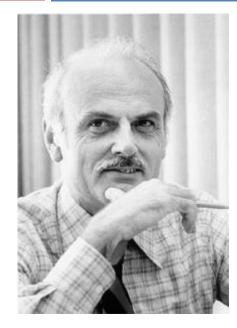


РЕЛЯЦИОННАЯ МОДЕЛЬ ДАННЫХ



Предложение есть модель действительности, как мы ее себе мыслим.

Л. Витгенштейн

- □ Историческая справка
- □ Особенности и состав модели
- □ Основные понятия реляционной модели данных
- □ Целостность реляционных данных

Историческая справка

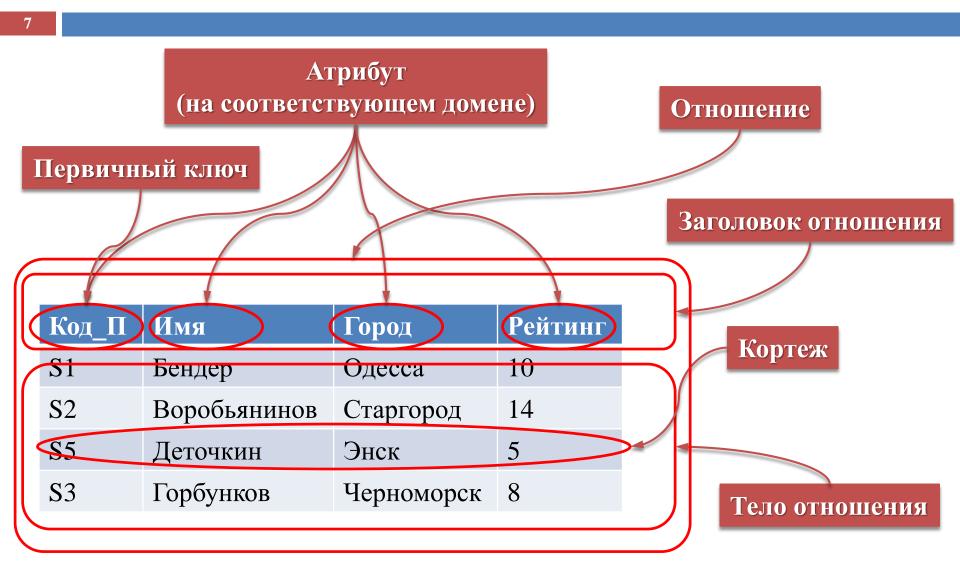
Эдгар Франк («Тед») Кодд 1923-2003

- □ *Реляционная модель данных (РМД)* изобретена Т. Коддом в 1970 г.
 - Codd E.F. The Relation Model for Large Shared Data Banks // Communications of the ACM. 1970. Vol. 13, No. 6. P. 377-387.
 - За разработку реляционной модели данных Кодд был удостоен звания "IBM Fellow" (1976) и премии Тьюринга (1981).
- □ В настоящее время 99,99% коммерческих СУБД основаны на РМД.

Особенности РМД

- □ Логический характер объектов модели
 - □ Отношения логические, а не физические структуры.
- □ Информационный принцип построения объектов
 - Информация в базе данных представлена одним и только одним способом явным заданием значений атрибутов в кортежах отношений; нет никаких указателей физических адресов для связи значений.
- Поддержка декларативного и императивного программирования
 - Реляционная алгебра декларативное программирование и декларативное описаний ограничений целостности.
 - □ Процедурный язык манипулирования данными.

Состав РМД


- □ Структурный аспект
 - □ Данные в базе данных представляют собой набор отношений.
- □ Аспект целостности
 - □ Отношения отвечают определенным условиям целостности.
 - РМД поддерживает декларативные ограничения целостности уровня домена (типа данных), уровня отношения и уровня базы данных.
- □ Аспект манипулирования
 - РМД поддерживает операторы манипулирования отношениями (реляционная алгебра, реляционное исчисление).
- □ Аспект нормализации
 - Ограничения на структуру отношений базы данных, улучшающие эффективность работы с базой данных.

Основные термины РМД

6

Термин РМД	Англ. термин	Неформальный термин
Отношение	Relation	Таблица
Кортеж	Tuple	Запись таблицы
Атрибут	Attribute	Столбец таблицы
Домен	Domain	Тип данных у значений в столбце таблицы
Первичный ключ	Primary key	Поле - уникальный идентификатор записи

Основные термины РМД

Домен

- □ Домен именованное множество скалярных значений одного типа.
 - Скалярное (атомарное) значение не имеет внутренней структуры.
 - ФИО: строка[30] скаляр
 - ФИО: { строка[10], строка[10], строка[10] } не скаляр
 - Создание /удаление домена
 - create domain Код_Д char(5)
 - drop domain Код_Д

Для чего нужны домены?

