 12 days was used and this can further be
explored with varying window sizes. The above may be considered as a pathway for
further research in this domain.
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Nomenclatures

ARMA Autoregressive Moving Average
ARIMA Autoregressive Integrated Moving Average
GARCH Generalized Autoregressive Conditional Heteroscedastic
EGARCH Exponential Generalized Autoregressive Conditional Heteroscedastic
GJR–GARCH Glosten–Jagannathan–Runkle GARCH
AI Artificial Intelligence
ML Machine Learning
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SVM Support Vector Machine
BPNN Back-Propagation Neural Networks
ELM Extreme Learning Machine
ACO Ant Colony Optimization
PSO Particle Swarm Optimization
ABC Artificial Bee Colony
CS Cuckoo Search
DE Differential Evolution
GWO Grey Wolf Optimization
IGWO Improved Grey Wolf Optimization
SOF Survival Of Fittest
WTI West Texas Intermediate
TIs Technical Indicators
SMs Statistical Measures
MSE Mean Square Error
MAE Mean Absolute Error
ARV Average Relative Variance
MAPE Mean Absolute Percentage Error
GA Genetic Algorithm
VAR Value At Risk
VMD Variational Mode Decomposition
FPA Flower Pollination Algorithm
DTW Dynamic Time Warping
MIDAS Mixed Data Sampling
CNN Convolutional Neural Network
RSBL Random Sparse Bayesian Learning
GARCH-M GARCH with Long Memory
SMA Simple Moving Average
EMA Exponential Moving Average
ATR Average True Range
RSI Relative Strength Index
MACD Moving Average Convergence Divergence
%K Stochastic Oscillator
StdDev Standard Deviation
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