XXI International Conference

Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL'2019), 15–18 October 2019, Kazan Federal University, Kazan, Russia

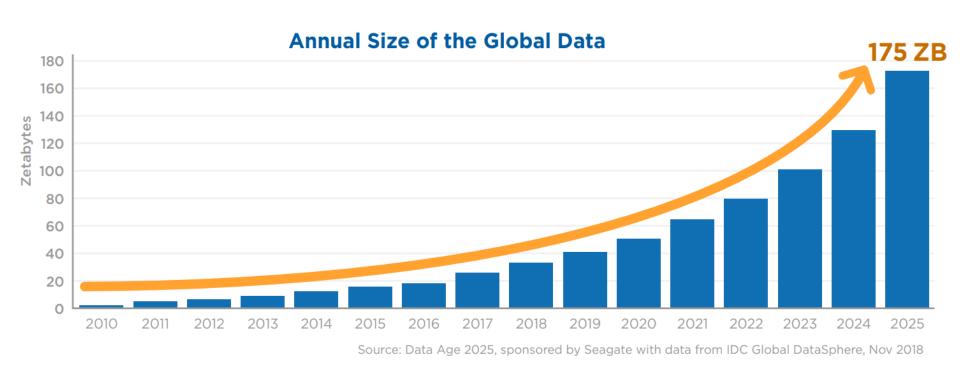
Big Data Processing and Analytics Inside DBMS

Mikhail Zymbler, Yana Kraeva, Alexander Grents, Anastasiya Perkova, Sachin Kumar

South Ural State University, Chelyabinsk, Russia

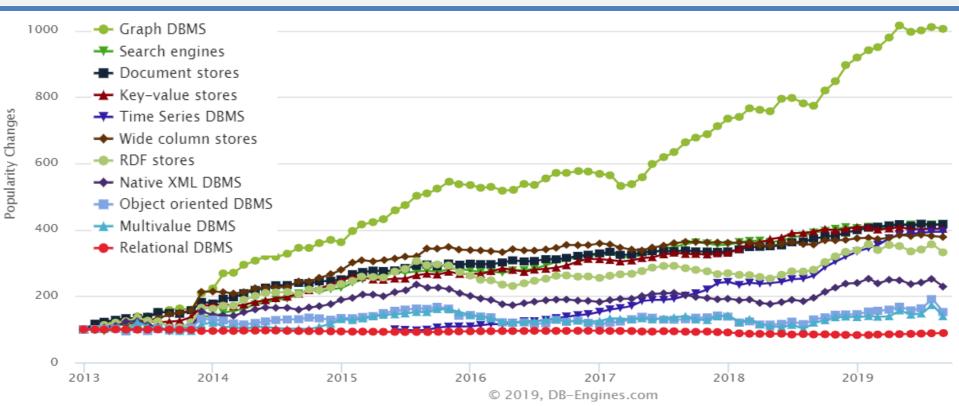
Big Challenges of Big Data

Huge amounts of various data grow fast



What data management systems do we need?

NoSQL systems dominate?

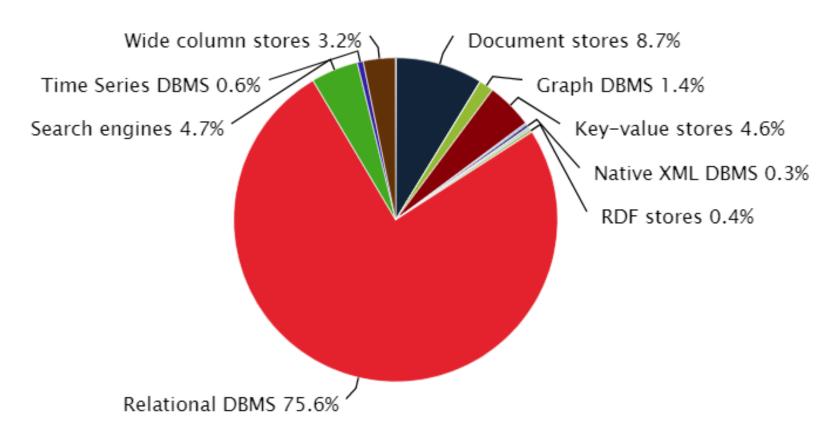


Popularity of systems by their mentions in

- Google Trends
- Newsfeeds (Google, Yandex, etc.)
- Tech discussions (Stack Overflow, etc.)
- Job offers (Simply hired, etc.)
- Professional nets (LinkedIn, etc.)
- Social nets (Twitter, etc.),

September 2019

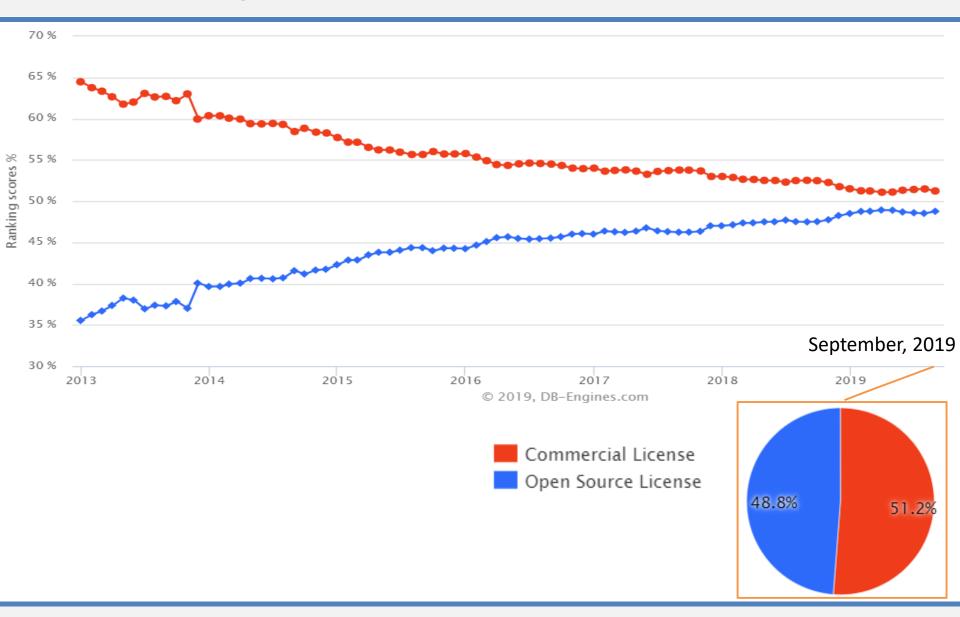
Indeed, No! RDBMSs dominate!



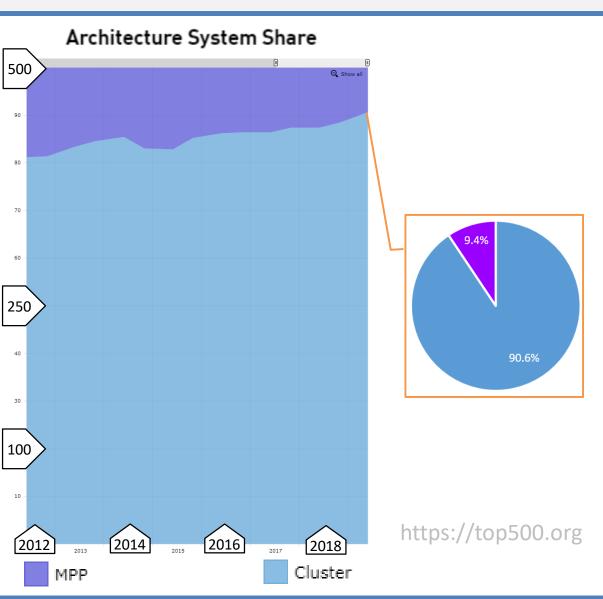
© 2019, DB-Engines.com

Popularity of systems per category, September 2019

Open source vs Commercial



500: HPC clusters dominate



Cluster

MPP

Why embed parallelism into serial DBMS?

 Proprietary parallel DBMSs are very expensive to buy or develop from scratch

PDBMS	Price per year
IBM DB2 Parallel Edition	\$11,016
Oracle Real Application Cluster	\$29,692
Teradata Data Warehouse Appliance	\$4,597,784

- Open-source DBMSs are mostly serial but can be (softly) modified to make it parallel
- At last (but not least), in Russia, import substitution matters!

How can we parallelize query execution?

Partition data and apply SPMD paradigm (Single Program, Multiple Data)

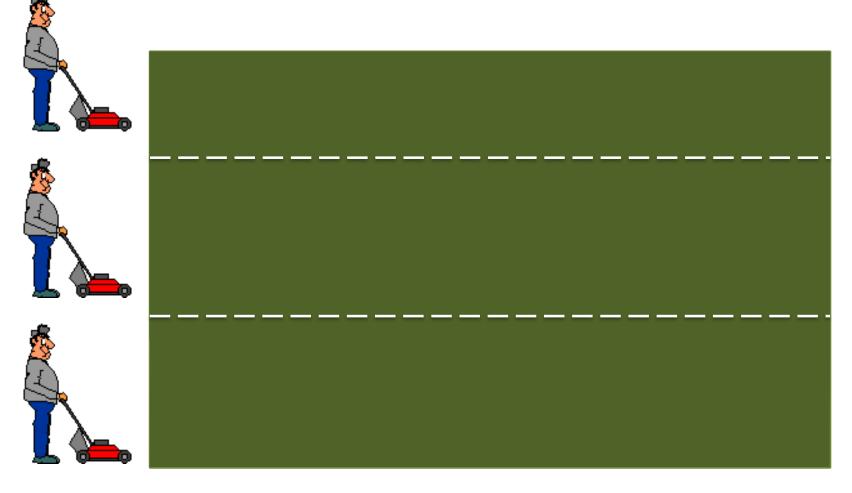
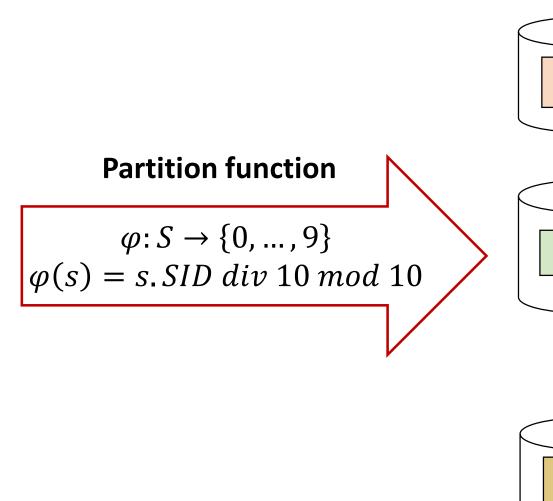


