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Graph Partitioning

Graph Partitions

cut size → min
partition size ≈       partition size 
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Multilevel Partitioning
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Using Parallel DBMS
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PargreSQL
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Coarsening
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1. Find the heaviest (or a random) edge.
2. Collapse the edge into a vertex.
3. Merge the duplicates and remove the loops.
4. Repeat, avoiding the vertices generated this way,

until nothing is left.
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Coarsening with DBMS
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1. Find the heaviest matching.
2. Collapse the edges of the matching into vertices.
3. Merge the duplicates and remove the loops.
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Data Flow
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Coarsening Implementation
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Coarsening Implementation

-- search

for edge in (select A,B from GRAPH order by W desc)
loop

if not exists(
select * from visited where A = edge.A or A = edge.B

) then
insert into visited values (edge.A);
insert into visited values (edge.B);
insert into MATCH values (edge.A, edge.B);

end if;
end loop;
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Coarsening Implementation

-- collapse

select
least(newA, newB) as A,
greatest(newA, newB) as B,
sum(W) as W

from (
select

coalesce(match2.A, GRAPH.A) as newA,
coalesce(MATCH.A, GRAPH.B) as newB,
GRAPH.W

from
GRAPH, left join MATCH on GRAPH.B=MATCH.B
left join MATCH as match2 on GRAPH.A=match2.B)

where newA != newB group by A, B;
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Uncoarsening Implementation
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Coarsening Implementation

-- propagate

select a, p from COARSE_PARTS
union
select match.b, part.p
from MATCH as match, COARSE_PARTS as part
where match.a = part.a;
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Coarsening Implementation
-- calculate gains

select
PARTITIONS.A, PARTITIONS.P,
sum(subgains.Gain) as Gain

from
PARTITIONS left join (

select GRAPH.A, GRAPH.B,
case when ap.P = bp.P then -GRAPH.W

else GRAPH.W end as Gain
from

GRAPH left join PARTITIONS as ap on GRAPH.a = ap.A
left join PARTITIONS as bp on GRAPH.b = bp.A

) as subgains
on PARTITIONS.A = subgains.A
or PARTITIONS.A = subgains.B

group by PARTITIONS.A, PARTITIONS.P;
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Coarsening Implementation
-- refine

select * from PARTITIONS
where P = current and G = (select max(G) from PARTITIONS

where P = current)
limit 1 into V;

update PARTITIONS
set G = G + W * (case when P = V.P then 2 else -2 end)

from (
select case when A = V.A then B else A end, W from GRAPH
where B = V.A or A = V.A) as neighbors

where neighbors.A = PARTITIONS.A;

update PARTITIONS
set G = -G, P = 1 - P

where A = V.A;
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Experiments

I Computer
I 128 nodes of Tornado cluster in South Ural State University

(471st in top500)
I Data

I Luxembourg road map from OpenStreetMap (105 vertices, 1
iteration)

I Belgium road map from OpenStreetMap (106 vertices, 5
iterations)

I distributed over the cluster nodes
by function ϕ(e) = e.A ∗ |V |/|E |
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Execution time
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Speedup
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Quality (Luxembourg)
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Quality (Belgium)
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Conclusions

I A new approach to partition very large graphs by means of a
relational parallel DBMS, that was implemented on the basis
of PostgreSQL.

I Good speedup at an acceptable quality loss.
I Try different partitioning schemes and other very large graph

problems in future.
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Thank you

Questions?

Constantin Pan
kvapen@gmail.com

Mikhail Zymbler
zymbler@gmail.com
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