
13.05.2013 

1 

ASSOCIATION RULE 

MINING 

Data Mining 

Everything in the world is repeated. 
Francis Bacon 

Outline 

Data Mining 

 Basic concepts 

 Frequent itemset mining 

 Association Rule Mining 

 

 

© Mikhail Zymbler 

2 

Motivation 

© Mikhail Zymbler Data Mining 

3 

 What are the products that 

often bought together? 

 Is beer usually bought 

with diapers? 

 Is the milk bought when 

both toasts and honey are 

bought together? 

 



13.05.2013 

2 

Basic definitions 

© Mikhail Zymbler Data Mining 

4 

 Itemset – a collection of one or 

more items. 

 k-itemset – an itemset that contains 

k items. 

 Support count – frequency of  

occurrence of an itemset. 

 P({bread,milk,sugar})=2 

 Support – fraction of transactions that contain an itemset. 

 sup({bread,milk,sugar})=0.4 

 Frequent itemset – an itemset whose support is greater than 

or equal to a minsup threshold. 

 

 

 

 

 

TID Items 

1 bread, milk 

2 bread, coffee, eggs, sugar 

3 milk, coffee, coke, sugar 

4 bread, coffee, milk, sugar  

5 bread, coke , milk, sugar  

How many candidates? 

© Mikhail Zymbler Data Mining 

5 

 d is number of items 

 2d is number of 

candidates 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Basic approaches 

© Mikhail Zymbler Data Mining 

6 

 Brute force 

 Apriori 

 Vertical data format 

 FP-growth 



13.05.2013 

3 

Brute force approach 

© Mikhail Zymbler Data Mining 

7 

 Each itemset in the lattice is a candidate frequent itemset 

 Count the support of each candidate by scanning the 
database 

 Match each transaction against every candidate 

 Complexity is O(N ∙ M ∙ W)=O(N ∙ 2d ∙ W) 

 

TID Items 

1 bread, milk 

2 bread, coffee, eggs, sugar 

3 milk, coffee, coke, sugar 

4 bread, coffee, milk, sugar  

5 bread, coke , milk, sugar  

W 

M 

Candidates 

N 

W 

Transactions 

Frequent itemset generation 

strategies 

© Mikhail Zymbler Data Mining 

8 

 Reduce the number of candidates (M) 

 Complete search: M=2d 

 Use pruning techniques to reduce M 

 Reduce the number of transactions (N) 

 Reduce size of N as the size of itemset increases 

 Used by vertical-based mining algorithms 

 Reduce the number of comparisons (N ∙ M) 

 Use efficient data structures to store the candidates or 

transactions 

 No need to match every candidate against every transaction 

 

Reducing number of candidates 

© Mikhail Zymbler Data Mining 

9 

 Anti-monotone property of support 

 Support of an itemset never exceeds the support of its 

subsets (e.g. sup({bread, milk, chips})≤sup({bread, milk})) 

 

 Apriori  principle 

 If an itemset is frequent, then all of its subsets must also be 

frequent 

 Converse assertion: if some subset is infrequent then whole 

set is infrequent 

)sup()sup()(:, YXYXYX 



13.05.2013 

4 

Pruning using Apriori principle 

© Mikhail Zymbler Data Mining 

10 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned 

supersets 

Found to be 

infrequent 

Finding frequent itemsets using Apriori  

© Mikhail Zymbler Data Mining 

11 

1st scan 

C1 L1 

L2 
C2 C2 

2nd scan 

C3 L3 3rd scan 

TID Items 

10 A, C, D 

20 B, C, E 

30 A, B, C, E 

40 B, E 

Itemset 

{A, B} 

{A, C} 

{A, E} 

{B, C} 

{B, E} 

{C, E} 

Itemset sup 

{A, B} 1 

{A, C} 2 

{A, E} 1 

{B, C} 2 

{B, E} 3 

{C, E} 2 

Itemset sup 

{A, C} 2 

{B, C} 2 

{B, E} 3 

{C, E} 2 

Itemset 

{B, C, E} 

Itemset sup 

{B, C, E} 2 minsup=2 

Transactions Itemset sup 

{A} 2 

{B} 3 

{C} 3 

{E} 3 

Itemset sup 

{A} 2 

{B} 3 

{C} 3 

{D} 1 

{E} 3 

Apriori algorithm 

© Mikhail Zymbler Data Mining 

12 

 Generate frequent 1-itemsets 

 Let k=1 

 Repeat until no new frequent itemsets are identified 

 Generate candidate (k+1)-itemsets using frequent k-itemsets 

 Prune candidate itemsets containing infrequent k-subsets  

 Count the support of each candidate by scanning the DB 

 Eliminate candidates that are infrequent, leaving only those 

that are frequent 

 



13.05.2013 

5 

Apriori algorithm 

© Mikhail Zymbler Data Mining 

13 

Ck: candidate itemset of size k 

Lk: frequent itemset of size k 
 

L1 = {frequent items}; 

for (k=1; Lk != ; k++) do begin 

 Ck+1 = candidates generated from Lk; 

 for each transaction t in database do begin 

  increment the count of all candidates in Ck+1                                              

   that are contained in t 

  Lk+1 = candidates in Ck+1 with minsup 

 end 

return k Lk; 

Important details of Apriori 

© Mikhail Zymbler Data Mining 

14 

 How to generate candidates? 