Table partitioning

S

SID	Name	City	
00			
09			
10			
19			
90			
99			

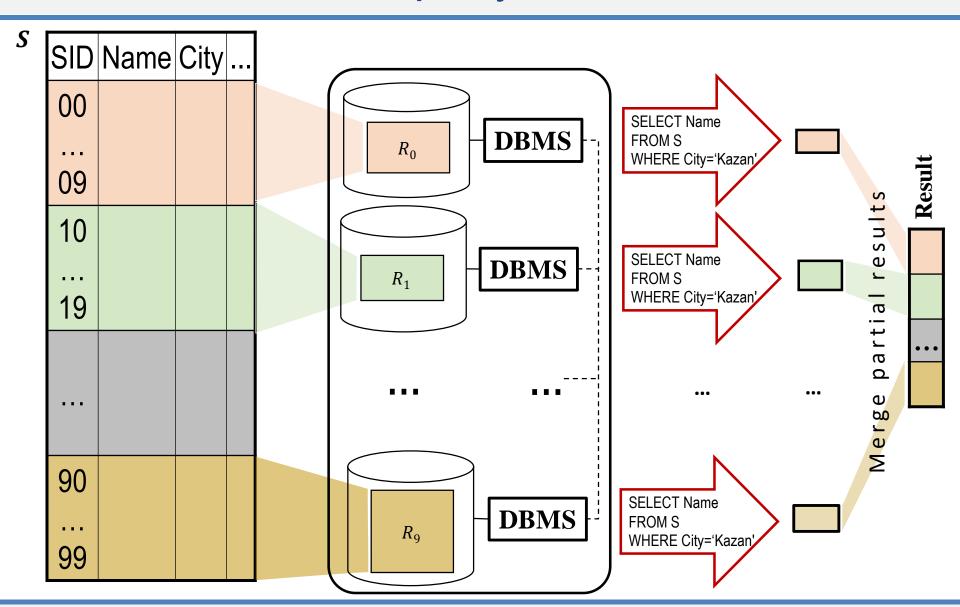


 R_0

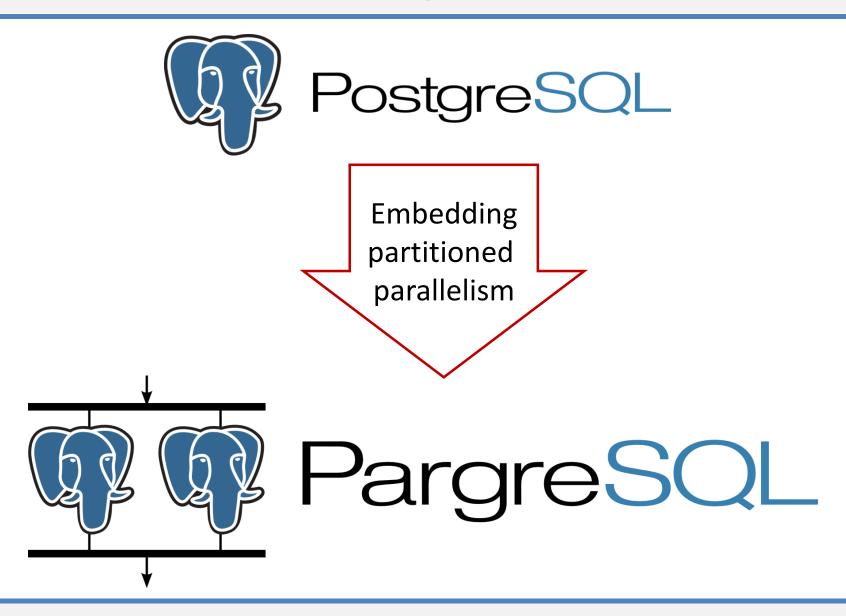
 R_1

 R_9

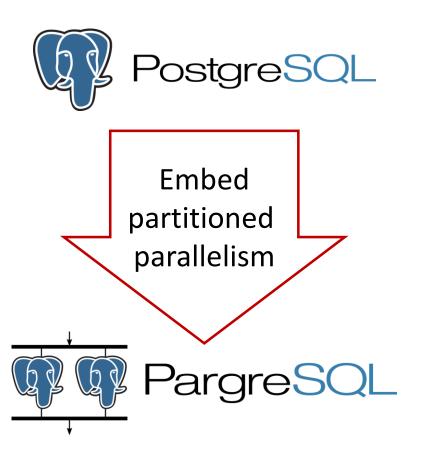
Parallel query execution



From serial to parallel DBMS



Basic "How to?"s



- 1. Partition a table
- 2. Disseminate a query
- 3. Merge results
- 4. Exchange data
- 5. Run an application

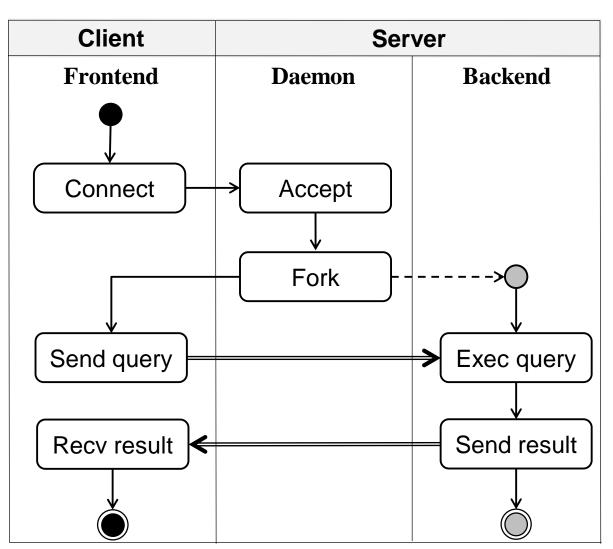
Table partitioning

CREATE TABLE T (A int, B int);

CREATE TABLE T
(A int, B int)
WITH (FRAGATTR = B);

Partitioning function:

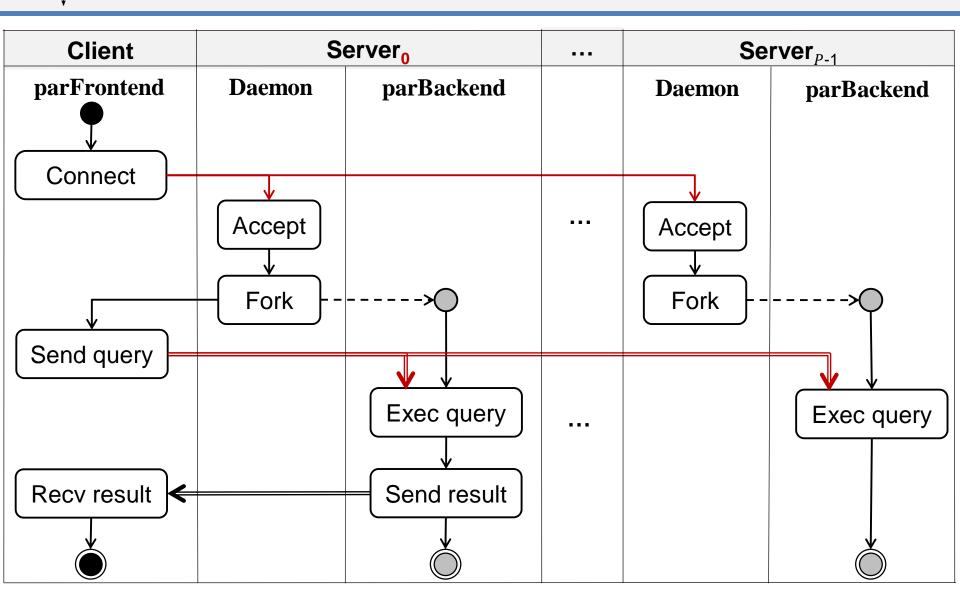
 $\varphi(t) = t.B \mod P$ where P is number of servers



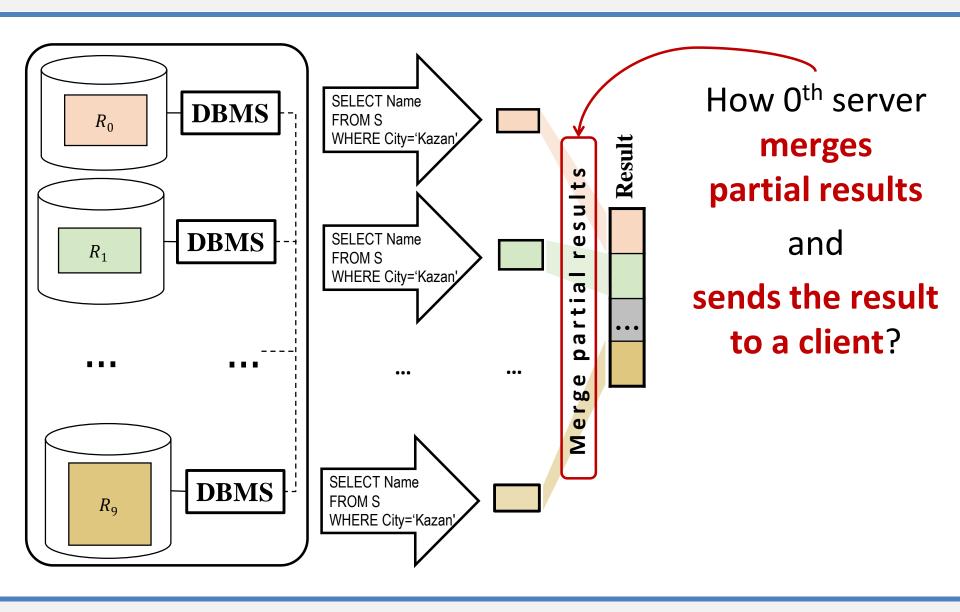
- **Frontend** client application with PostgreSQL's libpq-fe library
- Daemon server process to accept client's connection and create Backend instance to process client's queries
- **Backend** server process to execute client's query and send the results to the client

Control flow ➤ Data flow

➤ Create a dependent process



Merging results



An example on data exchanges: join tables

S

SID	Name	City	
11	Horns&Hoofs RaznoExport UralTrak 		

$$\varphi(s) = s. SID \ div \ 10 \ mod \ 10$$

F

PID	Name	Price	
00	Nail	100	
11	Bolt	75	
99	Screw	10	
		• • •	

$$\varphi(p) = p. PID \ div \ 10 \ mod \ 10$$

SP

SID	PID	Qty
00	02	5000
11	01	500
22	00	50
11	02	100
22	02	500

 $\varphi(sp) = sp. PID \ div \ 10 \ mod \ 10$

Data exchanges not needed

Get the names of parts supplied by supplier with ID 22:

SELECT Name

FROM P, SP

WHERE P.PID=SP.PID AND SP.SID=22

P

PID	Name	Price	
00	Nail	100	
11	Bolt	75	
99	Screw	10	

SP

SID	PID	Qty
00 01 22	02 11 99	5000 500 50

 π_{Name} M $\sigma_{SID} = 22$ SP_i

$$\varphi(p) = p.PID \ div \ 10 \ mod \ 10$$

$$\varphi(p) = p. PID \ div \ 10 \ mod \ 10$$
 $\varphi(sp) = sp. PID \ div \ 10 \ mod \ 10$

All records are processed by the servers on which these records are stored, so no records to be transferred

Data exchanges needed

Get the names of suppliers who supply part with ID 99:

CD

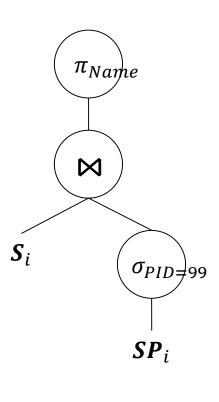
SELECT Name FROM S, SP WHERE S.SID=SP.SID AND SP.PID=99

S			
SID	Name	City	
	Horns&Hoofs RaznoExport UralTrak 		

$$\varphi(s) = s. SID \ div \ 10 \ mod \ 10$$

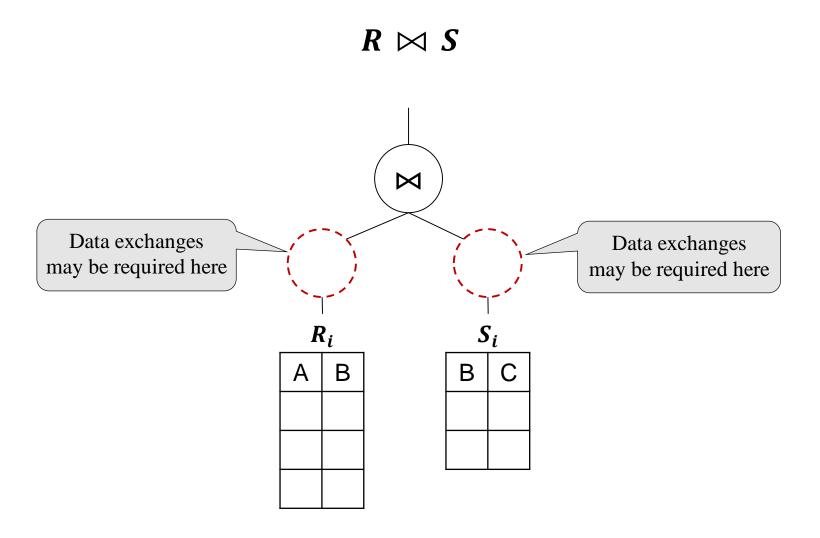
J <i>F</i>			
SID	PID	Qty	
00	02	5000	
01	11	500	
22	99	50	

$$\varphi(sp) = sp. PID \ div \ 10 \ mod \ 10$$



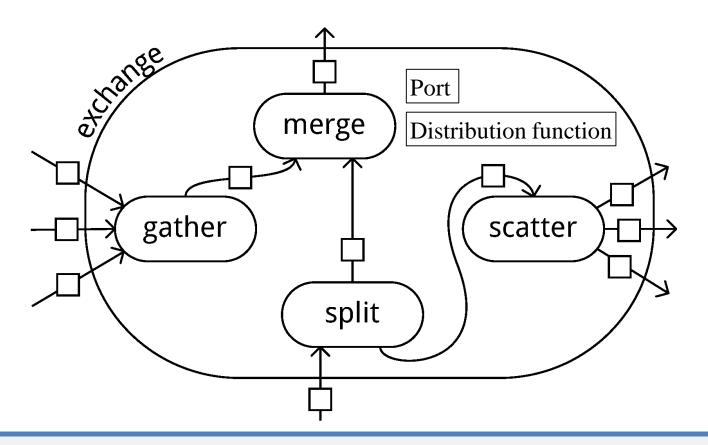
This record is **stored on the 9th server** but to be processed it **must be transferred to the 2th server**

