Международная научная конференция Параллельные вычислительные технологии (ПаВТ'2022) Дубна, 29—31 марта 2022 г.

Поиск аномалий временного ряда на графическом процессоре

<u>Я.А. Краева</u>, М.Л. Цымблер

Южно-Уральский государственный университет (Челябинск)

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 20-07-00140) и Министерства образования и науки РФ (гос. задание FENU-2020-0022).

Аномалии во временных рядах

- Поиск аномалий в показаниях температурных IoT-датчиков позволяет выявить некорректное их поведение в системе умного управления отоплением зданий кампуса ЮУрГУ¹⁾
- Дискретность показаний датчика: 4 раза в час.

¹⁾ Цымблер М.Л., Краева Я.А., Латыпова Е.А., Иванова Е.В., Шнайдер Д.А., Басалаев А.А. Очистка сенсорных данных в интеллектуальных системах управления отоплением зданий. Вестник ЮУрГУ. Серия: Вычислительная математика и информатика 10(3): 16–36. 2021.

Аномалии в больших временных рядах

- Поиск аномалий в показаниях более 10⁴ датчиков позволяет оперативно обнаружить повреждения в ЛЭП¹⁾
- Дискретность показаний датчика: 240 раз в сек.

¹⁾ Leon R. A., Vittal V., Manimaran G. Application of Sensor Network for Secure Electric Energy Infrastructure. IEEE Transactions on Power Delivery 22(2): 1021–1028. 2007.

Постановка задачи

- Диссонанс¹⁾ подпоследовательность ряда, расстояние от которой до наиболее похожей на нее подпоследовательности не ниже порога r
- Дано: временной ряд *T*, длина диссонанса *m*, порог *r*
- Найти: $D = \{d_1, d_2, \dots\},\ d_i \in D \Leftrightarrow \forall s \in T \min_{s \cap d_i = \emptyset} \operatorname{ED}(d_i, s) \ge r$

Количество подпоследовательностей s длины m в ряде T длины n: N = n - m + 1

1) Yankov D., Keogh E.J., Rebbapragada U. Disk aware discord discovery: finding unusual time series in terabyte sized datasets. Knowl. Inf. Syst. 17(2): 241–262. 2008.

Основная идея поиска диссонансов

1. Отбор

За одно сканирование ряда сформировать **множество кандидатов** В диссонансы

2. Очистка

За одно сканирование ряда **отбросить кандидатов**, которые не являются диссонансами

Параллельный алгоритм для GPU

Вход:

- *Т*-временной ряд
- т длина подпоследовательности

Выход:

D – множество диссонансов

Предварительная обработка данных

Поиск аномалий временного ряда на графическом процессоре

29.03.2022 7/16

Сегментирование временного ряда для отбора кандидатов

Переменная	Семантика		
seglen	Длина сегмента, $seglen = segN + m - 1$		
segN	Количество кандидатов в сегменте (параметр) кратно размеру варпа (<i>warp size</i> = 32)		
$T^{(i)}$	Сегмент кандидатов		
Chunk ^(j)	Элементы ряда для отбрасывания кандидатов на очередной итерации		
pad	Количество фиктивных элементов ряда		

Отбор кандидатов в диссонансы: блочное распараллеливание

Отбор кандидатов в диссонансы: распараллеливание по нитям

Поиск аномалий временного ряда на графическом процессоре

29.03.2022 **10/16**

Отбор кандидатов в диссонансы: распараллеливание по нитям

Отбор кандидатов в диссонансы: распараллеливание по нитям

29.03.2022 **12/16**

Очистка кандидатов

29.03.2022 **13/16**

Эксперименты

• Аппаратная платформа

- Графический процессор: NVIDIA Tesla V100 SXM2
- Кол-во физ. ядер: 5 120 (84 мультипроцессора)
- Тактовая частота: 1.312 ГГц
- Пиковая произв-ть: 15.7 TFLOPS
- Оперативная память: 32 Гб

Данные

Временной ряд	Длина ряда,	Длина диссонанса,	Семантика
	n	т	
Space shuttle	5 000	150	Показания датчика тока соленоида на космическом корабле NASA ¹⁾
ECG	45 000	200	ЭКГ взрослого пациента ²⁾
ECG2	21 600	400	
Power demand	33 220	750	Годовое энергопотребление здания ³⁾
Respiration	24 125	250	Дыхание человека по расширению грудной клетки ⁴⁾
RandomWalk1M	$1 \cdot 10^{7}$	512	Синтетический ряд (модель случайных блужданий)5)
RandomWalk2M	$2 \cdot 10^7$	512	

¹⁾ Ferrell B., Santuro S. NASA shuttle valve data 2005. URL: http://www.cs.fit.edu/~pkc/nasa/data/.

