
13.05.2013 

1 

ASSOCIATION RULE 

MINING 

Data Mining 

Everything in the world is repeated. 
Francis Bacon 

Outline 

Data Mining 

 Basic concepts 

 Frequent itemset mining 

 Association Rule Mining 

 

 

© Mikhail Zymbler 

2 

Motivation 

© Mikhail Zymbler Data Mining 

3 

 What are the products that 

often bought together? 

 Is beer usually bought 

with diapers? 

 Is the milk bought when 

both toasts and honey are 

bought together? 

 



13.05.2013 

2 

Basic definitions 

© Mikhail Zymbler Data Mining 

4 

 Itemset – a collection of one or 

more items. 

 k-itemset – an itemset that contains 

k items. 

 Support count – frequency of  

occurrence of an itemset. 

 P({bread,milk,sugar})=2 

 Support – fraction of transactions that contain an itemset. 

 sup({bread,milk,sugar})=0.4 

 Frequent itemset – an itemset whose support is greater than 

or equal to a minsup threshold. 

 

 

 

 

 

TID Items 

1 bread, milk 

2 bread, coffee, eggs, sugar 

3 milk, coffee, coke, sugar 

4 bread, coffee, milk, sugar  

5 bread, coke , milk, sugar  

How many candidates? 

© Mikhail Zymbler Data Mining 

5 

 d is number of items 

 2d is number of 

candidates 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Basic approaches 

© Mikhail Zymbler Data Mining 

6 

 Brute force 

 Apriori 

 Vertical data format 

 FP-growth 



13.05.2013 

3 

Brute force approach 

© Mikhail Zymbler Data Mining 

7 

 Each itemset in the lattice is a candidate frequent itemset 

 Count the support of each candidate by scanning the 
database 

 Match each transaction against every candidate 

 Complexity is O(N ∙ M ∙ W)=O(N ∙ 2d ∙ W) 

 

TID Items 

1 bread, milk 

2 bread, coffee, eggs, sugar 

3 milk, coffee, coke, sugar 

4 bread, coffee, milk, sugar  

5 bread, coke , milk, sugar  

W 

M 

Candidates 

N 

W 

Transactions 

Frequent itemset generation 

strategies 

© Mikhail Zymbler Data Mining 

8 

 Reduce the number of candidates (M) 

 Complete search: M=2d 

 Use pruning techniques to reduce M 

 Reduce the number of transactions (N) 

 Reduce size of N as the size of itemset increases 

 Used by vertical-based mining algorithms 

 Reduce the number of comparisons (N ∙ M) 

 Use efficient data structures to store the candidates or 

transactions 

 No need to match every candidate against every transaction 

 

Reducing number of candidates 

© Mikhail Zymbler Data Mining 

9 

 Anti-monotone property of support 

 Support of an itemset never exceeds the support of its 

subsets (e.g. sup({bread, milk, chips})≤sup({bread, milk})) 

 

 Apriori  principle 

 If an itemset is frequent, then all of its subsets must also be 

frequent 

 Converse assertion: if some subset is infrequent then whole 

set is infrequent 

)sup()sup()(:, YXYXYX 



13.05.2013 

4 

Pruning using Apriori principle 

© Mikhail Zymbler Data Mining 

10 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned 

supersets 

Found to be 

infrequent 

Finding frequent itemsets using Apriori  

© Mikhail Zymbler Data Mining 

11 

1st scan 

C1 L1 

L2 
C2 C2 

2nd scan 

C3 L3 3rd scan 

TID Items 

10 A, C, D 

20 B, C, E 

30 A, B, C, E 

40 B, E 

Itemset 

{A, B} 

{A, C} 

{A, E} 

{B, C} 

{B, E} 

{C, E} 

Itemset sup 

{A, B} 1 

{A, C} 2 

{A, E} 1 

{B, C} 2 

{B, E} 3 

{C, E} 2 

Itemset sup 

{A, C} 2 

{B, C} 2 

{B, E} 3 

{C, E} 2 

Itemset 

{B, C, E} 

Itemset sup 

{B, C, E} 2 minsup=2 

Transactions Itemset sup 

{A} 2 

{B} 3 

{C} 3 

{E} 3 

Itemset sup 

{A} 2 

{B} 3 

{C} 3 

{D} 1 

{E} 3 

Apriori algorithm 

© Mikhail Zymbler Data Mining 

12 

 Generate frequent 1-itemsets 

 Let k=1 

 Repeat until no new frequent itemsets are identified 

 Generate candidate (k+1)-itemsets using frequent k-itemsets 

 Prune candidate itemsets containing infrequent k-subsets  

 Count the support of each candidate by scanning the DB 

 Eliminate candidates that are infrequent, leaving only those 

that are frequent 

 



13.05.2013 

5 

Apriori algorithm 

© Mikhail Zymbler Data Mining 

13 

Ck: candidate itemset of size k 

Lk: frequent itemset of size k 
 

L1 = {frequent items}; 

for (k=1; Lk != ; k++) do begin 

 Ck+1 = candidates generated from Lk; 

 for each transaction t in database do begin 

  increment the count of all candidates in Ck+1                                              

   that are contained in t 

  Lk+1 = candidates in Ck+1 with minsup 

 end 

return k Lk; 

Important details of Apriori 

© Mikhail Zymbler Data Mining 

14 

 How to generate candidates? 

