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Abstract. Computation of a Euclidean distance matrix (EDM) is a
typical task in a wide spectrum of problems connected with data analysis.
Currently, many parallel algorithms for this task have been developed
for GPUs. However, these developments cannot be directly applied to
the Intel Xeon Phi many-core processor. In this paper, we address the
task of accelerating EDM computation on Intel Xeon Phi in the case
when the input data fit into the main memory. We present a parallel
algorithm based on a novel block-oriented scheme of computations that
allows for the efficient utilization of Intel Xeon Phi vectorization abilities.
Experimental evaluation of the algorithm on real-world and synthetic
datasets shows that it is highly scalable and outruns analogues in the
case of rectangular matrices with low-dimensional data points.
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1 Introduction

Computation of a Euclidean distance matrix (EDM) is a typical subtask in a
wide spectrum of practical and scientific problems connected with data analy-
sis [5]. The elements of an EDM are squared Euclidean distances1, which can be
interpreted as distances between data points of a set or distances between data
points belonging to two sets of data points. These two cases correspond to square
and rectangular EDMs, respectively. Square EDMs are extensively exploited in
audio and video information retrieval [7,19], signal processing [5], hierarchical
clustering of DNA microarray data [2], and so on. Rectangular EDMs play an
important role in clustering-related applications, where it is necessary to cal-
culate distances between cluster centers and data points subject to clustering,
e.g., segmentation of medical images [12,21], fuzzy clustering of DNA microarray
data [4], and so on.

1 Strictly speaking, an EDM should contain Euclidean distances, and not the squares
thereof. However, we adhere to this ambiguous convention in order to ensure com-
patibility with most papers related to EDMs [5].
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In this paper, we address the computation of both square and rectangular
EDMs and formally define the problem as follows. Let us consider two non-
empty finite sets of n and m data points in d-dimensional Euclidean space. Now
we assign the first set data points to the rows of a matrix A ∈ R

n×d, and
the second set data points to the rows of a matrix B ∈ R

m×d. Let us denote by
a1,·, . . . , an,· and b1,·, . . . , bm,·, where ai,·, bj,· ∈ R

d, the rows of the matrices A
and B, respectively. Then the Euclidean distance matrix D ∈ R

n×m consists of
the rows d1,·, . . . , dn,·, where di,· ∈ R

m, di,j = ‖ai,· − bj,·‖2, and ‖ · ‖ denotes
the Euclidean norm2.

Since EDM computation has time complexity O(nmd), this task is often the
most time-consuming stage of an entire problem, and it is therefore considered
as a subject of parallelization for different hardware architectures.

At the present time, many parallel algorithms for EDM computation have
been developed for GPUs [1,2,10,13]. These developments, however, cannot be
directly applied to Intel Xeon Phi many-core systems [3,18]. Intel Xeon Phi
is a series of products based on Intel Many Integrated Core (MIC) architec-
ture, which provides a large number of compute cores with a high local memory
bandwidth and 512-bit wide vector processing units. Being based on the Intel
x86 architecture, Intel Xeon Phi supports thread-level parallelism and the same
programming tools as a regular Intel Xeon CPU, and serves as an attractive
alternative to GPUs. Currently, Intel offers two generations of MIC products,
namely Knights Corner (KNC) [3] and Knights Landing (KNL) [18]. The former
is a coprocessor with up to 61 cores, which supports native applications as well
as offloading of calculations from a host CPU. The latter provides up to 72 cores
and, unlike the first, is a bootable device that runs applications only in native
mode.

In this paper, we address the task of accelerating EDM computation on the
Intel Xeon Phi KNL system. In what follows, we assume that all the data involved
in the computation fit into the main memory. The paper makes the following
contributions. We propose a parallel algorithm based on a novel block-oriented
scheme of computations, which allows for the efficient utilization of Intel Xeon
Phi KNL vectorization abilities, more efficient than straightforward techniques
such as data alignment and auto-vectorization. The algorithm versions devel-
oped in the course of the work are experimentally evaluated on real-world and
synthetic datasets, and it is shown that our approach is highly scalable and out-
runs analogues in the case of rectangular matrices with low-dimensional data
points.