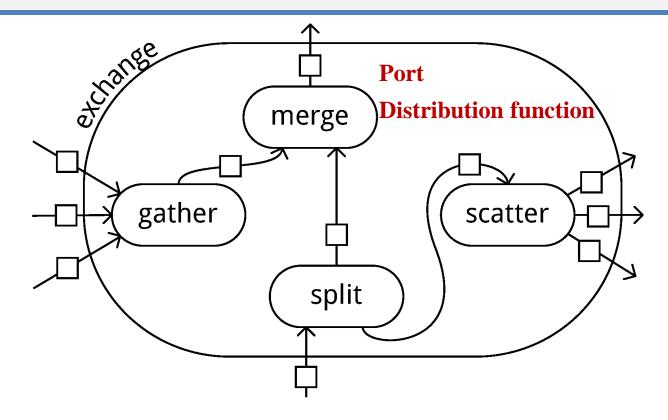
So, we need exchanges



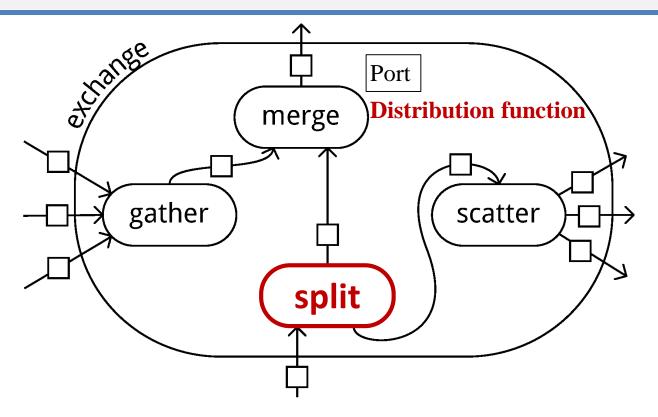
Did you want an EXCHANGE? We have it...

It is an empty operator of relational algebra, which is executed by the serial DBMS engine in normal mode but it encapsulates the parallelism

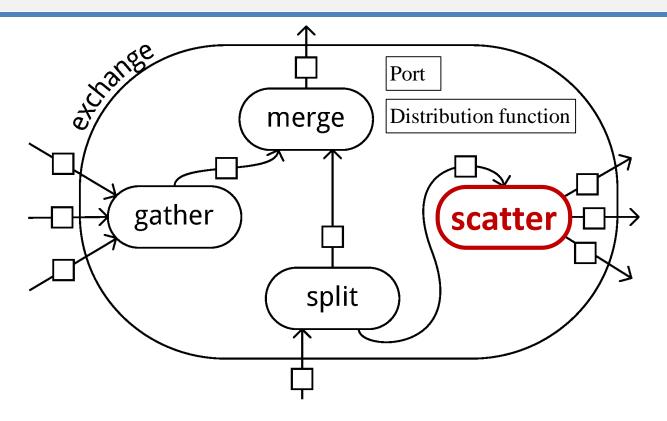




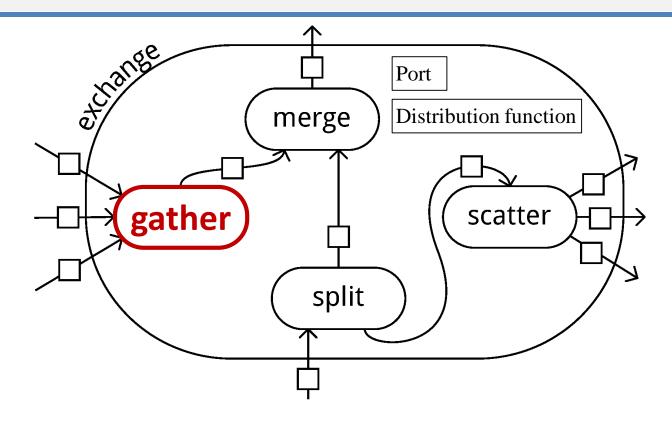
- Port is a serial number of EXCHANGE in a query
- **Distribution function** ψ : $R \to \{0, \dots, P-1\}$ calculates a server where the given record must be processed



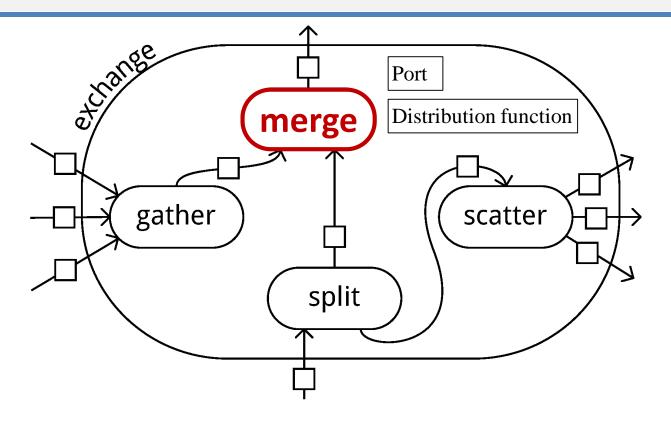
- **Split** calculates the distribution function ψ from the given record
- If ψ returns current server then the record is passed to Merge otherwise it is passed to Scatter



Scatter transfers the given record to alien servers



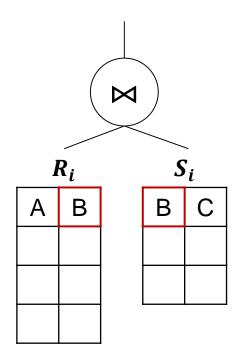
 Gather receives the current server's records from alien servers and pass them to Merge

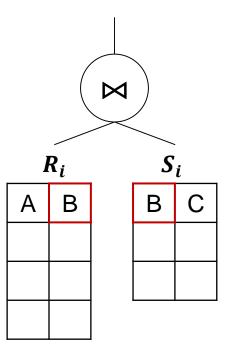


 Merge outputs records from Gather and Split by rotation

Query parallelization, case 1

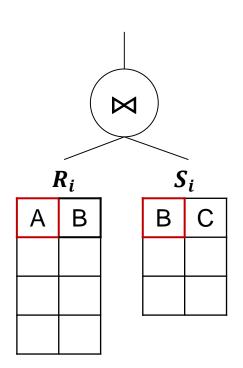
 ${\it R}$ and ${\it S}$ are partitioned by the join attribute using the same partition function



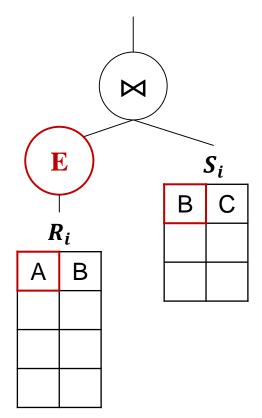


Query parallelization, case 2

R is partitioned by A and S is partitioned by B using the φ_S partition function

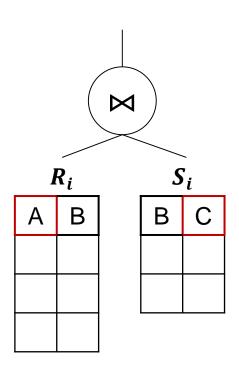


Distribution function: $\psi_R(r.B) = \varphi_S(r.B)$



Query parallelization, case 3

R is partitioned by A and S is partitioned by C

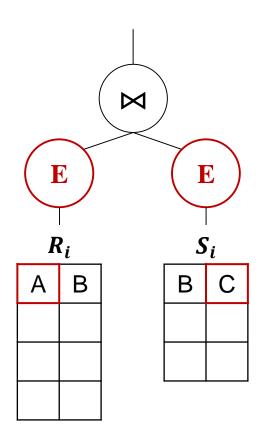


Distribution functions:

$$\psi_R(r.B) = f(r.B)$$

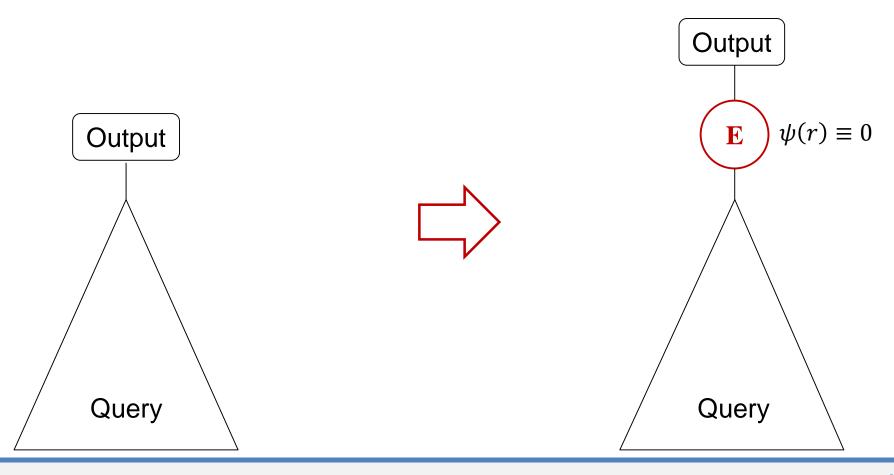
$$\psi_S(s.B) = f(s.B)$$

$$f: D_B \to \{0, \dots, P-1\}$$

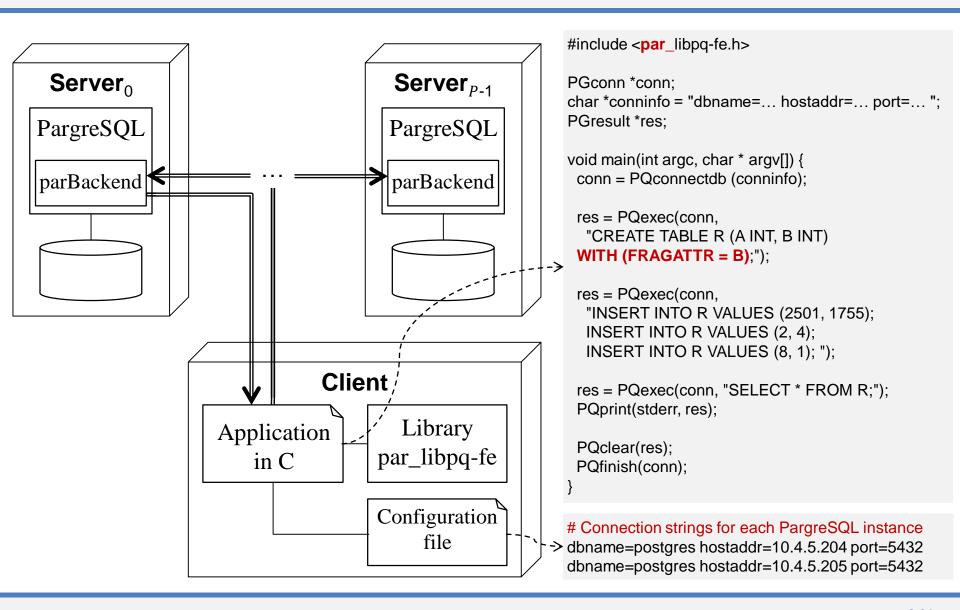


Merging partial results

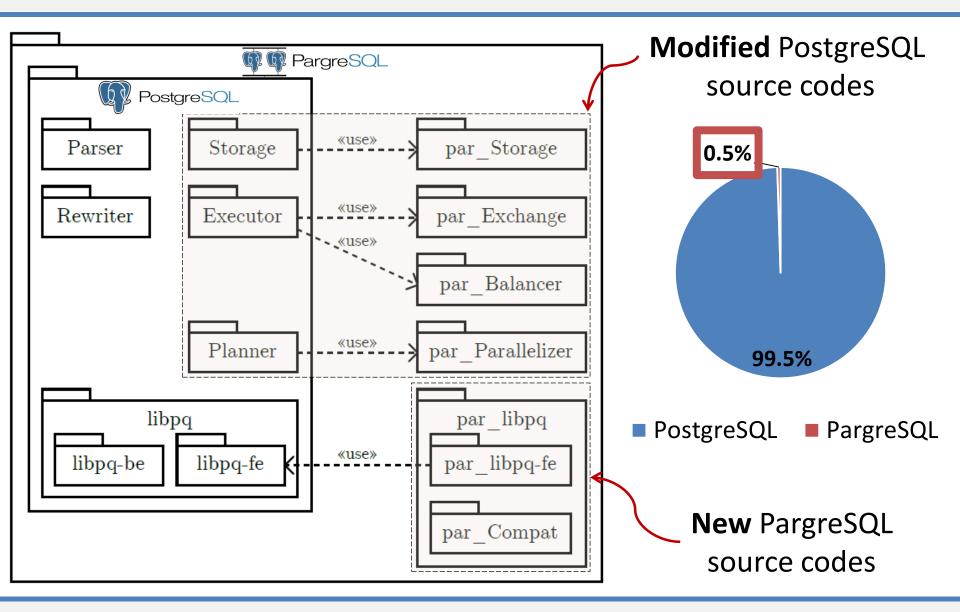
To merge partial results on the 0th server, we just need one more EXCHANGE with trivial distribution function



Running PargreSQL application



PargreSQL is just a prototype

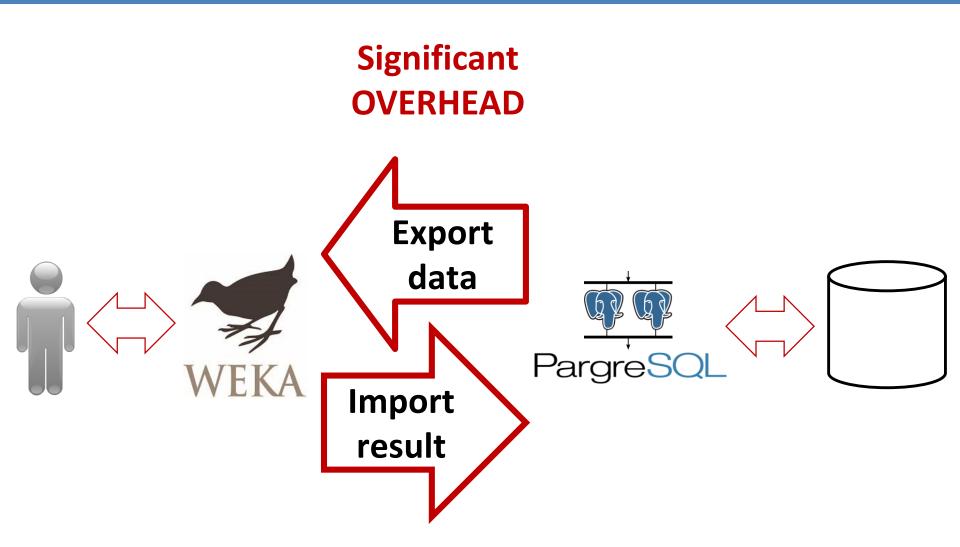


PargreSQL is just a prototype...

TPC-C test results

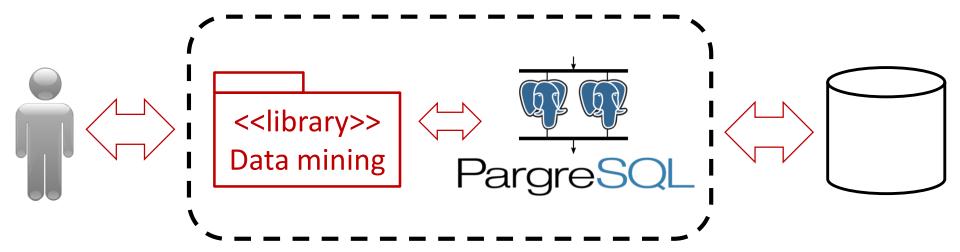
Rank	Company	System	Performance (tpmC)	DBMS	OS
1		SPARC SuperCluster with T3-4 Servers		Oracle Database 11g R2 Enterprise Edition w/RAC w/Partitioning	
2	IBM	IBM Power 780 Server Model 9179- MHB	10 366 254		AIX Version 6.1
3	Oracle	Sun SPARC Enterprise T5440 Server Cluster		Oracle Database 11g Enterprise Edition w/RAC w/Partitioning	Sun Solaris 10 10/09
	SUSU	Tornado SUSU supercomputer	2 202 531	PargreSQL	Linux CentOS 6.2
4	HP	HP Integrity rx5670 Cluster Itanium2/1.5 GHz-64p		•	Red Hat Enterprise Linux AS 3

Why Data Mining inside DBMS?



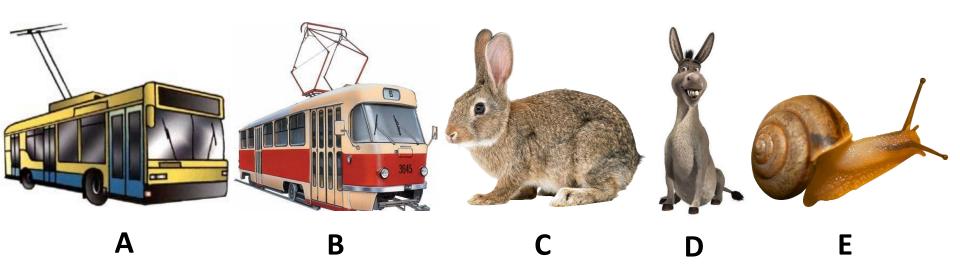
Why Data Mining inside DBMS?

Let us move algorithms closer to data!



- No export and import data overhead
- All the DBMS services are available for free (query optimization, indexing, data security, etc.)

Data mining inside PDBMS: fuzzy clustering



Objects	C ₁	C ₂
А	0.90	0.10
В	0.80	0.20
С	0.15	0.85
D	0.30	0.70
Е	0.25	0.75

Fuzzy c-Means (FCM) algorithm generalizes k-Means and performs clustering where each object belongs to all clusters at the same time with different membership degree

Fuzzy c-Means clustering

Input

- $X = \{x_1, x_2, ..., x_n\}$ is a set of objects, $x_i \in \mathbb{R}^d$
- *k* is number of clusters

Output

• $U \in \mathbb{R}^{n \times k}$ is membership matrix where $u_{ij} \in (0,1)$ is a membership degree of object x_i in cluster c_i :

$$\forall i \ \sum_{j=1}^{\kappa} u_{ij} = 1$$

• $C \in \mathbb{R}^{k \times d}$ is matrix of centroids where row c_i is center of j-th cluster

χ	$X_{i,1}$	• • •	$x_{i,d}$
1			
• • •			
n			

и	1	• • •	k
1			
• • •			
n			

\boldsymbol{c}	$c_{j,1}$	• • •	$c_{j,d}$
1			
• • •			
k			

Fuzzy c-Means clustering

Objective function to be minimized

$$J_{FCM}(X,k,m) = \sum_{i=1}^{n} \sum_{j=1}^{k} u_{ij}^{2} ED^{2}(x_{i},c_{j})$$

Computation of centroids

$$c_{j\ell} = \frac{\sum_{i=1}^{n} u_{ij}^2 \cdot x_{i\ell}}{\sum_{i=1}^{n} u_{ij}^2}$$

Computation of memberships

$$u_{ij} = \sum_{t=1}^{\kappa} \frac{ED(x_i, c_t)}{ED(x_i, c_j)}$$

Fuzzy c-Means clustering

- **Input:** *X*, *k*
- **Output:** *U*, *C*
- Method

$$s := 0$$

$$U^{(0)} := rand(0...1)$$

repeat

Compute $C^{(s)}$ as in (1)

Compute $U^{(s)}$ and $U^{(s+1)}$ as in (2)

$$s := s + 1$$

until
$$\max_{ij} \left\{ \left| u_{ij}^{(s)} - u_{ij}^{(s-1)} \right| \right\} \ge \varepsilon$$

(1)
$$c_{j\ell} = \frac{\sum_{i=1}^{n} u_{ij}^2 \cdot x_{i\ell}}{\sum_{i=1}^{n} u_{ij}^2}$$

(2)
$$u_{ij} = \sum_{t=1}^{k} \frac{ED(x_i, c_t)}{ED(x_i, c_j)}$$

pgFCM: relational schema

Object matrix X

	X_1	• • •	X_d
1	1.0	• • •	2.1
$\bar{:}$:	٠.	:
n	3.4	• • •	2.9

Vertical object table SV

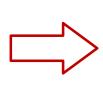
i	l	val
1	1	1.0
:	:	:
n	d	2.9

Horizontal object table SH

i	X_1	• • •	X_d
1	1.0	• • •	2.1
:	•••	٠.	:
n	3.4	• • •	2.9

Centroid matrix **C**

	$X_1 \cdots X_d$
1	2.2 · · · 8.1
:	: . :
k	3.4 · · · 6.9



Centroid	table	\boldsymbol{C}
		_

j	l	val
1	1	2.2
•	:	:
k	d	6.9

Now we can use queries with aggregation by rows

Membership matrix *U*

	1	• • •	k
1	0.2	• • •	0.1
:		٠.	:
'n	0.8		0.1

Membership table $U^{(s)}$

i	j	val
1	1	0.2
:	:	•
n	· k	0.1

Membership table $UT^{(s+1)}$

SUM()

i	j	val
1	1	0.2
:	• •	:
n	k	0.1

Computing centroids

```
INSERT INTO C
    SELECT R.j, SV.l, sum(R.s * SV.val) / sum(R.s) AS val
    FROM (
        SELECT i, j, U.val^m AS s
        FROM U) AS R, SV
WHERE R.i = SV.i
GROUP BY j, l;
```

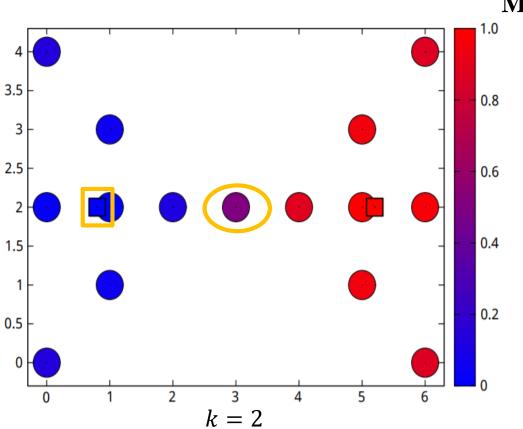
Computing Euclidean distances

```
 \begin{array}{l} \textbf{INSERT INTO} \; SD \\ \textbf{SELECT} \; i \; , \; j \; , \; sqrt\left(\textbf{sum}((SV.\,val\,-\,C.\,val)\,\hat{}^2)\right) \; \textbf{as} \; \; dist \\ \textbf{FROM} \; SV, \; C \\ \textbf{WHERE} \; SV.\, l \; = \; C.\, l \; ; \\ \textbf{GROUP BY} \; i \; , \; j \; ; \end{array}
```