²⁾ Goldberger A., et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23): 215–220. doi: 10.1161/01.CIR.101.23.e215.

³⁾ van Wijk J.J., van Selow E.R. Cluster and calendar based visualization of time series data. INFOVIS'99: 4–9. doi: 10.1109/INFVIS.1999.801851.

⁴⁾ Keogh E., Lin J., Fu A. HOT SAX: Finding the most unusual time series subsequence: Algorithms and applications. Proc. 5th IEEE Int. Conf. Data Mining 2004: 440–449. URL: http://www.cs.ucr.edu/~eamonn/discords/.

⁵⁾ Pearson K. The problem of the random walk. Nature **72(394)**. doi: 10.1038/072342a0.

Производительность

Предложенный алгоритм опережает аналог по среднему времени на поиск одного диссонанса: на реальных данных – от 2 до 32 раз, на синтетических данных – более чем в 750 раз

Zhu B., Jiang Y., Gu M., Deng Y. A GPU Acceleration framework for motif and discord based pattern mining. IEEE Transactions on Parallel and Distributed Systems 32(8): 1987–2004. 2021. doi: 10.1109/TPDS.2021.3055765.

15/16

29.03.2022

Поиск аномалий временного ряда на графическом процессоре

Заключение

- Предложен новый параллельный алгоритм поиска аномалий временного ряда для графического процессора, который по результатам экспериментов опережает аналог
- Будущие исследования:
 - Разработка распределенной версии алгоритма поиска аномалий временного ряда в заданном диапазоне длин

Спасибо за внимание! Вопросы?

Яна Александровна Краева kraevaya@susu.ru

Работы по теме исследования

Zhu B., Jiang Y., Gu M., Deng Y. A GPU Acceleration framework for motif and discord based pattern mining. IEEE Transactions on Parallel and Distributed Systems 32(8): 1987–2004. 2021.	Алгоритм поиска Тор-1 диссонанса временного ряда разработан для GPU.
Zymbler M., Grents A., Kraeva Ya., Kumar S. A Parallel Approach to Discords Discovery in Massive Time Series Data. Computers, Materials & Continua 66(2): 1867–1876. 2021.	Алгоритм разработан для кластерной системы с вычислительными узлами на базе многоядерных ускорителей Intel Xeon Phi.
Zimmerman Z., Kamgar K., Senobari N.S., et al. Matrix Profile XIV: Scaling time series motif discovery with GPUs to break a quintillion pairwise comparisons a day and beyond. SoCC 2019. P. 74–86. 2019.	SCAMP разработан на основе концепции матричного профиля для GPU.
Zymbler M., Polyakov A., Kipnis M. Time series discord discovery on Intel Many-core systems. PCT 2019. CCIS 1063. P. 168–182. 2019.	Алгоритм разработан для ускорителей архитектур Intel MIC и NVIDIA GPU.
Wu Y., Zhu Y., Huang T., et al. Distributed discord discovery: Spark based anomaly detection in time series. Proc. of the 17th IEEE Int. Conf. on High Performance Computing and Communications. IEEE Press, 2015. P. 154–159.	DDD разработан для вычислительного кластера на основе использования Apache Spark и HDFS.
Huang T., Zhu Y., Mao Y., et al. Parallel discord discovery. PAKDD 2016. LNCS 9652. Springer, 2016. P. 233–244.	PDD использует парадигму мастер-рабочие и платформу кластера Spark.
Yankov D., Keogh E.J., Rebbapragada U. Disk aware discord discovery: finding unusual time series in terabyte sized datasets. Knowl. Inf. Syst. 17(2): 241–262. 2008.	MR-DRAG разработан на основе парадигмы MapReduce.

Отбор кандидатов

```
Сканировать ряд T:

текущая подпоследовательность s

Кандидат := TRUE

<u>для всех</u> c_i \in C

<u>если</u> ED(s, c_i) < r and s \cap c_i = \emptyset <u>то</u>

C \coloneqq C \setminus c_i; Кандидат \coloneqq FALSE

<u>если</u> Кандидат = TRUE <u>то</u> C \coloneqq C \cup s
```


Отбор кандидатов

Отбор кандидатов

Очистка кандидатов

Поиск аномалий временного ряда на графическом процессоре

Очистка кандидатов

Производительность: влияние длины сегмента

Производительность алгоритма пропорциональна длине сегмента

23/16

29.03.2022

Поиск аномалий временного ряда на графическом процессоре

Структуры данных

24/16

29.03.2022