The paper is structured as follows. Section 2 discusses related works. In
Sect. 3, we describe the parallel algorithm proposed for Euclidean distance matrix
computation on Intel MIC systems. We give the results of the experimental eval-
uation of our algorithm in Sect. 4. Finally, in Sect. 5, we summarize the results
obtained and propose directions for further research.

2 Note that this definition also covers the case A ≡ B.
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2 Related Work

Chang et al. [2] suggested a CUDA-based parallel algorithm for EDM compu-
tation on GPUs. This algorithm assumes that the EDM is square (n = m)
and both n and d are multiples of 16. The number 16 comes from the algorith-
mic design fitting the NVIDIA GPU architecture. The algorithm basic idea can
be briefly described as follows. According to the nature of CUDA, threads are
organized into 16 × 16 two-dimensional blocks, and the blocks are then orga-
nized in an n

16 × n
16 two-dimensional grid. Thus, a thread orients itself through

a quadruplet (bx, by, tx, ty), where two pairs (bx, by) and (tx, ty) are block and
thread indices, respectively. In this coordinate system, a thread calculates the
d16·by+ty,16·bx+tx entry of the EDM. At each iteration, all threads firstly load
two 16 × 16 submatrices into shared memory. Each thread, after synchroniza-
tion, calculates and accumulates its own partial Euclidean distance. Then the
threads need to be synchronized again before proceeding to the next pair of sub-
matrices. The authors reported on an algorithm speedup by a factor of up to 44
on NVIDIA Tesla C870 (with a peak performance of 0.5 GFLOPS) compared
with the CPU implementation.

Li et al. [13] proposed a chunking method to compute an EDM on large
datasets in a multi-GPU environment. The method supposes the implemen-
tation of a GPU algorithm that is suitable for calculating Euclidean distance
submatrices. Then the authors used a MapReduce-like framework to split the
computation of the final EDM into many small independent jobs which calculate
partial submatrices. The framework also dynamically allocates GPU resources
to those independent jobs for maximum performance. The authors reported on
a speedup of the method by a factor of up to 15 on three NVIDIA Tesla 1060
(0.9 GFLOPS each).

Kim et al. [10] suggested a padding strategy for the algorithm given in [2],
which expands the matrix of input data points by adding rows and columns
of zeros, so that data of any size may be processed by a simple CUDA kernel
function. These authors reported on a speedup of the algorithm by a factor of
up to 47 on NVIDIA Tesla C2050 (1.03 TFLOPS) compared with the CPU
implementation.

Arefin et al. [1] extended the approaches suggested in [2,10,13]. Together
with the EDM, the input data points are also chunked. Since this operation
is carried out by an external memory programming environment, the proposed
method is comparatively slower (by a factor of up to 30) than the original one.
However, this method is feasible when the input dataset is so large that it fits
into neither the GPU memory nor the host memory.

Wu et al. [20], Lee et al. [12], and Jaros et al. [9] indirectly touched upon
the problem of EDM computation on Intel MIC systems. The authors of these
papers accelerated a k-means data clustering algorithm on Intel Xeon Phi and
considered EDM computation as a subtask.

In [20], the authors suggested a heterogeneous approach to parallelizing a
k-means algorithm in which CPU and Xeon Phi KNC are involved. Accord-
ing to the algorithm idea, the CPU reassigns data points to clusters and then
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offloads data points and cluster centroids on to the coprocessor. Thus, Xeon Phi
KNC repeatedly computes an EDM for data points and centroids. To achieve a
more efficient utilization of memory bandwidth and cache, the algorithm stores
data as an array of structures. The authors reported that the clustering algo-
rithm achieves a speedup by a factor of up to 24 and its scalability decreases
dramatically if more than 56 threads are employed.

The authors of [9] use a relatively similar approach and offload computations
to Intel Xeon Phi KNC. We include in our review the solutions given in [9,
20] regarding them as precursors of our approach, yet we avoid a comparison
since those solutions employ an outdated approach and partial results on run
time and speedup of the EDM computation stage cannot be extracted from the
experimental results.