 Step 1: self-joining Lk 

 Step 2: pruning 

 How to count supports of candidates? 

 Example of candidate-generation 

 L3={abc, abd, acd, ace, bcd} 

 Self-joining: L3*L3 

 abcd from abc and abd 

 acde from acd and ace 

 Pruning: 

 acde is removed because ade is not in L3 

 C4={abcd} 

 

How to generate candidates 

© Mikhail Zymbler Data Mining 

15 

 Suppose the items in Lk-1 are listed in an order 

 Step 1: self-joining Lk-1  

insert into Ck 

select p.item1, p.item2, …, p.itemk-1, q.itemk-1 

from Lk-1 p, Lk-1 q 

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, 

p.itemk-1 < q.itemk-1 

 Step 2: pruning 
forall itemsets c in Ck do 

forall (k-1)-subsets s of c do 

if (s is not in Lk-1) then delete c from Ck 

 



13.05.2013 

6 

Factors affecting complexity 

© Mikhail Zymbler Data Mining 

16 

 Choice of minimum support threshold 

 lowering support threshold results in more frequent itemsets; this may 
increase number of candidates and max length of frequent itemsets 

 Dimensionality (number of items) of the data set 

 more space is needed to store support count of each item 

 if number of frequent items also increases, both computation and I/O 
costs may also increase 

 Size of database 

 since Apriori makes multiple passes, run time of algorithm may 
increase with number of transactions 

 Average transaction width 

 transaction width increases with denser data sets 

 this may increase max length of frequent itemsets and traversals of 
hash tree (number of subsets in a transaction increases with its width) 

Improving the efficiency of Apriori 

© Mikhail Zymbler Data Mining 

17 

 Reduce the number of comparisons 

 Reduce the number of transactions 

 Partitioning the data to find candidate itemsets 

 Sampling: mine on a subset of the given data 

Reducing number of comparisons 

© Mikhail Zymbler Data Mining 

18 

 To reduce the number of comparisons while scanning the 

transactions database to determine the support of each candidate 

itemset we can store the candidates in a hash table. 
 Instead of matching each transaction against every candidate, match it against 

candidates contained in the hashed buckets 

h(i1,i2) 0 1 2 3 4 5 6 

Itemsets' support 2 2 4 2 2 4 4 

Itemsets {A,D} 

{C,E} 

{A,E} 

{A,E} 

{B,C} 

{B,C} 

{B,C} 

{B,C} 

{B,D} 

{B,D} 

{B,E} 

{B,E} 

{A,B} 

{A,B} 

{A,B} 

{A,B} 

{A,C} 

{A,C} 

{A,C} 

{A,C} 

h(i1,i2) = (Ord(i1) * 10 + Ord(i2) mod 7 
H2 

minsup = 3 



13.05.2013 

7 

Reduce the number of transactions 

© Mikhail Zymbler Data Mining 

19 

 A transaction that doesn’t contain any frequent k-

itemset can not contain any frequent j-itemset, for 

any j>k. So such transaction can be marked or 

removed from subsequent scans of the database for 

j-itemsets. 

 

Partitioning the data 

to find candidate itemsets 

© Mikhail Zymbler Data Mining 

20 

Sampling: mine on a subset of the 

given data 

© Mikhail Zymbler Data Mining 

21 

 Pick random sample S of the given data D (S should 
fit in the available memory) 

 Search for frequent itemsets in S instead in D.  
Lower minsup to reduce the number of missed 
frequent itemsets. 

 Find the Ls, frequent itemsets in S.  

 The rest of the database can be used to compute the 
actual frequencies of the itemset in Ls. 

 If Ls doesn’t contain all the frequent itemsets in D, 
then a second pass will be needed. 

 



13.05.2013 

8 

Bottleneck of frequent-pattern mining 

© Mikhail Zymbler Data Mining 

22 

 Multiple database scans are costly 

 Mining long patterns needs many passes of scanning and 

generates lots of candidates 

To find frequent itemset i1i2…i100 

# of scans: 100 

# of candidates: (100
1) + (100

2) + … + (100
100) = 2100-1 = 

1.27*1030 ! 

 Bottleneck is candidate-generation-and-test 

 

Vertical data format 

© Mikhail Zymbler Data Mining 

23 

tid-lists 

Vertical data format 

© Mikhail Zymbler Data Mining 

24 

 Determine support of any k-itemset by intersecting 
tid-lists of two of its (k-1) subsets. 