Computing memberships

```
INSERT INTO UT
    SELECT i, j, SD.dist^(2.0^(1.0 - m)) * SD1.den AS val
    FROM (
        SELECT i, 1.0 / sum(dist^(2.0^(m - 1.0))) AS den
        FROM SD
        GROUP BY i) AS SD1, SD
    WHERE SD.i = SD1.i;
```

pgFCM: results



Membership table U

i	j	val	
1	1	0.86	
1	2	0.13	
2	1	0.97	
2	2	0.02	
8	1	0.49	
8	1 2	0.49	
	1 2 		
	1 2 		
8	1 2 1 2	0.50	

Horizontal object table *SH*

	i	x_1	x_2	
	1	0	0	
	2	0	2	
	3	0	4	
	8	3	2	
	15	6	0	

Centroid table C

j	l	val
1	1	0.79
1	2	2.0
2	1	5.2
2	2	1.99

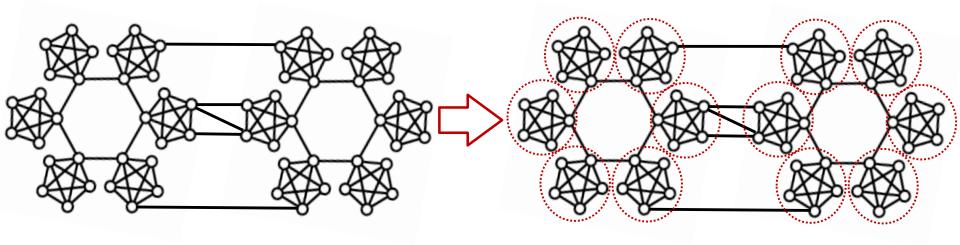
pgFCM vs analogs

Algorithm	Dataset		Time, sec.			pgFCM,	
	n	d	Clust	-	Imp	Total	sec.
			ering	ort	ort		
WCFC 1)	$4.9 \cdot 10^6$	41	5100	203	10	5 313	5 182
BigFCM ²⁾	$1.1\cdot 10^7$	28	189	397	25	611	531

¹⁾ Hidri M.S., et al. Speeding up the large-scale consensus fuzzy clustering for handling Big Data. Fuzzy Sets and Systems. 2018. vol. 348. pp. 50–74.

²⁾ Ghadiri N., *et al*. BigFCM: Fast, precise and scalable FCM on Hadoop. Future Generation Comp. Syst. 2017. vol. 77. pp. 29–39.

Data mining inside PDBMS: communities

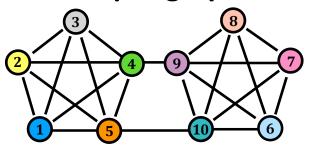


Community detection problem:

Split a big social graph into a set of subgraphs where vertices of each subgraph have dense connections with each other and sparse connections with vertices of other subgraphs

Community detection: ideas

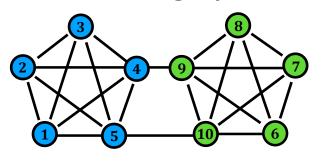
Input graph



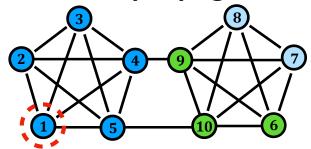
for each vertex v

Assign a community label to v

Final graph



Label propagation



repeat

for each vertex v

for each neighbor vertex u

Compute their affinity as

$$afty(v,u) = \frac{w(v,u)}{\sum_{i \in \mathcal{N}_v} w(v,i)}$$

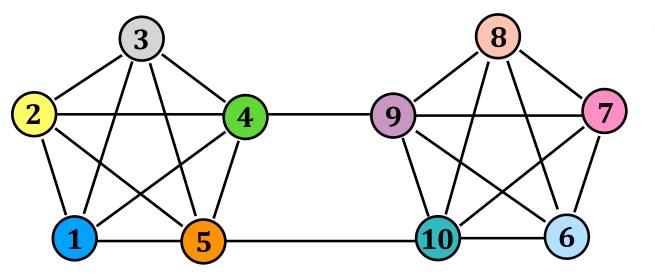
for each community *C*

Compute v's degree of membership as

$$d(v,C) = \frac{\sum_{u \in \mathcal{N}_v \land \mathcal{L}_u = C} afty(v,u)}{\sum_{u \in \mathcal{N}_v} afty(v,u)}$$

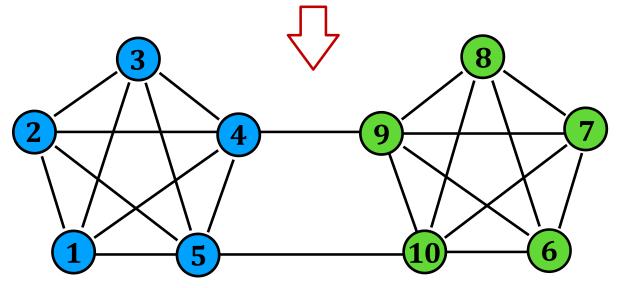
Assign a community label with highest *d* until a given part or all vertices keep labels

Community detection: relational schema



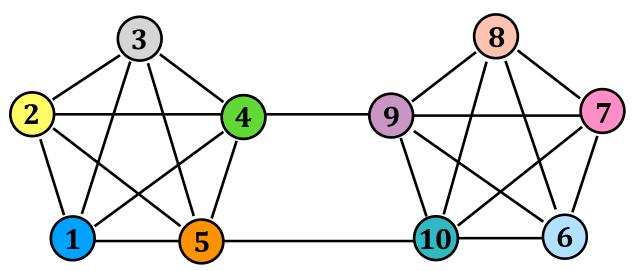
GRAPH table

v	u	w
1	2	1
1	3	1
	•••	
8	9	1
9	10	1



VERTEX table

V	С	
1	1	
2	1	
•••		
9	4	
10	4	

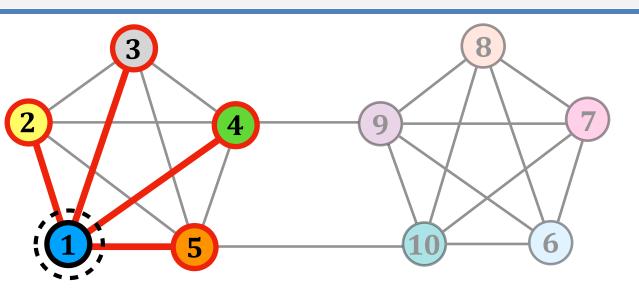


$$afty(v,u) = \frac{w(v,u)}{\sum_{i \in \mathcal{N}_v} w(v,i)}$$

AFF_TMP_WNBR

V	wnbr
•••	

INSERT INTO AFF_TMP_WNBR SELECT v, sum(w) as wnbr FROM AFF_TMP_SUBG GROUP BY v;

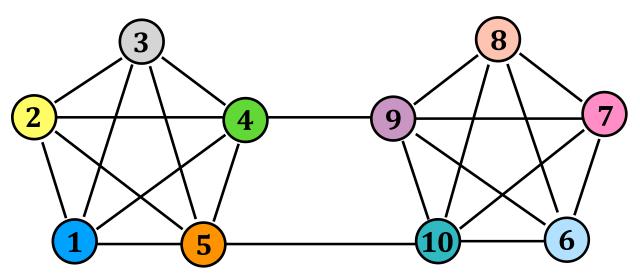


$$afty(v,u) = \frac{w(v,u)}{\sum_{i \in \mathcal{N}_v} w(v,i)}$$

AFF_TMP_WNBR

V	wnbr
1	4

INSERT INTO AFF_TMP_WNBR SELECT v, sum(w) as wnbr FROM AFF_TMP_SUBG GROUP BY v;



$$afty(v,u) = \frac{w(v,u)}{\sum_{i \in \mathcal{N}_v} w(v,i)}$$

INSERT INTO AFF_TMP_WNBR

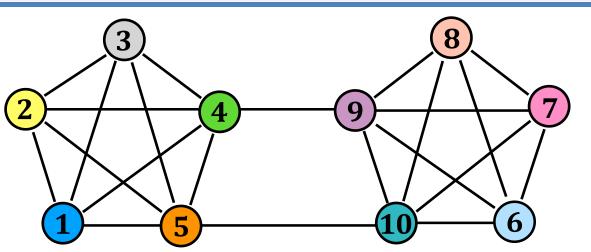
SELECT v, sum(w) as wnbr

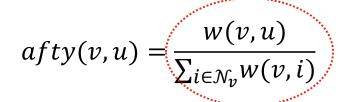
FROM AFF_TMP_SUBG

GROUP BY v;

AFF_TMP_WNBR

V	wnbr
1	4
2	4
	•••
9	5
10	5





AFFINITY

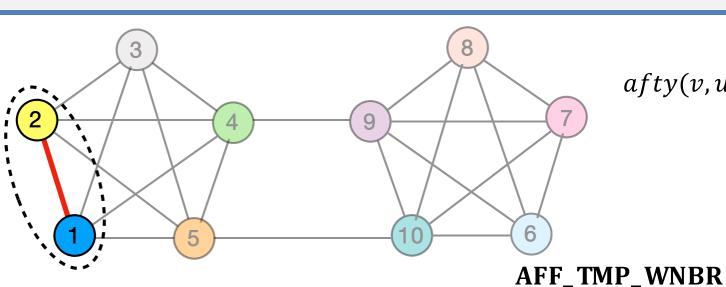
afty u

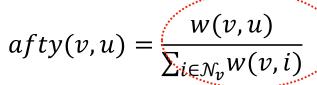
AFF_TMP_WNBR

•	INSERT INTO AFF_TMP_WNBR
	SELECT v, sum(w) as wnbr
	FROM AFF_TMP_SUBG
	GROUP BY v;
_	11.10=5=11.1=0.4==11.1=1.4

•	INSERT INTO AFFINITY
	SELECT X.v, u, w/wnbr as afty
	FROM AFF_TMP_SUBG AS X,
	AFF_TMP_WNBR AS Y
	WHERE $X.v = Y.v$;

V	wnbr	
1	4	
2	4	
	•••	
9	5	
10	5	





wnbr

4

5

5

9

10

AFFINITY

afty u $\frac{1}{4} = 0.25$

INSERT INTO AFF_TMP_WNBR

SELECT v, sum(w) as wnbr

FROM AFF_TMP_SUBG

GROUP BY v:

INSERT INTO AFFINITY

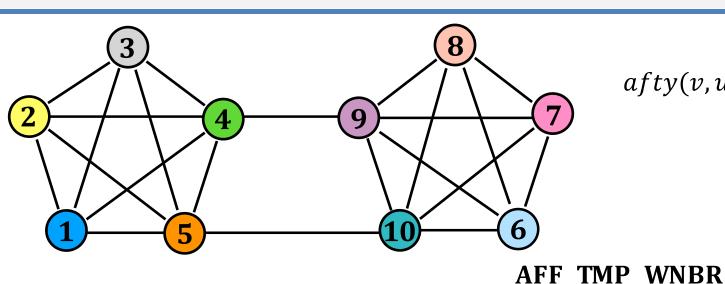
SELECT X.v, u, w/wnbr as afty

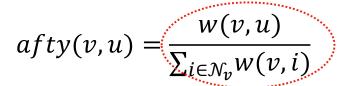
FROM AFF_TMP_SUBG AS X,

AFF_TMP_WNBR AS Y

WHERE X.v = Y.v;

51/81





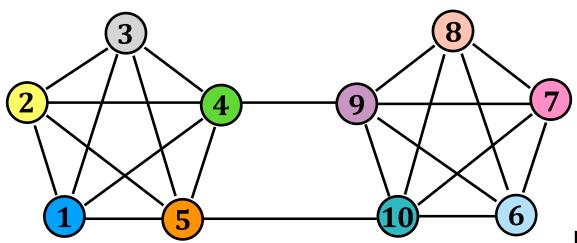
AFFINITY

- INSERT INTO AFF_TMP_WNBR SELECT v, sum(w) as wnbr FROM AFF_TMP_SUBG GROUP BY v;
- **INSERT INTO AFFINITY** SELECT X.v, u, w/wnbr as afty FROM AFF_TMP_SUBG AS X, AFF TMP WNBR AS Y WHERE X.v = Y.v;