- □ Домены ограничивают сравнения
 - select Имя_Д
 from P, SP
 where P.Код_Д=SP.Код_Д
 - select Имя_Д from P, SP where P.Bec=SP.Количество
- □ Домены допускают запросы к словарю базы данных
 - select Имя_Отношения, Имя_Атрибута from СловарьБД _Отношения where Имя Домена='Код П'

Отношение

- \square *Отношение R*, определенное на множестве доменов $D=\{D_1,...,D_k\}$ состоит из двух частей: заголовок и тело.
- □ Заголовок отношения множество пар <имя-атрибута:имя-домена>, т.е. множество $\{<A_1:D_1>,\ldots,<A_n:D_n>\}$, где имена атрибутов A_j различны, домены атрибутов D_j \in D не обязательно различны.
- □ Тело отношения множество кортежей.
- □ *Кортеж* множество пар <*имя-атрибута:значение-атрибута>*, т.е. множество $\{<A_1:v_{i1}>, ..., <A_n:v_{in}>\}$, где $i \in \{1,...,m\}$.
- □ Значение $m \kappa a p d u h a n b h o e ч u c n o o m h o u e h u s.$
- □ Значение n cmenehb (aphocmb) omhowehus.

Код_П	Имя	Город	Рейтинг
S 1	Бендер	Одесса	10
S2	Воробьянинов	Старгород	14
S5	Деточкин	Энск	5
S 3	Горбунков	Черноморск	8

```
    □ { Код_П : Код_П, Имя : Имя, Город : Город, Рейтинг : Рейтинг }
    □ {
    □ {<Код_П : S1>, <Имя : Бендер>, <Город : Одесса>, <Рейтинг : 10>},
    □ { ... }
    □ ...
```

Отношение	Таблица
Не может содержать одинаковых кортежей (тело отношения – множество)	Может содержать одинаковые строки
Кортежи не упорядочены (тело отношения – множество)	Строки таблицы могут быть упорядочены
Атрибуты не упорядочены (заголовок отношения — множество)	Столбцы таблицы могут быть упорядочены
Значения атрибутов кортежей атомарные (или отношение нормализовано)	Ячейка таблицы может содержать другую таблицу

- Нет одинаковых кортежей
 - select Имя from S where Рейтинг>=15

SOL
\sim \sim \sim

Имя

Бендер

Бендер

□ РМД

Имя

Бендер

Код_П	Имя	Город	Рейтинг
S 1	Бендер	Одесса	15
S2	Воробьянинов	Старгород	14
S5	Деточкин	Энск	5
S 3	Горбунков	Черноморск	8
S10	Бендер	Москва	20

- □ Кортежи не упорядочены (сверху вниз)
 - SQL select Код_П, Имя, Рейтинг from S order by Рейтинг desc
 - РМД select Код_П, Имя, Рейтинг from S

Код_П	Имя	Город	Рейтинг
S1	Бендер	Одесса	15
S2	Воробьянинов	Старгород	14
S5	Деточкин	Энск	5
S 3	Горбунков	Черноморск	8
S10	Бендер	Москва	20

Код_П	Имя	Рейтинг
S10	Бендер	20
S1	Бендер	15
S2	Воробьянинов	14
S 3	Горбунков	8
S5	Деточкин	5

Множество

Код_П	Имя	Рейтинг
S1	Бендер	15
S2	Воробьянинов	14
S5	Деточкин	5
S3	Горбунков	8
S10	Бендер	20

Технологии баз данных

© М.Л. Цымблер

- Атрибуты не упорядочены (слева направо)
 - SQL select Имя, Код_П, Рейтинг from S order by Рейтинг desc
 - РМД select Код_П, Имя, Рейтинг from S

Код_П	Имя	Город	Рейтинг
S1	Бендер	Одесса	15
S2	Воробьянинов	Старгород	14
S5	Деточкин	Энск	5
S 3	Горбунков	Черноморск	8
S10	Бендер	Москва	20

Имя	Код_П	Рейтинг
Бендер	S10	20
Бендер	S 1	15
Воробьянинов	S2	14
Горбунков	S 3	8
Леточкин	\$5	5