In [12], the authors exploit straightforward techniques such as data alignment
and auto-vectorization, as depicted in Algorithm1 (in what follows, we will refer
to it as Straightforward).

Algorithm 1. Straightforward(in A, B; out D)
1: #pragma omp parallel for
2: for i from 1 to n do
3: sum ← 0
4: for j from 1 to m do
5: assume aligned(ai,·, 64)
6: assume aligned(bj,·, 64)
7: for k from 1 to d do
8: sum ← sum + (ai,k − bj,k)2

9: end for
10: di,j ← sum
11: end for
12: end for

Here, lines 5–6 signal the C compiler that the memory space is aligned to a
specific size. Otherwise, the compiler assumes that the loop accesses unaligned
memory spaces, and splits the loop, even though the start addresses of the mem-
ory spaces are aligned in reality. Thus, the loop in line 7 is vectorized without
loop peeling, since the start addresses of the data points involved in calcula-
tions are aligned and, from the signals received, the compiler knows that they
are aligned to the vector processor unit (VPU) width (i.e. the number of floats
stored in the VPU).

Next, when the loop for distance calculation is vectorized, even if the start
address of the first data point is aligned to the VPU width, the start address of
the second data point will not be aligned if the dimension d is not a multiple
of the VPU width, and will start to cause loop peelings from then on, so the
loop will therefore be vectorized inefficiently. To solve this problem, the authors
pad input data points with zero elements to the nearest integer multiple of the
VPU width. Since the size of each input data point is a multiple of the VPU
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width, the loop is vectorized without splitting and is compiled in just two vector
operations.

However, in high-performance computations, data layout can significantly
affect the efficiency of memory access operations [8]. In the next section, we will
show an application of data layouts to EDM computation.

3 Accelerating EDM Computation with Intel Xeon Phi

Our approach is different in two ways from the Straightforward algorithm.
Firstly, we propose a novel scheme of computations that allows for the efficient
use of Intel Xeon Phi vectorization abilities. Secondly, we exploit a sophisticated
data layout to store data points in main memory. We consider these matters
below, in Sects. 3.1 and 3.2, respectively.

3.1 Computational Scheme

The basic idea of our approach is to modify the computational scheme in such a
way that more operations will be vectorized compared with the straightforward
approach. Straightforward iteratively calculates one distance value between
two data points, so the inner loop (cf. Algorithm1, line 7) is compiled in two
vector operations (i.e. elementwise vector difference and multiplication).

Unlike Straightforward, the method we suggest iteratively calculates sev-
eral distance values between a point from the first set of data points and block
points from the second set of data points, where block is a parameter of the
algorithm. Algorithm 2, which we will refer to as Blockwise, implements such
a computational scheme.

In lines 1–7, we change the data layout of the second set of data points (we will
discuss this below, in Sect. 3.2) and produce its copy for further computations.
The outer loop (line 9) is parallelized. It scans the first set of data points. The
loop in line 10 scans the blocks of the second set of data points. The loop in
line 12 provides for calculations through the coordinates of data points within a
block. The loop in line 15 calculates the distances, it is compiled in two vector
operations. In lines 13 and 14, we notify the compiler about the alignment of a
point from the first set and a block of points from the second set, respectively.
Finally, the loop in line 20 stores distances in the resulting matrix and is compiled
in one vector operation (additionally, this loop is preceded by a signal to the
compiler about the alignment of the rows of the resulting matrix).

To ensure that the blocks in the matrix representing the second set of data
points have the same size, the number of rows m must be a multiple of block. We
must therefore increase m up to the nearest integer that is a multiple of block
by padding the B matrix with redundant zero rows.