_	
V	wnbr
1	4
2	4
	•••
9	5
10	5

V	u	afty
1	2	0.25
1	3	0.25
1	4	0.25
10	7	0.2
10	8	0.2
10	9	0.2

52/81

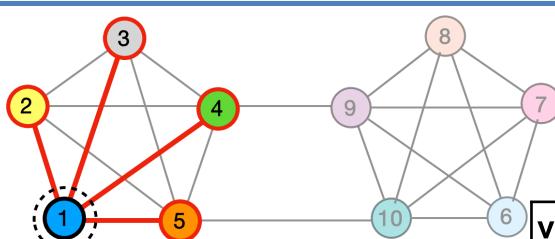


INSERT INTO **COMM_TMP_AFNBRALL**SELECT v, sum(afty) as afnrall
FROM AFFINITY
GROUP BY v;

$$d(v,C) = \frac{\sum_{u \in \mathcal{N}_v \land \mathcal{L}_u = C} afty(v,u)}{\sum_{u \in \mathcal{N}_v} afty(v,u)}$$

COMM_TMP_ AFNRALL

_	
V	afnrall
	•••



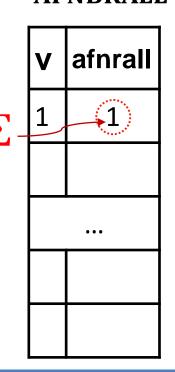
INSERT INTO **COMM_TMP_AFNBRALL**SELECT v, sum(afty) as afnrall
FROM AFFINITY
GROUP BY v;

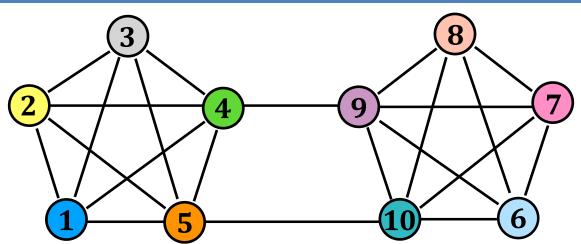
d(n,C) =	$\sum_{u \in \mathcal{N}_v \wedge \mathcal{L}_u = C} afty$	(v,u)
d(v,C) =	$\sum_{u\in\mathcal{N}_v} afty(v,$	u)

AFFINITY

>	u	afty
1	2	0.25
1	3	0.25
1	4	0.25
1	5	0.25
10	8	0.2
10	9	0.2

COMM_TMP_ AFNBRALL





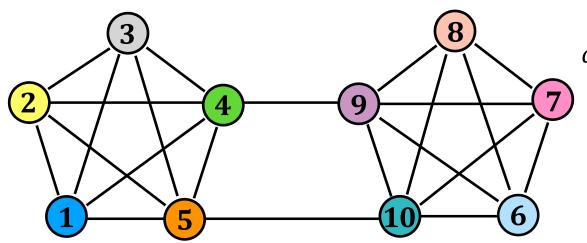
 $d(v,C) = \frac{\sum_{u \in \mathcal{N}_v \land \mathcal{L}_u = C} afty(v,u)}{\sum_{u \in \mathcal{N}_v} afty(v,u)}$

COMM_TMP_ AFNBRALL

COMM_TMP_ AFNBRCOM

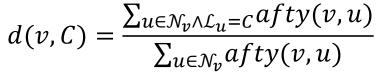
v	u	afty	
1	2	0.25	
1	3	0.25	
1	4	0.25	
10	7	0.2	
10	8	0.2	
10	9	0.2	

- INSERT INTO COMM_TMP_AFNBRALL SELECT v, sum(afty) as afnrall FROM AFFINITY GROUP BY v;
- INSERT INTO **COMM_TMP_AFNBRCOM**SELECT AFFINITY.v, VERTEX.c, sum(afty)
 FROM AFFINITY, VERTEX
 WHERE AFFINITY.u = VERTEX.v
 GROUP BY AFFINITY.v, VERTEX.c;



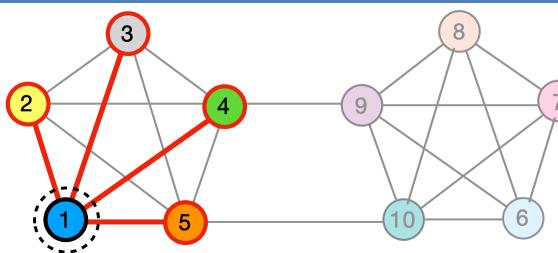
INSERT INTO **COMMUNITY**

SELECT X.v, c, afnbrcom/afnbrall as d FROM COMM_TMP_AFNBRALL as X, COMM_TMP_AFNBRCOM as Y WHERE X.v = Y.v;



COMMUNITY

V	С	d
1	2	0.25
1	3	0.25
1	4	0.25
•••		
10	7	0.2
10	8	0.2
10	9	0.2



- INSERT INTO COMMUNITY
 SELECT X.v, c, afnbrcom/afnbrall as d
 FROM COMM_TMP_AFNBRALL as X,
 COMM_TMP_AFNBRCOM as Y
 WHERE X.v = Y.v;
- INSERT INTO COMM_TMP_DMAX
 SELECT v, max(d) as dmax
 FROM COMMUNITY
 GROUP BY v;

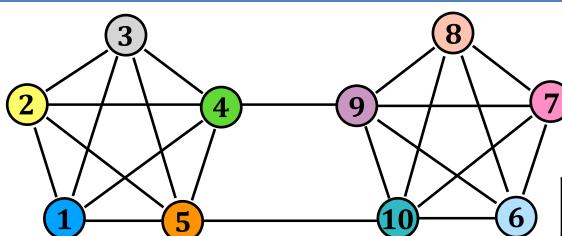
d(v,C) =	$\sum_{u \in \mathcal{N}_v \wedge \mathcal{L}_u = C} afty(v, u)$
u(v,c) -	$\sum_{u \in \mathcal{N}_{v}} afty(v, u)$

COMMUNITY

V	С	d
1	2	0.25
1	3	0.25
1	4	0.25
1	5	0.25
10	8	0.2
10	9	0.2

COMM_TMP_ DMAX

٧	dmax
1	• 0.25
	•••



- INSERT INTO COMMUNITY
 SELECT X.v, c, afnbrcom/afnbrall as d
 FROM COMM_TMP_AFNBRALL as X,
 COMM_TMP_AFNBRCOM as Y
 WHERE X.v = Y.v;
- INSERT INTO COMM_TMP_DMAX
 SELECT v, max(d) as dmax
 FROM COMMUNITY
 GROUP BY v;

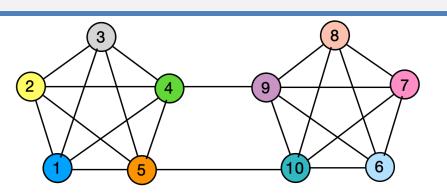
$d(v,C) = \frac{\sum_{u \in \mathcal{N}_v \land \mathcal{L}_u = C} afty(v,u)}{\sum_{u \in \mathcal{N}_v} afty(v,u)}$

COMMUNITY

٧	С	d
1	2	0.25
1	3	0.25
1	4	0.25
1	5	0.25
10	8	0.2
10	9	0.2

COMM_TMP_ DMAX

V	dmax
1	0.25
2	0.25
	•••
9	0.2
10	0.2



$$d(v,C) = \frac{\sum_{u \in \mathcal{N}_v \land \mathcal{L}_u = C} afty(v,u)}{\sum_{u \in \mathcal{N}_v} afty(v,u)}$$

COMMUNITY as **X**

V	С	d	
1	2	0.25	
1	3	0.25	
1	4	0.25	
1	5	0.25	
10	8	0.2	
10	q	0.2	

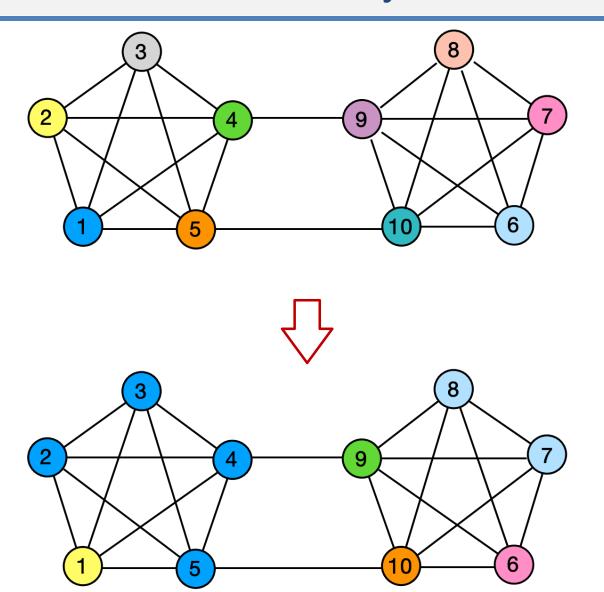
COMM_TMP_ DMAX as Y

v dmax			
1	0.25		
2	0.25		
	•••		
9	0.2		
10	0.2		

VERTEX

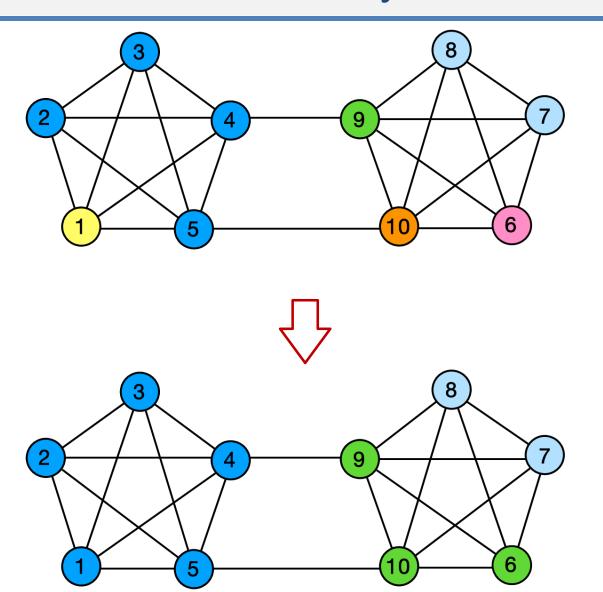
	V	С
	1	2
$V_{a,min(c)}(\pi_{v,c}(X\bowtie Y))$	2	1
	•••	
	9	4
	10	5

Community detection



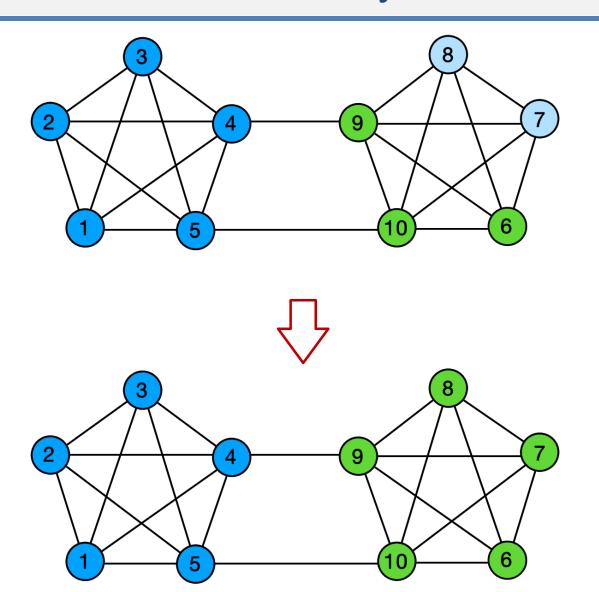
VERTEX			
٧	O		
1	2		
2	1		
3	1		
4	1		
5	1		
6	7		
7	6		
8	6		
9	4		
10	5		