 Step 1: self-joining Lk 

 Step 2: pruning 

 How to count supports of candidates? 

 Example of candidate-generation 

 L3={abc, abd, acd, ace, bcd} 

 Self-joining: L3*L3 

 abcd from abc and abd 

 acde from acd and ace 

 Pruning: 

 acde is removed because ade is not in L3 

 C4={abcd} 

 

How to generate candidates 

© Mikhail Zymbler Data Mining 

15 

 Suppose the items in Lk-1 are listed in an order 

 Step 1: self-joining Lk-1  

insert into Ck 

select p.item1, p.item2, …, p.itemk-1, q.itemk-1 

from Lk-1 p, Lk-1 q 

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, 

p.itemk-1 < q.itemk-1 

 Step 2: pruning 
forall itemsets c in Ck do 

forall (k-1)-subsets s of c do 

if (s is not in Lk-1) then delete c from Ck 

 



13.05.2013 

6 

Factors affecting complexity 

© Mikhail Zymbler Data Mining 

16 

 Choice of minimum support threshold 

 lowering support threshold results in more frequent itemsets; this may 
increase number of candidates and max length of frequent itemsets 

 Dimensionality (number of items) of the data set 

 more space is needed to store support count of each item 

 if number of frequent items also increases, both computation and I/O 
costs may also increase 

 Size of database 

 since Apriori makes multiple passes, run time of algorithm may 
increase with number of transactions 

 Average transaction width 

 transaction width increases with denser data sets 

 this may increase max length of frequent itemsets and traversals of 
hash tree (number of subsets in a transaction increases with its width) 

Improving the efficiency of Apriori 

© Mikhail Zymbler Data Mining 

17 

 Reduce the number of comparisons 

 Reduce the number of transactions 

 Partitioning the data to find candidate itemsets 

 Sampling: mine on a subset of the given data 

Reducing number of comparisons 

© Mikhail Zymbler Data Mining 

18 

 To reduce the number of comparisons while scanning the 

transactions database to determine the support of each candidate 

itemset we can store the candidates in a hash table. 
 Instead of matching each transaction against every candidate, match it against 

candidates contained in the hashed buckets 

h(i1,i2) 0 1 2 3 4 5 6 

Itemsets' support 2 2 4 2 2 4 4 

Itemsets {A,D} 

{C,E} 

{A,E} 

{A,E} 

{B,C} 

{B,C} 

{B,C} 

{B,C} 

{B,D} 

{B,D} 

{B,E} 

{B,E} 

{A,B} 

{A,B} 

{A,B} 

{A,B} 

{A,C} 

{A,C} 

{A,C} 

{A,C} 

h(i1,i2) = (Ord(i1) * 10 + Ord(i2) mod 7 
H2 

minsup = 3 



13.05.2013 

7 

Reduce the number of transactions 

© Mikhail Zymbler Data Mining 

19 

 A transaction that doesn’t contain any frequent k-

itemset can not contain any frequent j-itemset, for 

any j>k. So such transaction can be marked or 

removed from subsequent scans of the database for 

j-itemsets. 

 

Partitioning the data 

to find candidate itemsets 

© Mikhail Zymbler Data Mining 

20 

Sampling: mine on a subset of the 

given data 

© Mikhail Zymbler Data Mining 

21 

 Pick random sample S of the given data D (S should 
fit in the available memory) 

 Search for frequent itemsets in S instead in D.  
Lower minsup to reduce the number of missed 
frequent itemsets. 

 Find the Ls, frequent itemsets in S.  

 The rest of the database can be used to compute the 
actual frequencies of the itemset in Ls. 

 If Ls doesn’t contain all the frequent itemsets in D, 
then a second pass will be needed. 

 



13.05.2013 

8 

Bottleneck of frequent-pattern mining 

© Mikhail Zymbler Data Mining 

22 

 Multiple database scans are costly 

 Mining long patterns needs many passes of scanning and 

generates lots of candidates 

To find frequent itemset i1i2…i100 

# of scans: 100 

# of candidates: (100
1) + (100

2) + … + (100
100) = 2100-1 = 

1.27*1030 ! 

 Bottleneck is candidate-generation-and-test 

 

Vertical data format 

© Mikhail Zymbler Data Mining 

23 

tid-lists 

Vertical data format 

© Mikhail Zymbler Data Mining 

24 

 Determine support of any k-itemset by intersecting 
tid-lists of two of its (k-1) subsets. 