Moreover, in order to guarantee an efficient vectorization of operations involv-
ing the B matrix, the block parameter must be a multiple of widthV PU , where
widthV PU denotes the number of floats stored in the VPU. Also, to derive greater
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Algorithm 2. Blockwise(in A, B, layout, block; out D)
1: if layout is SoA then
2: Permute(B, m, B̃)
3: else if layout is ASA then
4: Permute(B, block, B̃)
5: else
6: � Current layout is AoS, no permutation needed
7: end if
8: #pragma omp parallel for
9: for i from 1 to n do

10: for j from 1 to � m
block

� do

11: sum ← 0
12: for k from 1 to d do
13: assume aligned(ai,·, 64)
14: assume aligned(b̃j+k,·, 64)
15: for � from 1 to block do
16: sum� ← sum� + (ai,k − b̃j+k,�)

2

17: end for
18: end for
19: assume aligned(di,·, 64)
20: for k from 1 to block do
21: di,j·block+k ← sumk

22: end for
23: end for
24: end for

benefits from the vectorization of computations, the B matrix should be the
largest of the two sets of data points considered.

We should note, however, that our approach supposes the empirical choice of
the block parameter in accordance with the above-mentioned requirements (we
discuss this below, in Sect. 4).

3.2 Application of Data Layouts

Figure 1 depicts the definitions of the basic data layouts in the C programming
language [8]. The AoS (Array of Structures) layout simply stores the structures
in an array; it is often referred to as a baseline implementation. In the SoA
(Structure of Arrays) layout, all components are stored in separate arrays. This
can lead to coalesced memory access if the access pattern supposes reading of
adjoining elements. The ASA (Array of Structures of Arrays) layout partitions
the data in chunks according to the block parameter. ASA-block generalizes to
the other layouts, namely ASA-1 corresponds to AoS, and ASA-m corresponds
to SoA. This sophisticated data layout allows for a reduction of the number of
processor cache misses during EDM computations.

Algorithm 3 transforms a data matrix from one layout to another in parallel.
For a given block parameter and a matrix B ∈ R

m×d with AoS layout, the
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typedef struct {
f loat x ;
f loat y ;
f loat z ;

} AoS ;

AoS B[m];

(a) Array
of Structures

typedef struct {
f loat x [m] ;
f loat y [m] ;
f loat z [m] ;

} SoA ;

SoA B;

(b) Structure
of Arrays

typedef struct {
f loat x [ b lock ] ;
f loat y [ b lock ] ;
f loat z [ b lock ] ;

} ASA;

ASA B[� m
block

�];
(c) Array of Structures
of Arrays

Fig. 1. Basic data layouts

Algorithm 3. Permute(in B, block; out B̃)
1: #pragma omp parallel for
2: for j from 1 to � m

block
� do

3: for i from 1 to d do
4: for k from 1 to block do
5: b̃j·d+i,k ← bj·block+k,i

6: end for
7: end for
8: end for

algorithm produces a matrix B̃ ∈ R
d·
⌈

m
block

⌉
×block with ASA-block layout (or

with SoA layout if block = m).

4 Experimental Evaluation

4.1 Background of the Experiments

Objectives. In the experiments, we studied the following aspects of our app-
roach. We investigated its performance and scalability compared with both the
Straightforward algorithm of Lee et al. [12] and the EDM computational
algorithm from Intel Math Kernel Library (MKL)3 optimized for Intel Xeon
Phi. We combined the Blockwise algorithm with the AoS, SoA and ASA-512
layouts, ran all the competitors on an Intel MIC system for different datasets,
measured the run time (after deduction of the I/O time required for reading
input data and writing the results), and calculated their speedup and parallel
efficiency.

Here we understand these characteristics of parallel-algorithm scalability in
the following manner. Speedup and parallel efficiency of a parallel algorithm
employing k threads are calculated, respectively, as s(k) = t1

tk
and e(k) = t1

k·tk ,
where t1 and tk are the run times of the algorithm when one and k threads are
employed, respectively.

3 Intel Math Kernel Library 2018 Release Notes.

https://software.intel.com/en-us/articles/intel-math-kernel-library-intel-mkl-2018-release-notes
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We compared the performance and scalability for both square and rectangu-
lar matrices; the latter were the same used by Lee et al.

In order to make sure that the computational scheme proposed gives ben-
efits on vectorization for MIC systems, we compared the performances of the
Blockwise algorithm (we took the results for the data layout where the algo-
rithm performed best), the Straightforward algorithm, and the Intel MKL
algorithm, on both Intel Xeon and Intel Xeon Phi and for the same datasets.