Множество

Код_П	Имя	Рейтинг
S1	Бендер	15
S2	Воробьянинов	14
S5	Деточкин	5
S3	Горбунков	8
S10	Бендер	20

Технологии баз данных

© М.Л. Цымблер

□ Все значения атрибутов атомарны

Код_П	Код_Д_Количество	
S 1	Код_Д	Количество
	P1	200
	P2	300
	P3	100
S2	Код Д	Количество
	P1	200
	P4	400
62		
S 3	Код_Д	Количество
	P5	500
	P1	800

Код_П	Код_Д	Количество
S 1	P1	200
S 1	P2	300
S 1	P3	100
S2	P1	200
S2	P4	400
S 3	P5	500
S 3	P1	800

Виды отношений

- □ *Базовое отношение* именованное отношение (переменная отношения), которое постоянно хранится в базе данных.
- □ *Производное отношение* отношение, определенное через базовые посредством реляционного выражения.
- □ *Представление* виртуальное (не хранящееся постоянно в базе данных) именованное производное отношение. Применяется для реализации внешнего уровня ANSI/SPARC архитектуры систем баз данных.
- □ *Снимок* именованное производное отношение, которое постоянно хранится в базе данных. Применяется для реконструкции базы данных после сбоев.
- □ Результат запроса неименованное производное отношение.
- □ Хранимое отношение отношение, которое поддерживается в физической памяти.

Виды отношений

- Базовое отношение
 - □ create **base relation** S (Код_П domain (Код_П), Имя domain (Имя), Город domain (Город), primary key (Код П))
- □ Представление
 - □ create view Надежные_П as select Код_П, Имя from S
 where Рейтинг>=15
- Снимок
 - □ create snapshot Поставляемые_Детали as select Код_Д, Имя from P, SP where P.Код_Д=SP.Код_Д refresh every day
- □ Промежуточный результат (выражение реляционной алгебры)
 - □ ((S JOIN SP) WHERE Код_Д='P1')[Код_П, Имя_П]

Реляционная БД

 □ Реляционная база данных — база данных, воспринимаемая пользователем (на внешнем уровне ANSI/SPARC архитектуры систем баз данных) как набор нормализованных отношений различной степени.

Целостность реляционных данных

- □ Ключи
 - □ Потенциальные, первичные и альтернативные
 - □ Простые и составные
 - Внешние
- □ Ссылочная целостность
- □ NULL-значения

Потенциальный ключ

- □ Подмножество *К* атрибутов отношения *R* является *потенциальным ключом*, если *К* обладает следующими свойствами:
 - 1. Уникальность
 - Никакие два кортежа в R не могут иметь одинаковое значение в K.
 - 2. Неизбыточность
 - Никакое подмножество K не обладает свойством уникальности.

Потенциальный ключ

- Каждое отношение имеет минимум один потенциальный ключ (все атрибуты отношения)
- □ Потенциальных ключей может быть несколько
 - Таблица химических элементов Д.И. Менделеева.
- □ Неизбыточность потенциального ключа важна! В противном случае
 - нельзя обеспечить должным образом целостность
 - Если взять потенциальный ключ {Код_П, Город} вместо {Код_П}, то код поставщика будет уникальным только в пределах одного города, а не всех городов.
 - внешний ключ, на который ссылается избыточный потенциальный ключ, будет также избыточным.
- □ Потенциальный ключ ≠ индекс по атрибуту
 - Не обязательно существует индекс (физический файл для ускорения доступа к данным отношения) по потенциальному ключу.

23

Выбор потенциальных ключей

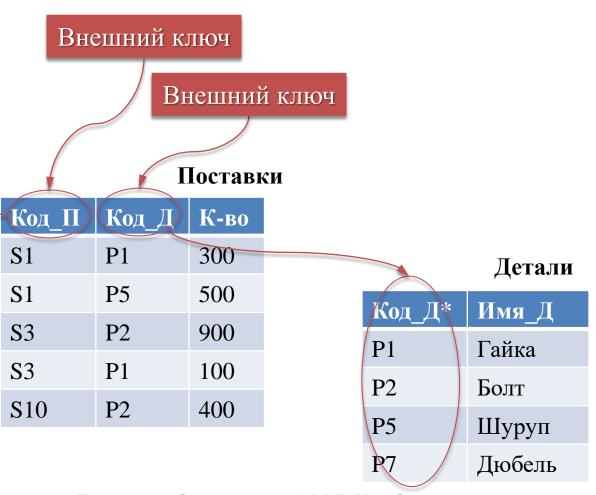
- □ На основе определения и семантики предметной области.
- □ Пример: выбрать потенциальные ключи отношения Персона
 - Фамилия
 - п Имя
 - □ Отчество
 - □ Пол
 - □ Дата рождения
 - □ ИНН
 - □ СНИЛС
 - Серия паспорта
 - Номер паспорта
 - Место и дата выдачи паспорта
 - □ Индекс
 - □ Город
 - □ Адрес