Community detection



VERTEX			
>	O		
1	1		
2	1		
3	1		
4	1		
5	1		
6	4		
7	6		
8	6		
9	4		
10	4		

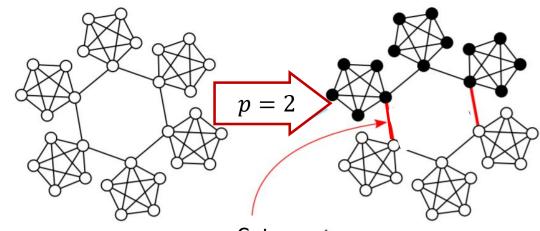
Community detection



VERIEX			
V	С		
1	1		
2	1		
2 3 4	1		
	1		
5 6	1		
	4		
7	4		
8	4 4 4 4 4		
9	4		
10	4		

VERTEY

Even more! Graph partitioning in PDBMS

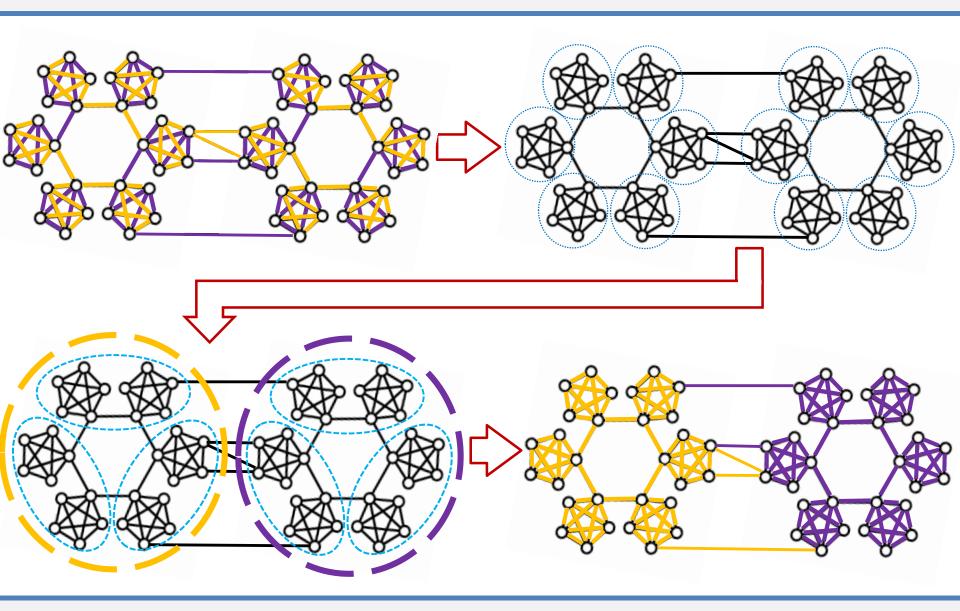


Cut → min

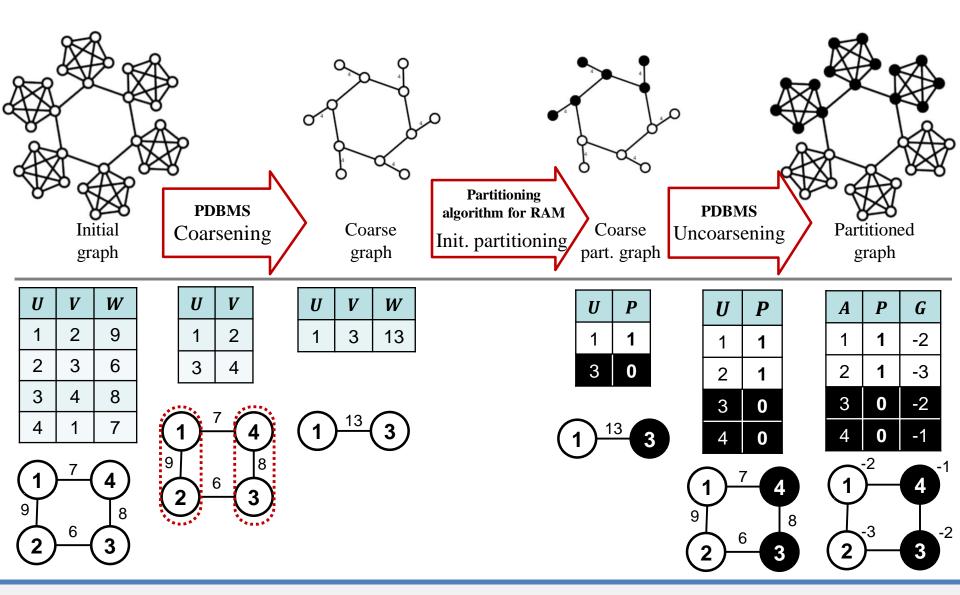
Subgraph size ≈ ■ subgraph size

- 1. $N = \bigcup_{i=1}^{p} N_i, \ \forall i \neq j \ N_i \cap N_j = \emptyset, \ p > 1$
- 2. $w(N_i) \approx \frac{w(N)}{p} \quad \forall i \in \{1, ..., p\}$
- 3. $Cut W_{cut} \to \min, W_{cut} \coloneqq \sum_{e \in E_{cut}} w(e),$ $E_{cut} \coloneqq \{(u, v) \in E \mid u \in N_i, v \in N_j, 1 \le i, j \le p, i \ne j\}$

Graph partitioning in PDBMS



Multilevel graph partitioning in PDBMS



Comparison with analogs

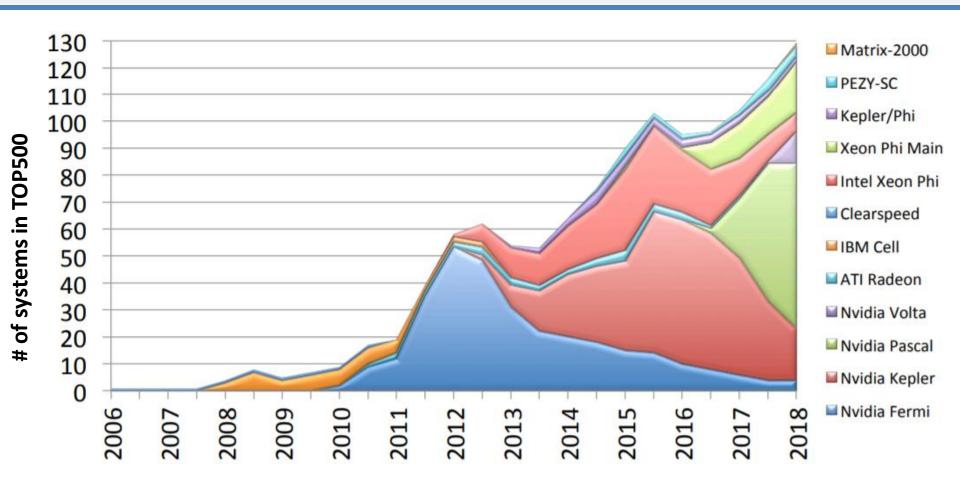
Algorithm	Graph		Time, sec.				dbPar
	N	E	Detec	Export	Import	Total	graph,
			tion				sec.
MSP 1)	10^{7}	$5 \cdot 10^7$	962	307	36	1 305	1 189
ParMETIS ²⁾	$7.7 \cdot 10^6$	$1.33\cdot 10^8$	500	474	30	1 004	886
PT-Scotch 3)	$2.3\cdot 10^7$	$1.75 \cdot 10^8$	417	652	79	1 148	897

¹⁾ Zeng Z., et al. A parallel graph partitioning algorithm to speed up the large-scale distributed graph mining. BigMine 2012. pp. 61–68.

²⁾ Karypis G. METIS and ParMETIS. Enc. of Parallel Computing (Ed. by D.A. Padua). Springer, 2011. pp. 1117–1124.

³⁾ Chevalier C., Pellegrini F. PT-Scotch: A tool for efficient parallel graph ordering. Parallel Computing. 2008. vol. 34, no. 6-8. pp. 318–331.

500: Many-core accelerators are coming



and we can use it for in-DBMS Data Mining!

Embedding parallel DM algorithms into DBMS

API function

(input and output are tables)

Wrapper function
(DBMS User Defined Function)

Parallel Data Mining algorithm for RAM (input and output are variables)

How should we parallelize algorithms for accelerators?

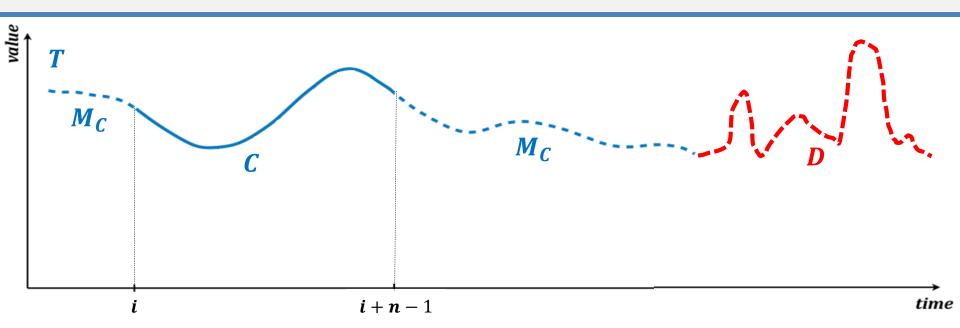
SIMD processing and auto-vectorization

- Single Instruction Multiple Data
- Computations should be organized as for-loops without data dependencies, so the compiler will be able to change a set of scalar statements in loop body to one vector operation

Data alignment

 Data element size should be multiple of vector register size to avoid loop peeling

Accelerating anomaly detection in time series



- Time series: $T := (t_1, ..., t_m), t_i \in \mathbb{R}$
- Subsequence: $C := T_{i,n}$ where $n \ll m$
- Non-self match subsequence for $C: M_C:=T_{j,n}, |i-j| \ge n$
- Anomalous subsequence *D*:

$$\forall C, M_C \in T \min(ED(D, M_D)) > \min(ED(C, M_C))$$

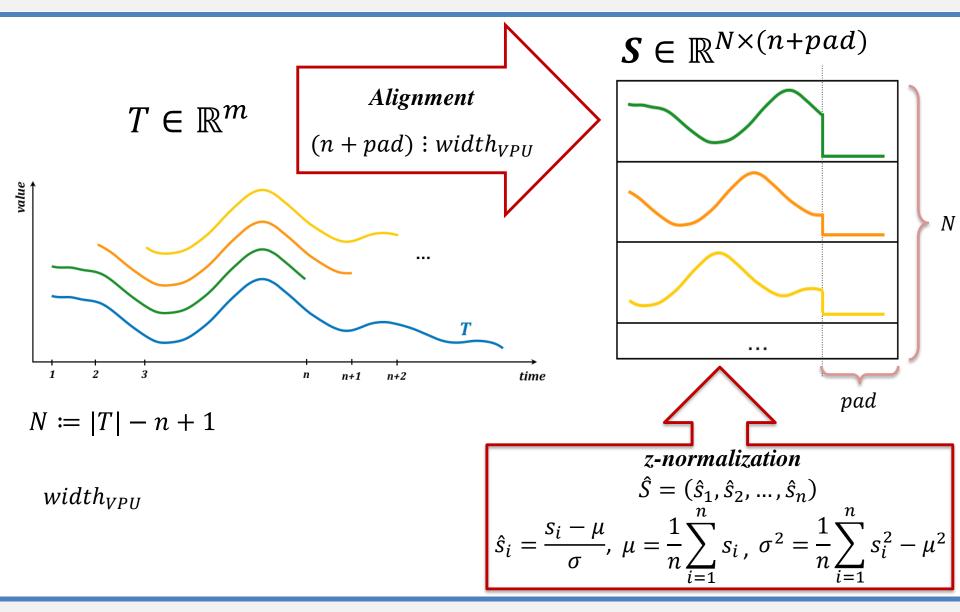
Anomaly detection: ideas

- We need index structures
 to effectively iterate
 subsequences of the
 given time series
- We differ the following types of subsequences
 - NearAnomalies are the rarest, and Others
 - Neighbors are close to the given subsequence, and
 Strangers