Also, datasets and experimental results on performance for the algorithm of
Kim et al. [10] on NVIDIA Tesla C20504 were compared with the best results of
Blockwise on Intel Xeon Phi (the aforesaid systems have approximately the
same peak performance).

Finally, we present the results of the experiments carried out to choose the
number 512 as the block parameter value.

Datasets. In the experiments, we compared the algorithms using the datasets
described in Table 1. The Census [14] and the FCS Human [6] datasets are from
real-world applications. The MixSim dataset and the ADS datasets were syn-
thesized by artificial data generators described in [15,16], respectively. The ADS
(Aligned Data Set) datasets were used for the experimental evaluation of the
Straightforward algorithm in [12]. The PRND (Pseudo Random Numbers)
datasets were used by Kim et al. for the experimental evaluation of their algo-
rithm [10].

Table 1. Datasets used in experiments

Dataset d n m Type Semantic

MixSim 5 35 · 210 35 · 210 Synthetic Created by a synthetic data generator [15]

Census 67 35 · 210 35 · 210 Real US Census Bureau population surveys [14]

FCS Human 423 18 · 210 18 · 210 Real Aggregated human gene information [6]

ADS-16 16 106 103 Synthetic Used in [12] for experimental evaluation

ADS-32 32

ADS-64 64

ADS-256 256

PRND-50 50 15 · 103 15 · 103 Synthetic Used in [10] for experimental evaluation

PRND-100 100

PRND-150 150

PRND-200 200

For the experiments, we took the largest parts of the MixSim and Census
datasets that fit in the main memory of the hardware the algorithms were evalu-
ated on. In order to meet the requirements for the block parameter (cf. Sect. 3.1),
we took from MixSim, Census and FCS Human numbers of data points that are

4 NVIDIA Tesla C2050/C2070 Data sheet.

http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf
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multiples of block = 512 (the original FCS Human dataset was padded with zero
points).

To evaluate the Straightforward algorithm on datasets in which the
dimension is not a multiple of widthV PU = 16, we increased d up to the nearest
integer multiple of 16 by padding the data points with zeros. To evaluate our
approach on the datasets used by Lee et al. and Kim et al., in which the numbers
of data points are not multiples of 512, we increased n and m up to the nearest
integers that are multiples of 512 by padding the datasets with zero points.

Hardware. We conducted experiments on a node of the Tornado SUSU super-
computer [11] (cf. Table 2 for the specifications of both the host and the MIC
system).

Table 2. Hardware specifications

Specifications Host MIC system

Model, Intel Xeon X5680 Phi (KNC), SE10X

Physical cores 2×6 61

Hyperthreading factor 2 4

Logical cores 24 244

Frequency, GHz 3.33 1.1

VPU size, bit 128 512

Peak performance, TFLOPS 0.371 1.076

4.2 Results and Discussion

Scalability. Figures 2 and 3 depict the run time, speedup and parallel efficiency
of the competitors on square and rectangular matrices, respectively.

Regarding the experiments on square matrices, we can see that the Intel
MKL algorithm outruns the competitors, and Blockwise(ASA-512) holds the
second place (with roughly the same performance on the MixSim dataset with d
padded to 16). At the same time, the Intel MKL algorithm shows almost the
worst speedup and parallel efficiency among the competitors. All the algorithms
(except Intel MKL and Blockwise(SoA)) show a close-to-linear speedup and
up to 80% efficiency when the number of threads matches the number of physi-
cal cores the algorithm is running on. However, when more than one thread per
physical core is employed, only Blockwise(ASA-512) displays the aforemen-
tioned tendency, showing a speedup by a factor of up to 200 and at least 80%
efficiency, whereas the speedup of the other algorithms slows or even drops down
and their parallel efficiency diminishes accordingly.