 

 

 

 

 
 Pros: very fast support counting 

 

 Cons: intermediate tid-lists may become too large for 
memory 

 

 

A

1

4

5

6

7

8

9

B

1

2

5

7

8

10

 

AB

1

5

7

8

 



13.05.2013 

9 

Using RDBMS and SQL 

© Mikhail Zymbler Data Mining 

25 

 Store data in relational database, implement mining 
algorithms in SQL 

 Pros 

 No need to export data for external mining utilities and 
import mining results into database 

 No memory limits 

 Cons 

 RDBMS will lose the competition with mining utilities in 
case of data fits in memory 

 SQL has less flexibility than high-level programming 
languages and may produce cumbersome source code 

 

Using RDBMS and SQL 

© Mikhail Zymbler Data Mining 

26 

TID Transaction 

1 bread, milk 

2 bread, coffee, eggs, sugar 

3 milk, coffee, cola, sugar 

TID Item 

1 bread 

1 milk 

2 bread 

2 coffee 

2 eggs 

2 sugar 

3 milk 

3 coffee 

3 cola 

3 sugar 

Candidate generation in SQL 

© Mikhail Zymbler Data Mining 

27 

insert into Cand 

 select * 

 from TDB 

 where item in ( 

  select item 

  from TDB 

  group by item 

  having count(*) >= minsup); 

 



13.05.2013 

10 

Finding frequent itemsets in SQL 

© Mikhail Zymbler Data Mining 

28 

-- Frequent 2-itemsets 

select A.item, B.item, count(A.tid) as 

sup_count 

from Cand A, Cand B 

where A.tid=B.tid and A.item<B.item 

group by A.item, B.item 

having count(A.tid) >= minsup; 

 

-- Frequent itemsets for k>2 

-- How to implement k:=k+1 ? 

 

Association rules 

© Mikhail Zymbler Data Mining 

29 

 Given a set of transactions, find rules that will 

predict the occurrence of an item based on the 

occurrences of other items in the transaction 

 Market-Basket transactions Examples of Association Rules 

{sugar}  {coffee}, 

{milk, bread}  {eggs, cola}, 

{coffee, bread}  {milk}, 

{milk}  {coffee, bread}, 

… 

TID Items 

1 bread, milk 

2 bread, coffee, eggs, sugar 

3 milk, coffee, cola, sugar 

4 bread, coffee, milk, sugar  

5 bread, cola, milk, sugar 

Association rule 

© Mikhail Zymbler Data Mining 

30 

 Association rule is an implication expression of the form 

XY ("if X then Y"), where X and Y are itemsets 

 Rule support 

 is a fraction of transactions that contain both X and Y 

 sup(XY)=P(X,Y)/|TID| 

 Rule confidence 

 shows how often items in Y appear in transactions that 

contain X 

 conf(XY)=P(X,Y)/P(X) 

 



13.05.2013 

11 

Support and confidence of the 

association rule 

© Mikhail Zymbler Data Mining 

31 

 {milk, sugar}{coffee} 
 sup=P(milk, sugar, coffee)/|TID|=2/5 

 conf=P(milk, sugar, coffee)/P(milk, sugar)=2/3 

 {coffee}{milk, sugar} 
 sup=2/5 

 conf=P(coffee, milk, sugar)/P(coffee)=2/4 

TID Items 

1 bread, milk 

2 bread, coffee, eggs, sugar 

3 milk, coffee, cola, sugar 

4 bread, coffee, milk, sugar  

5 bread, cola, milk, sugar 

Computational complexity 

© Mikhail Zymbler Data Mining 

32 

 d items 

 itemsets: 2d 

 rules: 3d-2d+1+1 

 

if d=6 then we have 602 rules 

Association rule mining task 

© Mikhail Zymbler Data Mining 

33 

 Given a set of transactions T, the goal of association rule 

mining is to find all the rules having  

 support ≥ minsup threshold 

 confidence ≥ minconf threshold 

 Brute-force approach: 

 List all possible association rules 

 Compute the support and confidence for each rule 

 Prune rules that fail the minsup and minconf thresholds 

 Computationally prohibitive! 

 



13.05.2013 

12 

Mining association rules 

© Mikhail Zymbler Data Mining 

34 

 Observations 

  All the above rules are binary partitions of the same 

itemset: {milk, sugar, coffee} 

 Rules originating from the same itemset have identical 

support but can have different confidence 

 

 

TID Items 

1 bread, milk 

2 bread, coffee, eggs, sugar 

3 milk, coffee, cola, sugar 

4 bread, coffee, milk, sugar  

5 bread, cola, milk, sugar 

Rule sup conf 

{milk,sugar}coffee 0.4 0.67 

{milk,coffee}sugar 0.4 1.0 

{sugar,coffee} milk 0.4 0.67 

coffee{milk,sugar} 0.4 0.67 

sugar{milk,coffee} 0.4 0.5 

milk{sugar,coffee} 0.4 0.5 

Mining association rules 

© Mikhail Zymbler Data Mining 

35 

 Two-step approach:  

1. Frequent Itemset Generation 

Generate all itemsets whose support  grater than minsup 

2. Rule Generation 

Generate high confidence rules from each frequent itemset, 

where each rule is a binary partitioning of a frequent itemset 

 Frequent itemset generation is still 

computationally expensive 