 

 

 

 

 
 Pros: very fast support counting 

 

 Cons: intermediate tid-lists may become too large for 
memory 

 

 

A

1

4

5

6

7

8

9

B

1

2

5

7

8

10

 

AB

1

5

7

8

 



13.05.2013 

9 

Using RDBMS and SQL 

© Mikhail Zymbler Data Mining 

25 

 Store data in relational database, implement mining 
algorithms in SQL 

 Pros 

 No need to export data for external mining utilities and 
import mining results into database 

 No memory limits 

 Cons 

 RDBMS will lose the competition with mining utilities in 
case of data fits in memory 

 SQL has less flexibility than high-level programming 
languages and may produce cumbersome source code 

 

Using RDBMS and SQL 

© Mikhail Zymbler Data Mining 

26 

TID Transaction 

1 bread, milk 

2 bread, coffee, eggs, sugar 

3 milk, coffee, cola, sugar 

TID Item 

1 bread 

1 milk 

2 bread 

2 coffee 

2 eggs 

2 sugar 

3 milk 

3 coffee 

3 cola 

3 sugar 

Candidate generation in SQL 

© Mikhail Zymbler Data Mining 

27 

insert into Cand 

 select * 

 from TDB 

 where item in ( 

  select item 

  from TDB 

  group by item 

  having count(*) >= minsup); 

 



13.05.2013 

10 

Finding frequent itemsets in SQL 

© Mikhail Zymbler Data Mining 

28 

-- Frequent 2-itemsets 

select A.item, B.item, count(A.tid) as 

sup_count 

from Cand A, Cand B 

where A.tid=B.tid and A.item<B.item 

group by A.item, B.item 

having count(A.tid) >= minsup; 

 

-- Frequent itemsets for k>2 

-- How to implement k:=k+1 ? 

 

Association rules 

© Mikhail Zymbler Data Mining 

29 

 Given a set of transactions, find rules that will 

predict the occurrence of an item based on the 

occurrences of other items in the transaction 

 Market-Basket transactions Examples of Association Rules 

{sugar}  {coffee}, 

{milk, bread}  {eggs, cola}, 

{coffee, bread}  {milk}, 

{milk}  {coffee, bread}, 

… 

TID Items 

1 bread, milk 

2 bread, coffee, eggs, sugar 

3 milk, coffee, cola, sugar 

4 bread, coffee, milk, sugar  

5 bread, cola, milk, sugar 

Association rule 

© Mikhail Zymbler Data Mining 

30 

 Association rule is an implication expression of the form 

XY ("if X then Y"), where X and Y are itemsets 

 Rule support 

 is a fraction of transactions that contain both X and Y 

 sup(XY)=P(X,Y)/|TID| 

 Rule confidence 

 shows how often items in Y appear in transactions that 

contain X 

 conf(XY)=P(X,Y)/P(X) 

 



13.05.2013 

11 

Support and confidence of the 

association rule 

© Mikhail Zymbler Data Mining 

31 

 {milk, sugar}{coffee} 
 sup=P(milk, sugar, coffee)/|TID|=2/5 

 conf=P(milk, sugar, coffee)/P(milk, sugar)=2/3 

 {coffee}{milk, sugar} 
 sup=2/5 

 conf=P(coffee, milk, sugar)/P(coffee)=2/4 

TID Items 

1 bread, milk 

2 bread, coffee, eggs, sugar 

3 milk, coffee, cola, sugar 

4 bread, coffee, milk, sugar  

5 bread, cola, milk, sugar 

Computational complexity 

© Mikhail Zymbler Data Mining 

32 

 d items 

 itemsets: 2d 

 rules: 3d-2d+1+1 

 

if d=6 then we have 602 rules 

Association rule mining task 

© Mikhail Zymbler Data Mining 

33 

 Given a set of transactions T, the goal of association rule 

mining is to find all the rules having  

 support ≥ minsup threshold 

 confidence ≥ minconf threshold 

 Brute-force approach: 

 List all possible association rules 

 Compute the support and confidence for each rule 

 Prune rules that fail the minsup and minconf thresholds 

 Computationally prohibitive! 

 



13.05.2013 

12 

Mining association rules 

© Mikhail Zymbler Data Mining 

34 

 Observations 

  All the above rules are binary partitions of the same 

itemset: {milk, sugar, coffee} 

 Rules originating from the same itemset have identical 

support but can have different confidence 

 

 

TID Items 

1 bread, milk 

2 bread, coffee, eggs, sugar 

3 milk, coffee, cola, sugar 

4 bread, coffee, milk, sugar  

5 bread, cola, milk, sugar 

Rule sup conf 

{milk,sugar}coffee 0.4 0.67 

{milk,coffee}sugar 0.4 1.0 

{sugar,coffee} milk 0.4 0.67 

coffee{milk,sugar} 0.4 0.67 

sugar{milk,coffee} 0.4 0.5 

milk{sugar,coffee} 0.4 0.5 

Mining association rules 

© Mikhail Zymbler Data Mining 

35 

 Two-step approach:  

1. Frequent Itemset Generation 

Generate all itemsets whose support  grater than minsup 

2. Rule Generation 

Generate high confidence rules from each frequent itemset, 

where each rule is a binary partitioning of a frequent itemset 

 Frequent itemset generation is still 

computationally expensive 