Experiments on rectangular matrices deal with larger datasets and show
the following. Blockwise(ASA-512) outruns the competitors on the ADS-16
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(a) MixSim dataset (d padded to 16): run time, speedup and efficiency

(b) Census dataset (d padded to 80): run time, speedup and efficiency

(c) FCS Human dataset (d padded to 432): run time, speedup and efficiency

Fig. 2. Run time and scalability on square matrices

and ADS-32 datasets, and shows roughly the same performance as the Intel
MKL algorithm on the ADS-64 dataset. On the ADS-256 dataset, the Intel
MKL algorithm beats the competitors. Regarding scalability, we see a similar
picture as for square matrices. Blockwise(ASA-512) shows a close-to-linear
speedup and up to 90% parallel efficiency when the number of threads matches
the number of physical cores. In the range from 60 to 240 threads, our algorithm
scalability remains the best, giving a speedup by a factor of up to 160 and at
least 70% efficiency. We can conclude that Blockwise(ASA-512) performs its
best on rectangular matrices with low-dimensional data points (approximately
when d ≤ 32).
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(a) ADS-16 dataset: run time, speedup and efficiency

(b) ADS-32 dataset: run time, speedup and efficiency

(c) ADS-64 dataset: run time, speedup and efficiency

(d) ADS-256 dataset: run time, speedup and efficiency

Fig. 3. Run time and scalability on rectangular matrices
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Benefits of Vectorization. Table 3 shows the performance results of
Blockwise(ASA-512) for the Intel Xeon and Intel Xeon Phi platforms compared
with Straightforward. As we can see, Blockwise(ASA-512) is 3.5 to 8 times
faster on Intel Xeon Phi than it is on the host consisting of two Intel Xeon CPUs.
The Straightforward algorithm, in the same manner as Blockwise(ASA-
512), is faster on Intel Xeon Phi than on two Intel Xeon hosts. However, our
algorithm shows a greater ratio of run times on the said platforms. Also, we
should remind that the Intel MKL algorithm outruns our Blockwise(ASA-
512) in the case of high-dimensional data (approximately when d > 32) on both
platforms.

Table 3. Run times on ADS datasets, s

Dataset Intel Xeon Phi (KNC) 2×Intel Xeon CPU Ratio of run times

1.076 TFLOPS 0.371 TFLOPS 2×CPU/Phi

Blockwise
(ASA-512)

Intel
MKL

Straight-
forward

Blockwise
(ASA-512)

Intel
MKL

Straight-
forward

Blockwise
(ASA-512)

Straight-
forward

ADS-16 0.28 0.76 1.05 1.04 3.02 1.00 3.7× 1.0×
ADS-32 0.51 0.78 1.15 1.76 3.14 1.79 3.5× 1.6×
ADS-64 0.98 0.88 1.36 3.78 3.81 4.25 3.9× 3.1×
ADS-256 3.71 1.92 3.79 30.32 5.14 31.41 8.2× 8.3×

Comparison with the GPU Solution. The performance results of our solu-
tion compared with the algorithm proposed by Kim et al. [10] are summarized
in Table 4. We can see that Blockwise(ASA-512) is up to two times faster on
Intel Xeon Phi than the algorithm of Kim et al. is on NVIDIA Tesla C2050.
However, the Intel MKL algorithm still outruns Blockwise(ASA-512) on Intel
Xeon Phi in the case of such small datasets.

Table 4. Run time on PRND datasets, s

Dataset Intel Xeon Phi 2×Intel Xeon NVIDIA Tesla

1.076 TFLOPS 0.371 TFLOPS 1.03 TFLOPS

Blockwise
(ASA-512)

Intel
MKL

Blockwise
(ASA-512)

Intel
MKL

Kim
et al. [10]

PRND-50 0.19 0.07 0.35 0.74 0.82

PRND-100 0.32 0.08 0.59 0.89 1.01

PRND-150 0.45 0.10 0.78 1.01 1.21

PRND-200 0.58 0.12 1.60 1.16 1.41

Choice of the block Parameter. The preceding experimental results were
obtained after an empirical research was carried out to choose the value of
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the block parameter. The value block = 512 was determined as follows. We
ran Blockwise(ASA-block) on Intel Xeon Phi for different values of block on
datasets with n = m = 215 random data points having different dimensions:
d = 3, 5, 67, and 129 (cf. Fig. 4). After that, we chose block = 512 as the value
that gives the best performance for the most corresponding values of d.

