
Advances in Databases and Information Systems
Genoa, September 4, 2013

Very Large Graph
Partitioning
by Means of
Parallel DBMS

Constantin Pan, Mikhail Zymbler

South Ural State University,
Chelyabinsk, Russia

The reported study was partially supported by the Russian Foundation for Basic
Research, research projects No. 12-07-31217 and No. 12-07-00443.

Graph Partitioning

Graph Partitions

cut size → min
partition size ≈ partition size

2

Multilevel Partitioning

Fine
graph

4

4 4

4

4
4

Coarse
Graph

4

4 4

4

4
4

Coarse
Partitions

Fine
Partitions

3

Using Parallel DBMS

4

4 4

4

4
4

4

4 4

4

4
4

coarsen coarsen

partition

Chaco

uncoarsen uncoarsen

PargreSQL

4

PargreSQL

00
⋮
09

10
⋮
19

⋮
90
⋮
99

⋮
⋮

5

Coarsening

22
2

2
2

4

1. Find the heaviest (or a random) edge.
2. Collapse the edge into a vertex.
3. Merge the duplicates and remove the loops.
4. Repeat, avoiding the vertices generated this way,

until nothing is left.

6

Coarsening with DBMS

2
2

4

1. Find the heaviest matching.
2. Collapse the edges of the matching into vertices.
3. Merge the duplicates and remove the loops.

7

Data Flow

a b w
Graph

a b

a p
Partitions

Matching 0

a b w
Coarse graph 0

a p
Coarse partitions 0

a b
Matching 1

a b w
Coarse graph 1

a p
Coarse partitions 1

Coarsening Uncoarsening

Initial Partitioning

8

Coarsening Implementation

9 8

7

6

9 8

7

6
6+7

1

2 3

4 1

2 3

4

1 3

A B W
1 2 9
2 3 6

4 1 7
3 4 8

A B
1 2
3 4

A B W
1 3 13

M
AT

C
H

G
R

A
PH

C
O

A
R

SE
 G

R
A

PH

search collapse

9

Coarsening Implementation

-- search

for edge in (select A,B from GRAPH order by W desc)
loop

if not exists(
select * from visited where A = edge.A or A = edge.B

) then
insert into visited values (edge.A);
insert into visited values (edge.B);
insert into MATCH values (edge.A, edge.B);

end if;
end loop;

10

Coarsening Implementation

-- collapse

select
least(newA, newB) as A,
greatest(newA, newB) as B,
sum(W) as W

from (
select

coalesce(match2.A, GRAPH.A) as newA,
coalesce(MATCH.A, GRAPH.B) as newB,
GRAPH.W

from
GRAPH, left join MATCH on GRAPH.B=MATCH.B
left join MATCH as match2 on GRAPH.A=match2.B)

where newA != newB group by A, B;

11

Uncoarsening Implementation

9 8

7

6
13

1

2 3

4

1 3

propagation

A P
1 1

C
O

A
R

SE
PA

RT
IT

IO
N

S

3 0

1

2 3

4

-3

-2 -1

-2

A P
1 1

PA
RT

IT
IO

N
S

2 1
3 0
4 0

A P
1 1

PA
RT

IT
IO

N
S

2 1
3 0
4 0

G
-2
-3
-2
-1

1

2 3

4

-3

-2 -1

-2

A P
1 1

PA
RT

IT
IO

N
S

2 1
3 0
4 0

G
-2
-3
-2
-1

gain calc. refining

12

Coarsening Implementation

-- propagate

select a, p from COARSE_PARTS
union
select match.b, part.p
from MATCH as match, COARSE_PARTS as part
where match.a = part.a;

13

Coarsening Implementation
-- calculate gains

select
PARTITIONS.A, PARTITIONS.P,
sum(subgains.Gain) as Gain

from
PARTITIONS left join (

select GRAPH.A, GRAPH.B,
case when ap.P = bp.P then -GRAPH.W

else GRAPH.W end as Gain
from

GRAPH left join PARTITIONS as ap on GRAPH.a = ap.A
left join PARTITIONS as bp on GRAPH.b = bp.A

) as subgains
on PARTITIONS.A = subgains.A
or PARTITIONS.A = subgains.B

group by PARTITIONS.A, PARTITIONS.P;
14

Coarsening Implementation
-- refine

select * from PARTITIONS
where P = current and G = (select max(G) from PARTITIONS

where P = current)
limit 1 into V;

update PARTITIONS
set G = G + W * (case when P = V.P then 2 else -2 end)

from (
select case when A = V.A then B else A end, W from GRAPH
where B = V.A or A = V.A) as neighbors

where neighbors.A = PARTITIONS.A;

update PARTITIONS
set G = -G, P = 1 - P

where A = V.A;
15

Experiments

I Computer
I 128 nodes of Tornado cluster in South Ural State University

(471st in top500)
I Data

I Luxembourg road map from OpenStreetMap (105 vertices, 1
iteration)

I Belgium road map from OpenStreetMap (106 vertices, 5
iterations)

I distributed over the cluster nodes
by function ϕ(e) = e.A ∗ |V |/|E |

16

Execution time

1 8 16 32 64 128
Computer nodes

100

101

102

103

104

105

Ti
m

e,
 s

Luxembourg
Belgium

17

Speedup

16 32 64 128
Computer nodes

0

500

1000

1500

2000

Sp
ee

du
p

Luxembourg
Belgium
linear

18

Quality (Luxembourg)

1 2 4 8 16 32 64 128
Computer nodes

0.6

0.8

1.0

1.2

1.4

1.6
M

is
co

lo
re

d
ve

rt
ic

es
 %

764

914

1433

1561 1573 1563

1704

1550

Random partitioning gives 30 % miscolored vertices.

19

Quality (Belgium)

4 8 16 32 64 128
Computer nodes

4

6

8

10

12

14

16
M

is
co

lo
re

d
ve

rt
ic

es
 %

64952

95505

134670

169359

199299
210669

Random partitioning gives 30 % miscolored vertices.

20

Conclusions

I A new approach to partition very large graphs by means of a
relational parallel DBMS, that was implemented on the basis
of PostgreSQL.

I Good speedup at an acceptable quality loss.
I Try different partitioning schemes and other very large graph

problems in future.

21

Thank you

Questions?

Constantin Pan
kvapen@gmail.com

Mikhail Zymbler
zymbler@gmail.com

22