Назначение потенциальных ключей

- □ Потенциальный ключ позволяет адресовать кортежи отношения.
 - □ select Имя from S where Код_П='S1'

Имя	
Бендер	

Потенциальный ключ								
Код_П*	Имя	Город	Рейтинг					
S1	Бендер	Одесса	15					
S2	Воробьянинов	Старгород	14					
S5	Деточкин	Энск	5					
\S3	Горбунков	Черноморск	8					
S10	Бендер	Москва	20					


Виды потенциальных ключей

- □ Если потенциальный ключ состоит из более чем одного атрибута, он называется составным, иначе простым.
- Один из потенциальных ключей должен быть выбран в качестве первичного ключа. Остальные потенциальные ключи называются альтернативными ключами.

Внешний ключ

- \square Внешний ключ FK в отношении R2 это подмножество атрибутов R2 такое, что
 - \square существует отношение R1 (не обязательно отличное от R2) с потенциальным ключом CK
 - \blacksquare для каждого значения FK существует кортеж в R1 с совпадающим значением CK.

	Поставщики				
Код_П*	Имя_П				
S1	Бендер				
S2	Воробьянинов				
S5	Деточкин				
\S3	Горбунков				
\$ 10	Бендер				

- □ Внешний ключ должен определяться на тех же доменах, что и соответствующий потенциальный ключ.
- □ Внешний ключ не обязательно должен входить в первичный (потенциальный) ключ, но это желательно.

□ Потенциальный ключ может содержать значение, не являющееся значением внешнего ключа.

Пос	ставщики	Поставки			Детал		гали
Код_П*	Имя_П	Код_П*	Код_Д*	К-во		Код_Д*	Имя_Д
S 1	Бендер	S 1	P1	300		P1	Гайка
S2	Воробьянинов	S 1	P5	500		P2	Болт
S5	Деточкин	S 3	P2	900		P5	Шуруп
S 3	Горбунков	S 3	P1	100	(P7	Дюбель
S 10	Бендер	S10	P2	400			

□ Внешний ключ составной (простой), если соответствующий потенциальный ключ составной (простой).

□ Внешний ключ и соответствующий потенциальный ключ могут принадлежать одному и тому же отношению (ссылающееся и целевое отношение совпадают).

Код_Сотр*	ФИО	Начальник
001	Бендер О.И.	NULL
002	Воробьянинов И.М.	001
005	Деточкин Ю.И.	002
007	Бонд Д.	001

- Что делать в случае попытки удалить (обновить) потенциальный ключ, на который ссылается внешний ключ?
 - □ Удаление поставщика, имеющего хотя бы одну поставку.
 - Изменение кода детали, входящей хотя бы в одну поставку.

Пос	ставщики		Ι	Іоставки		Дe	тали
Код_П*	Имя_П		Код_П*	Код_Д*	К-во	Код_Д*	Имя_Д
S1	Бендер		S1	P1	300	P1	Гайка
S2	Воробьянинов	(S1	P5	500	P2	Болт
S5	Деточкин		S3 (P2	900	P 5	Шуруп
S 3	Горбунков		S 3	P1	100	P7	Дюбель
S10	Бендер		S10 (P2	400		

- □ Нетипичные правила
 - Запретить
 - Архивировать
- □ Типичные правила
 - □ Ограничить
 - □ Каскадировать
 - Установить в NULL
 - □ Установить по умолчанию

□ Ограничить — запретить удаление (обновление)
кортежей ссылочного отношения до момента, когда
в ссылающемся отношении не будут отсутствовать
кортежи с соответствующим значением внешнего
ключа.