Fig. 4. Performance of Blockwise(ASA-block) for different values of block

Discussion. To finish the presentation of the experimental results, we should
mention both memory and run time overheads of our approach.

Memory overhead is due to the following reasons. First, for an efficient uti-
lization of the Intel Xeon Phi vectorization abilities, our algorithm requires that
the cardinality of the second set of data points be a multiple of block. If it is
not so, then the value of m must be increased up to the nearest integer that
a is multiple of block by padding the dataset with zero points. Thus, in the
worst case, we will have d · (block − 1) redundant zero elements. Second, before
computing an EDM, we create a copy of the matrix that represents the second
set of data points and fills this copy with the elements of the original matrix
permuted in a proper way. So we additionally need d ·max(n,m) redundant data
elements (here we use the “max” function since, to derive greater benefits from
the vectorization of computations, the B matrix should be the largest of the two
sets of data points). Thus, the total memory overhead for our solution amounts
to d · (block − 1 + max(n,m)) elements.

The Straightforward algorithm, unlike our solution, requires that the
dimension d be a multiple of widthV PU . If d does not meet this requirement, then
it must be increased up to the nearest integer multiple of widthV PU by padding
the data points with zeros. Thus, in the worst case, it will cost (widthV PU −
1) · (m + n) redundant zero elements. Returning to the experimental results
in which Blockwise(ASA-512) outruns Straightforward, we can conclude
that, in the case of rectangular matrices with low-dimensional data points, our
algorithm yields less memory overhead than Straightforward.

As for the run time overhead related to the permutation of matrix elements,
our experiments showed that the run time of the permutation step is negligibly
small compared with the computation run time (less than one percent).
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To conclude, we should also remind that the performance of the
Blockwise(ASA-block) algorithm depends on the block parameter, which must
be determined through empirical research.

5 Conclusions

In this paper, we touched upon the problem of Euclidean distance matrix (EDM)
computation, which is a typical subtask in a wide spectrum of practical and scien-
tific problems connected with data analysis. At present, many parallel algorithms
for EDM computation have been developed for GPUs. These developments, how-
ever, cannot be directly applied to modern Intel Xeon Phi many-core systems,
which serve as an attractive alternative to GPUs. We addressed the task of
accelerating EDM computation on the Intel Xeon Phi Knights Landing (KNL)
system in the case when all data involved in the computations fit in the main
memory.

We proposed a novel parallel algorithm for EDM computation, called
Blockwise, which is different in two ways from the approach that exploits
straightforward techniques such as data alignment and auto-vectorization.
Firstly, we use a block-oriented scheme of computations that allows for the
efficient use of the Intel Xeon Phi vectorization abilities. Secondly, we apply
a sophisticated data layout to store data points in main memory so as to reduce
the number of processor cache misses during EDM computations.

We performed an experimental evaluation of the algorithm on real-world
and synthetic datasets organized as square and rectangular matrices, and com-
pared our solution with analogues. The experimental results show the following.
Blockwise demonstrates a close-to-linear speedup and at least 80% parallel
efficiency when the number of threads matches the number of physical cores
the algorithm is running on. When Blockwise employs more than one thread
per physical core, its speedup and parallel efficiency become sublinear but they
remain the best among other competitors. Our algorithm outruns the straight-
forward approach and the algorithm from Intel Math Kernel Library (MKL)
in the case of rectangular matrices with low-dimensional data points (approxi-
mately when d ≤ 32). As for the case of high-dimensional data points (d > 32),
the Intel MKL algorithm outruns the competitors on both square and rectan-
gular matrices, while Blockwise shows roughly the same performance as the
straightforward approach.

Further studies of EDM computation on Intel MIC processors might elabo-
rate on the following topics: applications of our approach to different clustering
algorithms (e.g., k-means [12], PAM [17], and others), development of an ana-
lytical model that would be able to predict the performance of the Blockwise
algorithm and determine the value of the block parameter for best performance.
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