 We can avoid brute force and prune clearly unpromising subsequences

```
d_{anomaly} \leftarrow 0; d_{NN} \leftarrow \infty
for C_i \in NearAnomalies, Others
  for C_i \in Neighbors, Strangers
     d \leftarrow ED^2(C_i, C_i)
   if d < d_{anomaly}
       break
     d_{NN} \leftarrow \min(d, d_{NN})
   d_{anomaly} \leftarrow \max(d_{NN}, d_{anomaly})
   C_{anomaly} \leftarrow C_i
return \{C_{anomaly}, d_{anomaly}\}
```

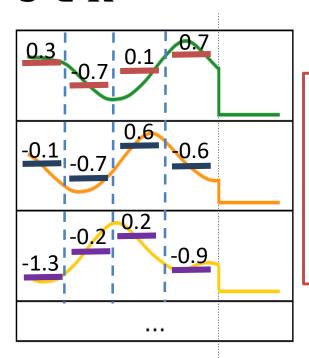
Index structures: Subsequence matrix



PAA transformation

Subsequence matrix

$$S \in \mathbb{R}^{N \times (n+pad)}$$



Piecewise Aggregate Approximation

$$PAA(i,k) = \frac{w}{n} \sum_{j=\left(\frac{n}{w}\right)(i-1)+1}^{\left(\frac{n}{w}\right)i} S(k,j)$$

Matrix of PAA codes

$PAA \in \mathbb{R}^{N \times w}$

0.3	-0.7	0.1	0.7
-0.1	-0.7	0.6	-0.6
-1.3	-0.2	0.2	-0.9

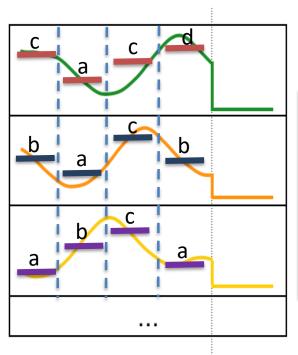
w – compression degree (typically w=4)

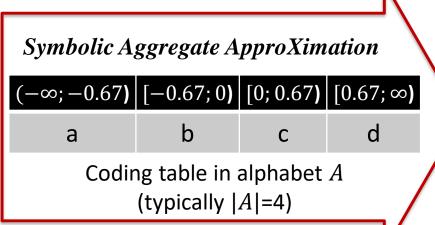
SAX transformation

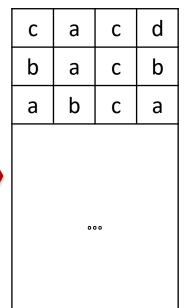
Subsequence matrix

Matrix of SAX codes

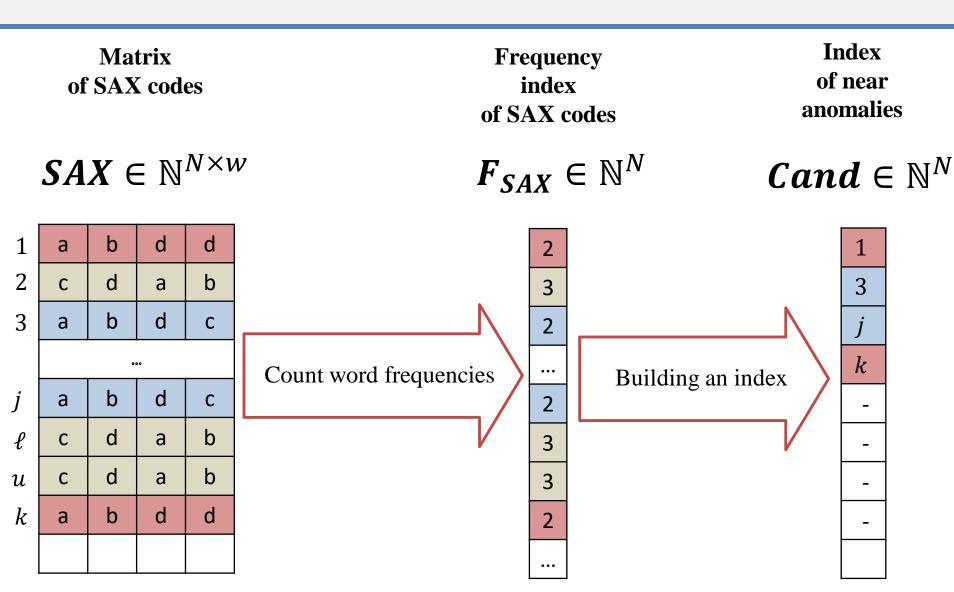
$$\mathbf{S} \in \mathbb{R}^{N \times (n+pad)}$$



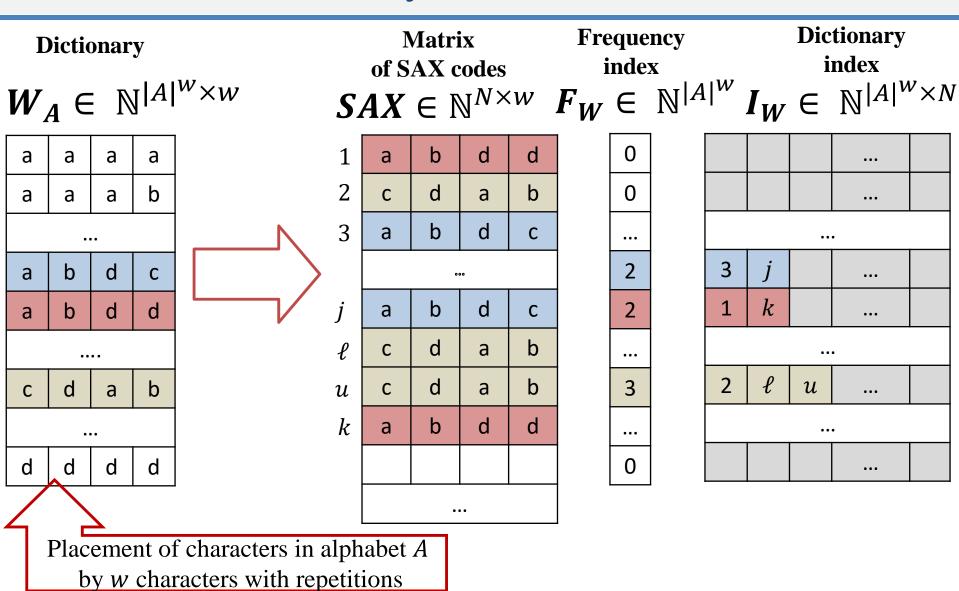




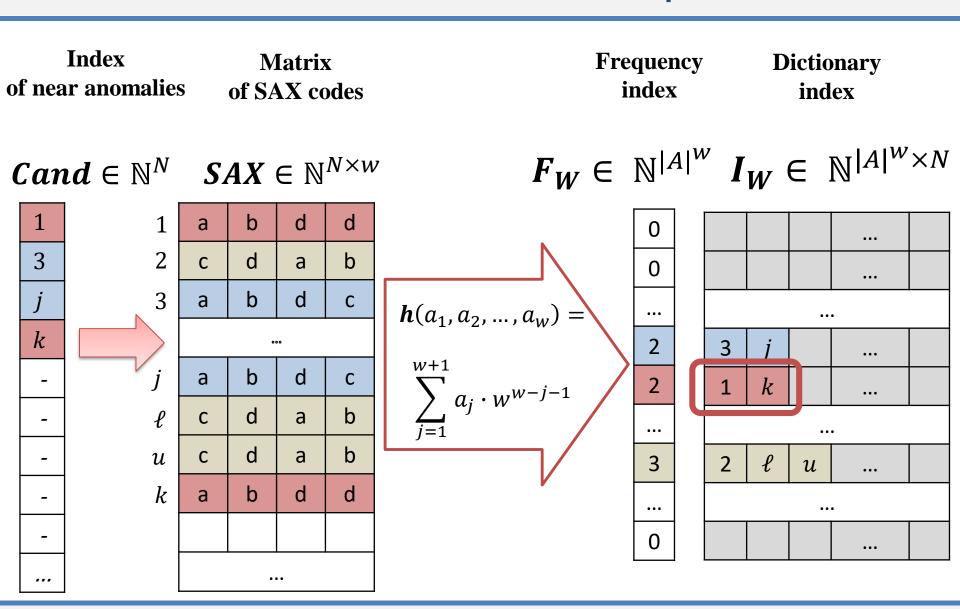
Indices of SAX codes and near anomalies



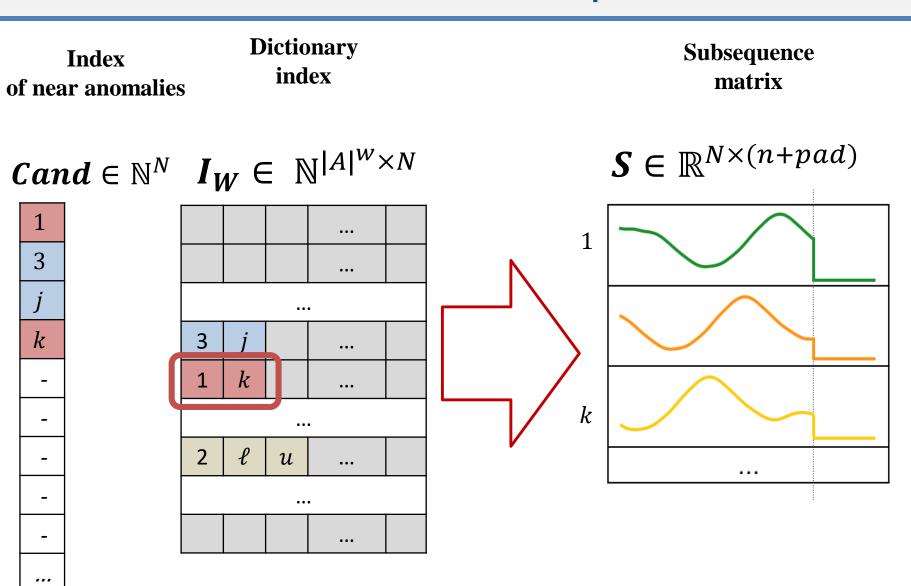
Dictionary and its indices



Indirect access to subsequences



Iteration of subsequences



Parallel anomaly detection

1. Select candidates

$d_{anomaly} \leftarrow 0$; $d_{NN} \leftarrow \infty$ for $C_i \in NearAnomalies$ PARALLEL for $C_i \in Neighbors, Strangers$ $d \leftarrow ED^2 (C_i, C_i)$ if $d < d_{anomaly}$ break $d_{NN} \leftarrow \min(d, d_{NN})$ $d_{anomaly} \leftarrow \max(d_{NN}, d_{anomaly})$ if $d_{anomaly} < d_{NN}$ then

2. Refine

```
d_{NN} \leftarrow \infty
PARALLEL
for C_i \in Others
  for C_i \in Neighbors, Strangers
     d \leftarrow ED^2 (C_i, C_i)
    if d < d_{anomaly}
        break
     d_{NN} \leftarrow \min(d, d_{NN})
   d_{anomaly} \leftarrow \max(d_{NN}, d_{anomaly})
   if d_{anomaly} < d_{NN} then
     C_{anomaly} \leftarrow C_i
return \{C_{anomaly}, \sqrt{d_{anomaly}}\}
```

return $\{C_{anomaly}, d_{anomaly}\}$

 $C_{anomaly} \leftarrow C_i$

Speedup

Device	Intel Xeon	Intel Xeon	2× Intel	2× Intel
	Phi SE10X	Phi 7290	Xeon E5-	Xeon E5-
Feature	(KNC)	(KNL)	2697v4	2630v4
Number of cores	61	72	2×16	2×10
Frequency, GHz	1.1	1.5	2.6	2.2
Peak. performance, TFLOPS	1.076	3.456	0.600	0.390



Conclusions

Big Data processing and analytics inside Parallel Relational DBMS – it is possible and feasible!

Thank you for paying attention! Questions?

Mikhail Zymbler

<u>mzym@susu.ru</u>