Правила внешних ключей: ограничить

36

Поставщики

Код_П*	Имя_П
S1	Бендер
S2	Воробьянинов
S5	Деточкин
S3	Горбунков
S 10	Бендер

Поставки

Код_П*	Код_Д*	К-во
S1	P1	300
S1	P5	500
S3	P2	900
S3	P1	100
S10	P2	400

Детали

Код_Д*	Имя_Д
P1	Гайка
P2	Болт
P5	Шуруп
P7	Дюбель

Могут быть обновлены (удалены)

□ Каскадировать – удалить (обновить) кортежи ссылочного отношения с соответствующим значением внешнего ключа.

Правила внешних ключей: каскадировать

Пос	ставщики		Поставки				Де	тали
Код_П*	Имя_П		Код_П*	Код_Д*	К-во		Код_Д*	Имя_Д
007	Бендер	-	007	P1	300		P1	Гайка
S2	Воробьянинов		007	P5	500		УДА	АЛЕН
S5	Деточкин		7	/ДАЛЕН			P5	Шуруп
S3	Горбунков		S 3	P1	100		P7	Дюбель
S10	Бендер		7	/ДАЛЕН]		

Ограничение и каскад

```
□ create base relation SP (
     Код \Pi domain (Код \Pi),
     Код Д domain (Код Д),
     Количество domain (Количество),
     primary key (Код П, Код Д),
     foreign key (Код \Pi) references S (Код \Pi)
            on delete restrict
           on update cascade,
     foreign key (Код Д) references P (Код Д)
            on delete restrict
           on update cascade)
```

- □ Установить в NULL удалить (обновить) кортежи ссылочного отношения и в ссылающемся отношении установить у соответствующих кортежей неопределенное значение внешнего ключа (NULL).
- □ Установить по умолчанию удалить (обновить) кортежи ссылочного отношения и в ссылающемся отношении установить у соответствующих кортежей значение внешнего ключа по умолчанию (в этой базе данных).

Установка в умолчание и NULL

NULL-значения

- □ NULL-значение специальное значение,
 показывающее отсутствие информации.
 - NULL≠{", ' ', '_', 0}
 - NULL≈Ø
 - create base relation R (
 Attr domain (Domain) nulls [not] allowed)
- NULL-значения порождают трехзначную логику.

AND	TRUE	FALSE	NULL
TRUE	TRUE	FALSE	NULL
FALSE	FALSE	FALSE	FALSE
NULL	NULL	FALSE	NULL

OR	TRUE	FALSE	NULL
TRUE	TRUE	TRUE	TRUE
FALSE	TRUE	FALSE	NULL
NULL	TRUE	NULL	NULL

NOT	
TRUE	FALSE
FALSE	TRUE
NULL	NULL

NULL-значения и потенциальные ключи

- □ Ни один элемент первичного ключа базового отношения не может принимать NULL-значение.
 - Записываемые в отношение кортежи должны быть идентифицируемы!
- □ Результирующее отношение может иметь NULLзначение в первичном ключе.
 - select Цвет from Р
- □ Для альтернативных ключей NULL значения могут быть разрешены или запрещены.
 - Если альтернативный ключ может принимать NULLзначения, то он не может быть выбран в качестве первичного.

NULL-значения и внешние ключи

- □ Внешний ключ FK в отношении R2 это подмножество атрибутов R2 такое, что
 - \square существует отношение R1 (не обязательно отличное от R2) с потенциальным ключом CK
 - FK может принимать неопределенное значение NULL, а для каждого отличного от NULL значения FK в R1 существует кортеж с совпадающим значением CK.
- □ create base relation R2 (
 foreign key (FK) references R1 (CK)
 on (delete | update) restrict | cascade | set null
 nulls [not] allowed)

Правила внешних ключей: установить в NULL

45

Код_П*	Имя_П
007	Бендер
S2	Воробьянинов
S5	Деточкин
S3 \	Горбунков
S10	Бендер

Код _ПД*	Код_П	Код_Д	К-во
SP1	NULL)P1	300
SP2	NULL)P5	500
SP5	S3 (NULL	900
SP9	\$3	P1	100
SP4	S10 (NULL	400
SP5	NULL	NULL	700

Код_Д*	Имя_Д	
P1	Гайка	
УДАЛЕН		
P5	Шуруп	
P7	Дюбель	

Технологии баз данных

© М.Л. Цымблер

Заключение

- □ Реляционная модель данных основа современных технологий баз данных.
- □ Базовые понятия РМД домены, атрибуты, кортежи, реляционные отношения.
- □ Целостность реляционных данных
 - □ Потенциальные и первичные ключи
 - Внешние ключи и ссылочная целостность
 - □ NULL-значения